
                          Passaro, E., Cavalcanti, D., Skrzypczyk, P., & Acin, A. (2015). Optimal
randomness certification in the quantum steering and prepare-and-measure
scenarios. New Journal of Physics, 17, [113010]. DOI: 10.1088/1367-
2630/17/11/113010

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1088/1367-2630/17/11/113010

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via IOP Publishing at
http://dx.doi.org/10.1088/1367-2630/17/11/113010. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/73981796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1088/1367-2630/17/11/113010
http://research-information.bristol.ac.uk/en/publications/optimal-randomness-certification-in-the-quantum-steering-and-prepareandmeasure-scenarios(87e0d843-de87-4f9d-8905-56552d4c19ee).html
http://research-information.bristol.ac.uk/en/publications/optimal-randomness-certification-in-the-quantum-steering-and-prepareandmeasure-scenarios(87e0d843-de87-4f9d-8905-56552d4c19ee).html


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: pskrzypczyk

IP Address: 137.222.149.2

This content was downloaded on 02/12/2015 at 13:37

Please note that terms and conditions apply.

Optimal randomness certification in the quantum steering and prepare-and-measure

scenarios

View the table of contents for this issue, or go to the journal homepage for more

2015 New J. Phys. 17 113010

(http://iopscience.iop.org/1367-2630/17/11/113010)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/17/11
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


New J. Phys. 17 (2015) 113010 doi:10.1088/1367-2630/17/11/113010

PAPER

Optimal randomness certification in the quantum steering and
prepare-and-measure scenarios

Elsa Passaro1,4, Daniel Cavalcanti1, Paul Skrzypczyk1,2 andAntonioAcín1,3

1 ICFO-Institut de Ciencies Fotoniques,MediterraneanTechnology Park, E-08860Castelldefels (Barcelona), Spain
2 H.H.Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL,UK
3 ICREA-Institució Catalana deRecerca i Estudis Avançats, Lluis Companys 23, E-08010 Barcelona, Spain
4 Author towhomany correspondence should be addressed.

E-mail: elsa.passaro@icfo.es

Keywords: randomness certification, quantum steering, prepare-and-measure

Abstract
Quantummechanics predicts the existence of intrinsically randomprocesses. Contrary to classical
randomness, this lack of predictability can not be attributed to ignorance or lack of control. Herewe
find the optimalmethod to quantify the amount of local or global randomness that can be extracted in
two scenarios: (i) the quantum steering scenario, where two partiesmeasure a bipartite system in an
unknown state but one of themdoes not trust hismeasurement apparatus, and (ii) the prepare-and-
measure scenario, where additionally the quantum state is known.Weuse ourmethods to compute
themaximal amount of local and global randomness that can be certified bymeasuring systems
subject to noise and losses and show that local randomness can be certified from a singlemeasurement
if and only if the detectors used in the test have detection efficiency higher than 50%.

One of themost distinct features of quantummechanics is its intrinsically random character.While in classical
mechanics lack of predictability can always be associated to ignorance or lack of control of the probed systems,
the rules of quantumphysics say that one can not predict the outcome of ameasurement even if all the variables
of a system are known. This inherent unpredictability has been exploited in different applications such as
quantum randomnumber generation [1] and quantumkey distribution [2].

Recent results have shown that the randomness observed in quantummechanics can be certified even
without relying on anymodelling of the quantumdevices used for the generation of the randomdata. In fact, by
analysing the data obtained in experiments involving localmeasurements on bipartite entangled systems one
can prove that no one could have predicted this data in advancewhenever a Bell inequality violation is observed
[3, 4]. This is called device-independent (DI) randomness certification [5, 6]. TheDI approach has the practical
advantage that it does not rely on the exact description of the experimental set-up. This is crucial when
implementing cryptographic protocols as an adversary can use amismatch between the theoretical description
and the actual implementation of the set-up to fake its performance [7–9]. However, DI protocols require low
levels of noise [4], whichmake them very demanding experimentally.

An intermediate scenario is that of quantum steering [10, 11]. It refers to the case where two parties, say Alice
and Bob, apply localmeasurements on an unknown bipartite system.While one of them, Bob, has complete
knowledge of hismeasurement apparatuses, Alice does not, and treats hermeasuring device as a black boxwith
classical inputs and outputs. Quantum steering has been receiving lot of attention recently due to the fact that it
allows for entanglement detectionwhich ismore robust to noise and experimental imperfections than Bell
nonlocality [11, 12].Moreover, quantum steeringwas shown to be useful for one-sided device independent
quantumkey distribution (1SDIQKD) [13] and randomness certification [14]. Several experimental groups have
recently observed steering, including in continuous-variable systems [15, 16], using Bell local states [17], using
inefficient detectors [18–20], asymmetric states [21], andmultipartite systems [22–24].

Themain result of our paper is a general and optimalmethod to quantify the amount of local or global
randomness that can be certified froma singlemeasurement in a steering experiment.We use thismethod to
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show that local randomness can be certified provided that the detectors used have efficiency higher than 50%.
Ourmethod can be seen as the analogue of the approach of [25, 26] from the fullyDI scenario applied to the
steering scenario.We compare the results obtained there to those obtained here, in terms of the amount of
randomness that can be obtained bymeasuring systems subjected towhite noise, and find substantial benefits
can be obtained in the present setting. As a by-product, we also show that the amount of randomness certified in
[14] from the two-qubitWerner state is optimal.

We furthermore show that the results can be easily extended beyond the steering scenario, to the prepare-
and-measure scenario, where the state is also trusted, so that only Alice’smeasuring device is untrusted. In this
case we show that even noisy states can perform verywell for randomness certification.

Finally, we give amethod tofind the bestmeasurements which obtain themost randomness from anyfixed
state. Using insight from thismethod, we show analytically that all pure partially entangled states lead to
maximal randomness certification using only twofixedmeasurements.

There are severalmotivations to quantify the amount of randomness in the steering scenario. From a
fundamental point of view, it is important to understand howmuch randomness can bemaintained if we give up
partial information about the specific description of the systems [14, 27, 28]. From a practical point of view, the
amount of randomness obtained in the steering scenario gives an upper bound towhat Alice and Bobwould
obtain in a fullyDI setting, regardless of the number ofmeasurements Bobwould apply. Furthermore, it is a
scenario that appears naturally in some asymmetric applications. For instance the present results give a way of
quantifying the amount of randomness in remote untrusted stations. This is relevant, for instance, when the
provider of a quantum-random-number generator wants to remotely check if the devices they provided are still
functioning properly.

1. Steering and randomness

The scenariowe treat in this work is the following [11]: two parties, Alice and Bob, are located in distant
laboratories and receive a bipartite system from a source. One of the two parties, say Alice, does not trust her
measuring devices, which are treated as ‘black boxes’. She can, nevertheless, choosewhichmeasurement to
perform,which she labels by x m0, , 1 ,A{ }Î ¼ - each of which provides an outcomes, which she labels
a n0, , 1 .A{ }Î ¼ - The other party, Bob, has complete knowledge of his device, which allows him to perform
quantum state tomography on his part of the system, and thus to obtain a complete description of his subsystem
(see figure 1(a)). The states reconstructed by Bobwill usually depend onAlice’s input and output as a xr =

M P a xTr ,a xA B AB[( ) ] ( ∣ )rÄ  where ρAB is the unknown state sharedwithAlice, P a x( ∣ ) is the probability that
Alice observes outcome a given she chose x, and Ma x is the corresponding (unknown) element of Alice’s
measurement. The set of unnormalized states M P a xTra x a x a xA B AB[( ) ] ( ∣ )s r r= Ä = is called an
assemblage and can be completely determined by Bob through tomographicmeasurements.

As noticed in [11], Bob can determine if ABr is entangled by looking at the formof the assemblage .a x a x,{ }s
This is because separable states can only lead to assemblages with the specific form

q P a x, , 1a x ( ) ( ∣ ) ( )∣ ås l l s=
l

l

whereλ is a hidden variable distributed according to q ,( )l which determines bothAlice’s response P a x, ,( ∣ )l
and the states sent to Bob,σλ. Assemblages of this form are said to have a local hidden statemodel. Any
assemblagewhich does not have this form can be detected through the violation of a steering inequality [29]
(similar to a Bell inequality or an entanglement witness) or a simple semi-definite program [30].

It turns out that the confirmation of steering not only guarantees that the shared state is entangled, but also
that Alice is performing incompatiblemeasurements [31, 32]. It is thus very intuitive to expect a relation
between steering and randomness: first, the correlations (entanglement) shared betweenAlice andBob allows
Bob to certify steering, and consequently the incompatibility of Alice’smeasurements. Second, since Alice’s
measurements are incompatible not all the outcomes she receives are predictable, and thus random.

2. Local randomness certification

In order to certify the local randomness of Alice’s outcomeswework in the adversarial scenario, where a
potential eavesdropper, Eve, wants to predict them. This framework is relevant for cryptographic tasks, namely
ISDIQKD. In themost general case, we do notmake any assumption onAlice’smeasurement device, so that it
could even have been provided by Eve.We also consider that the state ABr is the reduced state of a tripartite
entangled state ABEr shared byAlice, Bob and Eve, i.e. Tr .AB E ABE[ ]r r= Hence, by applyingmeasurements to
her subsystemEve can in principle obtain information about Alice’s outcome.

2
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In this sectionwewill focus on the case where Alice and Bobwant to extract randomness from the outcomes
of a single givenmeasurement of Alice, let us say x m0, , 1 .A{ }* Î ¼ - Themotivation for considering this
case is that it is the relevant one from the perspective of 1SDIQKD.We assume that the runs of the experiment
are independent and identically distributedwith respect to Eve’s strategy5.We consider the case where Eve also
knows fromwhichmeasurement x*Alice is going to extract randomness, so she can optimize her attack to
obtain information about thismeasurement setting. Thefigure ofmerit we use to evaluate the amount of
randomness in Alice’s outcomes is the probability that Eve can correctly guess the outcome a of the
measurement x* of Alice. This quantity, denoted by P x ,guess ( )* is given by the probability that Eve’s guess e is
equal to the outcome a that Alice obtained, whenever Alice performs the specificmeasurement x x :*=

P x P a e x P e a e x x, . 2
e

guess A E( )( ) ( ) ( )* * *å= = = =

Applying Bayes theorem, this is equivalent to P x P a e e x x, ,
eguess AE( ) ( ∣ )* *å= = = i.e. equal to the joint

probability that Alice andEve give the same outcomewhenever Alicemeasures x x .*= Randomness is certified
whenever the guessing probability is strictly less than 1, inwhich case Eve can not predict Alice’s outcomewith
certainty.

After Alice and Eve have applied theirmeasurements the assemblage preparedwill be

M MTr , 3a x
e

a x eAE B ABE( ) ( )∣ ∣
⎡⎣ ⎤⎦s r= Ä Ä

whereMe is the element of Eve’s (optimal)measurement which yields outcome e n0, , 1 .A{ }Î ¼ - However,
since Alice and Bob do not have access to Eve’s outcomes the assemblage theywill reconstruct will be given by

. 4a x
e

a x
eobs ( )∣ ∣ås s=

In order to compute the optimal strategy for Evewe need tomaximize her guessing probability (for a given
input x* of Alice), over all strategies. Naively, this would appear to constitute optimizing the triple

M M, , ,a x eABE{ }r of state,measurements for Alice, andmeasurement for Eve, a nonlinear optimization
problem.However, just as in theDI case [25, 26], we can instead replace this by an equivalent linear optimization
over all physical assemblages a x

e
a e x, ,{ }s that are compatible with the no-signalling principle and the observed

assemblage .a x a x
obs

,{ }s More precisely, themaximization problem can be formulated as the following
semidefinite programme (SDP) [33]:

P x

a x

e x x

a x e

max Tr

subject to ,

,

0 , , . 5

e
a e x
e

e
a x
e

a x

a
a x
e

a
a x
e

a x
e

guess

obs

a x
e

a e x, ,

( ){ }

( )

∣ ∣

∣

∣

∣

⎛
⎝⎜

⎞
⎠⎟*
*



å

å

å å

s

s s

s s

s

=

= "

= " ¹ ¢

"

s =

¢

In the objective functionwe used P e P a x e P ae x, Tr a x
e

E A( ) ( ∣ ) ( ∣ ) [ ]s= = to re-express P x .guess ( )* Thefirst
constraint assures that the decomposition for Eve is compatible with the assemblage Alice and Bob observe. The
second constraint is the non-signalling condition—i.e. Alice cannot signal to Bob and to Eve. The last one is the
requirement for every a x

es to be a valid (unnormalized) quantum state.We defer to the appendix the full proof
that this optimization problem is equivalent to optimizing over states andmeasurements, which follows from
theGisin–Hughston–Jozsa–Wootters (GHJW) theorem [34] (which shows that all bipartite no-signalling
assemblages have quantum realizations), combinedwith the fact that Eve,making only onemeasurement, also
cannot signal.

Notice that the SDP (5) can be seen as the steering analogue of the SDPprovided in [25, 26]which bounds the
amount of randomness given an observed nonlocal probability distribution P ab xy .obs ( ∣ ) Asmentioned before,
the SDP (5) provides an upper bound on the amount of randomness (i.e. a lower bound on thePguess) that can be
found using the SDP of [25, 26]. This follows because (5) does not allowEve to attack themeasurements of Bob.
Thus, our SDP bounds themaximal amount of randomness that could be obtained if Bobwere to perform any
number ofmeasurements (that Eve can attack) and compute the randomness based on the obtained probability
distribution. The number of randombits is quantified by themin-entropy H A X P xlog ,min 2 guess( ∣ ) ( )* *= -
where P xguess ( )* * is the result of themaximization (5).

Infigure 2we plot the amount of randomness certified in the case that Alice applies twomutually unbiased
Pauli spinmeasurements on a two-qubitWerner state ABr = v v1 4,∣ ∣ ( )F ñáF + -+ +  where

5
Wenote that once independence is assumed, it is without loss of generality to assume the pairs identical.
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00 11 2 ,∣ (∣ ∣ )F ñ = ñ + ñ+ and compare it with the amount of randomness obtained in the case Bob also treats
hismeasuring device as a black box (i.e. the fullyDI case). In both cases randomness can be certified as long as
v 1 2 ,> which is the critical amount of noise for demonstrating either steering or nonlocality with only two
measurements [35]. All numerical SDP calculations were performed using the CVX package for MATLAB [36],
alongwith the library QETLAB [37].

Infigure 3we also compute the amount of randomness that can be obtained bymeasuring the same spin
measurements with detection efficiency η (for visibility v= 1 and v= 0.9), again comparing to the case where
Bob treats hismeasuring device as a black box. That is, (for steering) instead of idealmeasurements, with

Figure 1. Setup for randomness certification in the quantum steering and prepare-and-measure scenarios. (a) Steering scenario: Alice
and Bobmeasure an unknown bipartite systemdelivered by an untrusted source. Alice treats hermeasurement device as a black box
with inputs x m0, , 1A{ }Î ¼ - and outputs a n0, , 1A{ }Î ¼ - andBob performs tomography on his subsystem. (b)Prepare-
and-measure scenario: similar to the previous scenario, but nowBob holds the source and then knows the bipartite state .ABr

Figure 2.Randombits certifiedHmin versus the visibility v of the two-qubitWerner state.We compare the randomness obtainedwith
ourmethod in the steering scenario (solid line)with the fully device-independent case as in [25] (dashed line).

Figure 3.Randombits certifiedHmin versus the detection efficiency η for the two-qubitWerner state. Black lines: v= 1; red lines:
v= 0.9. Solid lines: our steeringmethod; dotted-dashed lines: DImethod in the casewhere Bob’s detection efficiency is 1; dashed lines:
DImethodwhere bothAlice and Bob’s detectors have efficiency η.

4
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elements M ,a x we consider inefficientmeasurements M ,a x
( )h with one additional outcome a ,= Æ given by

M
M a

a

,

1 ,
6a x

a x

( )
( )∣

( ) ∣⎧⎨⎩
h

h
=

¹ Æ
- = Æ

h



(themeasurements of Bob are similarlymade inefficient in the nonlocality scenario).
In this case, two comparisons aremade: (i) the case where Bob’s detection efficiency is 1; and (ii)where Bob

also has detection efficiency η. As one can see, for v= 1 in the steering scenario randomness can be certified
whenever the detection efficiency is higher than 50%,matching the threshold belowwhich no randomness can
be obtained [38].Moreover, we see that due to themuch larger detection efficiencies needed to violate theCHSH
inequality (82.8%) and for theDI case where Bob’smeasuring device is perfectly efficient (70.7%), the steering
scenario offers a significant advantage when using themaximally entangled state over the nonlocality scenario,
for the entire range of visibility which is experimentally significant (i.e. for v= 0.9 and above).

Finally, infigure 4we plot the number of randombits certified in the case that Alice performsmeasurements
in fourmutually unbiased bases on her half of the entangled two-qutrit state 00 11 22 3(∣ ∣ ∣ )ñ + ñ + ñ in the
presence of losses. Again, we see that whenever the detection efficiency is above 50%Alice is able to certify local
randomness.Moreover, for efficiency η= 1 she certifies H log 3min 2= bits of randomness.

3.Global randomness certification

In the steering scenarioone canalso consider global randomness extraction fromboth theuntrusted and trusted
devices. Indeed, even thoughBob trusts his devices, andknowswhichmeasurementheperforms, there is still an
optimal state thatEve candistributewhich allowsher topredict theoutcomeofBob’smeasurement.This is because
althoughEve is not able to change themeasurementsperformedbyBob,norhis reduced state, she still has additional
classical side information that she canuse tohelpher in guessing the result ofBob (since sheholds the source).

Consider that, additionally to Alice’smeasurement x x ,*= Evewants to guess the outcomes of a
measurementMb performed byBob. Eve nowhas a pair of guesses e e, ,( )¢ whichwill be her guess for the pair
a b, .( ) Shewill thus perform ameasurement with elements Mee¢ on her share of the state, which after Alice also

measures will lead to the assemblage for Bob M Mtr .a x
ee

a x eeAE B ABE[( ) ]s r= Ä Ä
¢

¢ Similarly to the case of local
randomness, the global guessing probability Pg can straightforwardly be shown to be the solution to the
following SDP

P M

a x

x x a e e

a x e e

max Tr

s.t. , ,

, , , ,

0, , , , . 7

ee

b e a e x
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Weagain require consistencywith the observed assemblage ,a x
obss and demand positivity and no-signalling.

Figure 4.Randombits certifiedHmin versus the detection efficiency η for the two-qutritmaximally entangled state
00 11 22 3 .3∣ (∣ ∣ ∣ )( )F ñ = ñ + ñ + ñ+
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Wecomputed the global randomness which can be certifiedwithout losses assumingX andZmeasurements
for Alice, and anXmeasurement for Bob, on two-qubitWerner states. The results can be seen infigure 5,
alongside the corresponding curve calculated using themethod of [25, 26] for the nonlocality scenario. As a
result, we observe that the lower bound on the amount of global randomness that can be extracted in the steering
scenario presented in [14] is tight.

4. Prepare-and-measure scenario

Up to nowwe have considered the steering scenario, where Alice and Bob receive an unknown state ABr from an
untrusted source. It turns out that the results on local randomness straightforwardly apply to the casewhere Bob
prepares a known state and sends half of it to Alice (seefigure 1(b)). In this case, since the global state ABr is
known, the assemblages reconstructed by Bob have to come fromunknownmeasurements on this state, i.e.

MTr .a x e a x
e

A B AB[( ) ]ås r= Ä  Thus the SDP (5) can be replaced by

P x M

M a x

M M x x e

M x

M a x e

max Tr

subject to Tr ,
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0 , , . 8
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This SDP can be understood as themaximization of Eve’s guessing probability over all possible POVM
measurements (where the outcome e goes to Eve and the outcome a goes toAlice), with Eve oblivious of x, that
can be applied to the state ,ABr given the observation of the assemblage .a x a x

obs
,{ }s Aderivation of this SDP can be

found in appendix B.Wenote that this scenario can also be thought of as the ‘time-like steering’ scenario
introduced in [39].

We used the above program to calculate the amount of randomness that can be obtained from the two qubit
Werner state, and from the isotropic two-qutrit state v v1 9,AB

3 3∣ ∣ ( )( ) ( )r = F ñáF + -+ +  where

00 11 22 3 .3∣ (∣ ∣ ∣ )( )F ñ = ñ + ñ + ñ+ In both cases we consider that Alice performs twomutually unbiased
measurements (PauliX andZ for qubits, and their generalization for qutrits).

For the case of no-losses, we observe that the amount of randomness that can be extracted is independent of
the visibility v, and equal to 1 bit and 1 trit= log 32( ) bits respectively6. This coincides with the amountwhich is
obtained in the steering scenario for v= 1, i.e. the ideal case. This demonstrates that if knowledge of the state is
assumed, then the lack of visibility cannot be used by Eve to guess the outcomes of Alice’smeasurements.

Figure 5.Global randomness obtained bymeasuring a two-qubitWerner state (with noise v), withX andZmeasurements for Alice,
andXmeasurement for Bob, computed using equation (7) (solid curve). As amatter of comparisonwe also plot the amount of global
randomness obtained in the device-independent scenario, using themethods of [25, 26] (dashed curve).

6
More precisely, for all v 0.05 we observed numerically that P 0.339.g 
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Turning to the case of losses, consistent with the above, we observe that, independent of the visibility, the
dependence of the randomness on the loss coincides with that found in the steering scenario for perfect visibility.
That is, the solid black curves infigures 3 and 4 are obtained, for anyfixed value of the visibility v.

This shows that the prepare-and-measure scenario greatly improves over the steering scenario when
considering lack of visibility (i.e. noise) on the state.

5. Improving the randomness extraction

The SDP (5) provides away of quantifying the randomness in Alice’s outcomes given the observation of a given
assemblage. A natural question is, given afixed state distributed betweenAlice and Bob and afixed number of
measurements for Alice, what is the best scheme they can implement (i.e. the best choice ofmeasurements)
which allows for the certification of themost randomness.

Here we propose a numerical see-sawmethod that, starting froman initial amount of certified randomness,
seeks formeasurement schemes that lead to higher randomness certification.We focus on the case of local
randomness. A similar scheme can also be implemented for global randomness.

Every SDPhas a dual program, also an SDP, that can be obtained through the theory of Lagrangemultipliers
[33]. The dual of (5) is equivalent to

F

F a

min Tr

subject to Tr Tr , , 9

F a x
a x a x

a x
a x

a x a x a x

,
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where in the constraint, a xs" should be understood as for all non-signalling assemblages, i.e. those satisfying

a a x a a xå ås s= ¢ for all
7x x¢ ¹ . Since strong duality holds, the optimal value of this optimization problem is

equal to the optimal value of (5), i.e. P x FTr .
a x a x a xguess ,

obs( ) ( )* * *å s= Moreover, it outputs the coefficients Fa x*

of the optimal steering inequality that gives the tight upper bound on P x .guess ( )* *
Oncewe have solved the dual problem (9)we can run a second SDP that optimizes the violation of the
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min Tr

subject to

0 , . 10

M ax
a x a x AB

a
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a x
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The solution of this optimization problemprovides themeasurements for Alice that allow for the certification of
themost randomness using the steering inequality provided by the first SDP.

At this point, one can perform a see-saw iteration of the two SDPs in order to obtain themaximal
randomness that can be certified froma given state, alongwith the optimal steering inequality and
measurements M .a x For every given initial state, the SDP (5) (and its dual (9)) gives the best inequality to certify
randomness from an assemblage, while the SDP (10) gives the best set ofmeasurements—and therefore the best
assemblage—for a given steering inequality.

Infigure 6we plot the result of this see-saw iteration, starting from two randomly chosen projective
measurements, for η= 1 and η= 0.9, for the two-qubit partially entangled state cos 00 sin 11 .∣ ∣ ∣y q qñ = ñ + ñ
When there are no losses, one bit of randomness is already known to be possible from any partially entangled
state in the fully DI scenario [40]. Since this scenario ismore demanding, it implies one bit can also be obtained
fromany partially entangled state of two qubits in the steering scenario. If themethodworks it should be able to
reproduce this result. As can be seen, 1 bit of randomness is indeed found, thus demonstrating the utility of the
method.

Further exploration showed numerically that themeasurements which achieve 1 bit of randomness from
any partially entangled state can always be taken to beX andZmeasurements for Alice (with the randomness
obtained from theXmeasurement)8.

In the appendixwe show that this numerical evidence can in fact be turned into an analytic construction,
which proves that 1 bit can be obtained fromany partially entangled state of two qubits (which is notably

7
Aswritten, this problem is not in the formof SDP. In appendix Cwe derive the dual SDP and show its equivalence to (9), which is easier to

interpret.
8
Wedo not present the form of the optimal steering inequalities for partially entangled states, since we did not find any general structure

whichmakes knowing their formuseful.
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completely different to the approach used in [40] for nonlocality).Moreover, the construction generalizes to
qudits in a straightforwardmanner, showing that 1 dit of randomness can be obtained by performing two
generalized Paulimeasurements on any Schmidt-rank d state. This is contrary to the fully DI case, where it is
only knownhow to extract 1 bit from any pure partially entangled state.

6. Conclusions

Wehave presented amethod that certifies the optimal amount of local or global randomness that can be
extracted in a steering experiment.We also considered the case where the source is trusted (prepare-and-
measure scenario). Ourmethod relies on optimization techniques that quantify the amount of certified
randomness and provide the optimal steering inequality for randomness certification. Applying thismethod to
realistic implementations—i.e. in presence of noise and losses—wehave shown that a detection efficiency above
50% is sufficient to have reliable local randomness certification in the steering scenario. This result is also valid
forDI randomness certification and, in general, in scenarios with lower levels of trust.

Finally, we have introduced amethodwhich produces, for any given initial state, the optimalmeasurements
which in turn give the optimal assemblage fromwhichmaximal randomness can be certified. Using thismethod
as a starting point, we have shown analytically that 1 dit of randomness can be obtained from any pure entangled
Schmidt-rank d state.

Since local randomness certification is of fundamental importance for 1SDI andDIQKD, the results
presented here have a natural application in cryptographic protocols.
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AppendixA.Obtaining the SDP for the guessing probability

In this appendixwewill showhow to arrive at the SDP (5) for Eve’s guessing probability.
Themost general attack that Eve can implement in the case that she is interested in guessing the result of a

singlemeasurement (x x*= )Alice, is to distribute a state ABEr to Alice and Bob (keeping a part for herself) on
which shewill perform ameasurement with POVMelementsMe, for e m0, , 1,A= ¼ - and distribute to Alice
a set ofmeasuring devices which implement the POVMswith elements M ,a x for x n0, , 1A= ¼ - and
a m0, , 1.A= ¼ - WhenEve obtains outcome e fromhermeasurement shewill give this as her guess for the
outcome of Alice. Thus, the guessing probability of Eve is given by

Figure 6.Plot of the randombits certified versus the number of steps of the see-saw iteration for a two-qubit partially entangled state
cos 00 sin 11∣ ∣ ∣y q qñ = ñ + ñwith 7q p= and startingwith randommeasurements with η= 1 (black curve) and η= 0.9 (red

curve).
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P x M MTr . A.1
e

a e x eguess AE( )( ) ( )⎡
⎣⎢

⎤
⎦⎥* *å r= Ä=

Alice andBob can however determine the assemblage a x
obss that they hold, (i.e. the set of conditional states

prepared for Bob, alongwith the corresponding probabilities). Thus the optimization problemwe need to solve
is given by

M M

M a x

M a x M x

M e M

max Tr
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0, Tr 1
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Here, thefirst constraint is the consistencywith the observed assemblage, the second constraints demand that

ABEr is a valid quantum state and the third and fourth constraints that themeasurements Ma x andMe are valid
POVMs.

Defining now the joint assemblage for Alice, Bob and Eve

M MTr , A.3a x
e

a x eAE B ABE( ) ( )∣ ∣
⎡⎣ ⎤⎦s r= Ä Ä

it is straightforward to see that all of the constraints appearing in (5) are satisfiedwhenever the constraints in
(A.2) are satisfied, and that the objective functionsmatch. Thus it is straightforward to see that the optimization
problem (5) is at least a relaxation of (A.2).Whatwewill shownow is that they are in fact equivalent optimization
problems by showing that any solution to (5) also implies a solution to (A.2).

First of all, consider an assemblage a x
es satisfying all of the constraints in (5). For afixed e, we can define9

P e Tr
a a x

e
E ( ) å s= , and P e .a x

e
a x
e

E˜ ( )s s= This has the following properties

e x x e, , Tr 1 A.4
a

a x
e

a
a x
e

a
a x
e˜ ˜ ˜ ( )∣ ∣å å ås s s= " ¹ ¢ = "

¢

which show that for each e, a x
es̃ is a valid assemblage [30]. From theGHJW theorem [34] it therefore follows that

there is a quantum state e
ABr and POVMelements Ma x

e such that

MTr . A.5a x
e e

a x
e

A B AB( ) ˜ ( )∣ ∣
⎡⎣ ⎤⎦r sÄ =

Now,wefinally consider that Eve also sends an additional degree of freedomwhich is read by themeasuring
device of Alice—an auxiliary classical ‘flag’ systems, whichwe label A.¢ This systemhas orthogonal states e ,∣ ñ for
e m0, , 1.A= ¼ - This systemwill be read byAlice’smeasuring device, and, conditioned on the flag, the
appropriatemeasurement will bemade.We can thus now construct the complete strategy of Eve

P e e e e e

M e e M

M e e . A.6

e

e

a x
e

a x
e

e

ABE E A AB E

A

E

( )∣ ∣ ∣ ∣

∣ ∣

∣ ∣ ( )

∣ ∣

å

å

r r= ñá Ä Ä ñá

= ñá Ä

= ñá

¢

¢

Clearly this defines a valid state and validmeasurements, hence they satisfy the latter constraints of (A.2).
Furthermore, by construction it also satisfies thefirst consistency constraint, which is straightforwardly verified.

In total, we thus conclude that the two optimization problems are equivalent, since the solution to either one
implies a solution to the other, obtaining the same P x .guess ( )* We thus focus on the problem (5)which is easier to
solve, being an SDPoptimization, linear in the optimization variables .a x

es

Appendix B.Derivation of the prepare-and-measure SDP

In this appendixwewill show that the amount of randomness that can be certified in the prepare-and-measure
scenariowhenAlice receives her share of the state through an untrusted channel, and does not trust her
measuring device, is given by the SDP (6) in themain text.

Bob prepares a knownbipartite state ABr half of which is sent to Alice through the insecure quantum
communication channel. Eve can intercept the state, and themost general operation she can perform (in the case

9
Note that P eE ( ) is indeed independent of x, due to no-signalling, since

a a x
e

e a x
eå ås s= ¢ is independent of x.
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that she is guessing only the outcome of a singlemeasurement x x*= ) is ameasurement withKraus operators
Ke, i.e. the POVMelements are M K K ,e e e

†= and the state prepared by Eve after obtaining outcome e is

K K

K KTr
B.1e

e e

e e
AB

AB

A

( ) ( )
( )

†

†⎡⎣ ⎤⎦
r

r

r
=

Ä Ä 

which occurswith probability P e MTr .eE A( ) [ ]r= Evewill guess that the outcome of Alice’smeasurement is e.
Eve now forwards the state ontoAlice, and since she controls completely Alice’s device, shewill allow the device
to perform themeasurement Na x

e when her outcomewas e, andwhenAlice chooses tomakemeasurement x
(that is, Eve sends the classical information of which outcome she obtained alongwith the quantum state). Thus,
the probability for Alice to obtain outcome a, given that shemademeasurement x and Eve obtained outcome e is
given by

P a x e
N K K

K K
,

Tr

Tr
. B.2

a x
e

e e

e e

A
A

A

( ∣ ) ( )
∣

†

†

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

r

r
=

Putting everything together, we see therefore that the guessing probability is given by allowing Eve to optimize
over all available strategies, and is given by

P x N K K

N K K a x

N e x

K K

N a e x

max Tr

subject to Tr ,

,

0 , , . B.3

K N e
a e x
e

e e

e
a x
e

e e a x

a
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e

e
e e
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e
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Currently, this optimization is not in the formof an SDP, due to the nonlinear nature of the objective function
and the constraints. However, it can easily bewritten in the formof an SDPby introducing the new variable
M K N K .a x

e
e a x

e
e

†= The threefinal constraints on Na x
e andKe imply the following constraints on M ,a x

e

M M e x x

M x

M a e x

, , ,

, ,

0, , , . B.4

a
a x
e

a
a x
e

ae
a x
e

a x
e ( )

∣

∣

∣ 

å å

å

= " ¢ ¹

= "

"
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However, we can see that whenever we have a set of Ma x
e satisfying the above constraints, it implies that there

exist Na x
e andKe satisfying the original constraints—i.e. the two sets are equivalent. To see this, we denote first

M M 0e a a x
e å= (which is independent of x), and therefore we canwrite M K K ,e e e

†= for someKe, which is

always possible for a positive semi-definite operator.Moreover, since M K K ,
ae a x

e
e e e

†å å= =  the second

constraint is satisfied. Finally, defining N K M K 0a x
e

e a x
e

e
1 1( ) ( )† = - - (using the pseudo-inverse when

necessary), we also have that

N K M K K K K K . B.5
a

a x
e

e e e e e e e
1 1 1 1( ) ( ) ( ) ( ) ( )∣

† † †å = = =
- - - -



Thus, we can re-express the optimization problem (B.3) in the formof the following SDP
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which is exactly the optimization problem given in themain text.
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AppendixC.Deriving the dual of the SDP (5)

In this appendixwe show the explicit formof the dual of the SDP (5), and explainwhy equation (9) is an
equivalent form,which is easier to interpret.

As a reminder, the primal problem is given by

P x

a x

e x x

a x e
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0 , , . C.1
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e
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e
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Let us introduce dual variables F ,a x Gx
e and H ,a x

e with respect to thefirst, second and third set of constraints
respectively, and form the Lagrangian for this problem
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After re-arranging, and grouping terms, this is equivalent to

F
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This Lagrangian provides an upper bound on the primal objective as long as H 0.a x
e  Moreover, it provides a

non-trivial upper bound onlywhen the inner bracket in the second line identically vanishes for each value of
a e x, , .Thus, we arrive at the dual problem

P x F

F G G H a e x

H a e x
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However, Ha x
e is playing the role of a slack variable, since it does not appear in the objective function, sowe can

finally simplify the dual to arrive at
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The dual is easily seen to be strictly feasible, for example by taking G 0x
e = and Fa x a=  for 1.a > Thus strong

duality holds, and the optimal value of the dual is equal to the optimal value of the primal. In the form (C.5), the
dual is seenmanifestly to be an SDP, as expected. Finally, to understand themeaning of the constraint, we
multiply by an arbitrary valid assemblage ,a xs and take the sum in a and x and the trace.We find

F P e xTr Tr C.6
ax

a x a x e x ( ) ( )∣ ∣
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ **å s s =

must hold for all e. Since this condition also holds for all valid assemblages, we see that the second constraint
enforces that the value of the inequality is a uniformupper bound on the probability that any individual outcome
occurs for themeasurement x ,* independent of the assemblage.Hence, one sees immediately why this bounds
the guessing probability.

AppendixD.Maximal randomness fromall pure states

In this sectionwewill show analytically that appropriatemeasurements on all partially entangled qudit states
necessarily lead to 1 dit of randomness.
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Consider first the partially entangled two-qubit state in Schmidt form, cos 00 sin 11 ,∣ ∣ ∣y q qñ = ñ + ñ for
0, 4 ,( ]q pÎ and that Alice’s twomeasurements areX andZmeasurements respectively. The assemblage

created for Bob is then

1

2
,

1

2
,

cos 0 0 ,

sin 1 1 , D.1

0 0

1 0

0 1
2

1 1
2

∣ ∣
∣ ∣ ( )

∣

∣

∣

∣

s

s

s q
s q

=  

=  

= ñá

= ñá

q q

q q- -

where cos 0 sin 1 .∣ ∣ ∣q q ñ = ñ + ñq Crucially, each element of the assemblage is pure, i.e. each element is of
the form P a x ,a x a x( ∣ )s = P where a xP is a one-dimensional projector. The purity of Bob’s assemblage
substantially constrains Eve’s possible strategies, such that

q ae x , D.2a x
e

a x( ∣ ) ( )∣ ∣s = P

where each q ae x 0.( ∣ )  This says that Evemust prepare the same pure state for Bob in each instance, all she can
vary is the probability of the two outcomes (whichmust still be positive). To be consistent with the observed
assemblage, wemust have that

q ae x P a x . D.3
e

( ∣ ) ( ∣ ) ( )å =

The guessing probability also nowbecomes

P q qtr 00 0 11 0 . D.4
e

a e
e

g 0 ( ∣ ) ( ∣ ) ( )∣
⎡⎣ ⎤⎦å s= = +=

Now, the no-signalling constraint says that
a a

e
a a

e
0 1å ås s= for all e. Specifically, in the case at hand

q e q e q e q e0 0 1 0 0 1 1 1 , D.50 0 1 0 0 1 1 1( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )∣ ∣ ∣ ∣P + P = P + P

whichmust be true for allmatrix elements.While the projectors on the right-hand side, corresponding to
measurements ofZ, are diagonal, the left-hand side, corresponding toX, are in general not diagonal. Thus,
taking the trace with 1 0 ,∣ ∣ñá we arrive at the condition

q e q ecos sin 0 0 1 0 0. D.6( ( ∣ ) ( ∣ )) ( )q q - =

Since cos sin 0q q ¹ for 0, 4 ,( ]q pÎ this implies that q e q e0 0 1 0 .( ∣ ) ( ∣ )= In particular, this says that
q q01 0 11 0 .( ∣ ) ( ∣ )= However, to be consistent q q p00 0 01 0 0 0 1 2,( ∣ ) ( ∣ ) ( ∣ )+ = = and thuswe arrive at

q q q q P1 2 00 0 01 0 00 0 11 0 . D.7g( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( )= + = + =

Thus, analytically itmust be the case that P 1 2,g = and hence 1 bit of randomness is obtained bymeasuringX
andZ on any partially entangled state of two qubits.

The above also extends to qudits; assuming that the state has Schmidt-rank d then 1 dit of randomness can
always be obtained. Let us nowwrite the state as

k k , D.8
k

d

k
0

1

∣ ∣ ∣ ( )åy lñ = ñ ñ
=

-

where 1,
k kå l = and 0.kl > Alice’sfirstmeasurement will nowbe in the Fourier transformbasis, with

eigenstates

a
d

k
1

D.9
k

d
ak

0

1

˜ ∣ ( )åw= ñ
=

-

and e d2 iw = p the corresponding root of unity.Her secondmeasurement will be in theZ basis with eigenstates
a .{∣ }ñ For Alice’sfirstmeasurement she obtains each outcomewith equal probability P a d0 1 ,( ∣ ) = and

prepares the pure states for Bob ,a 0P given by

k l . D.10a
kl

k l
a l k

0 ∣ ∣ ( )∣
( )å l l wP = ñá-

ForAlice’s secondmeasurement, she obtains outcome awith probability P a 1 ,a( ∣ ) l= and prepares the state
a a .a 1 ∣ ∣P = ñá As above, the purity of Bob’s assemblagemeans that Eve is again forced to use strategies of the

form q ae x .a x
e

a x( ∣ )s = P For consistencywe still have q ae x P a x ,
e

( ∣ ) ( ∣ )å = for the guessing probability

P q ee 0 ,
eg ( ∣ )å= and fromno-signalling q ae q ae0 1 .

a a a a0 1( ∣ ) ( ∣ )å åP = P Once again, the right-hand side
is diagonal, and hence by looking at the off-diagonalmatrix elements, i.e. by taking the trace with k l ,∣ ∣ñá wefind
that
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q ae 0 0. D.11
a

k l
a l k( ∣ ) ( )( )å l l w =-

Since, by assumption of being Schmidt-rank d, none of the Schmidt coefficients vanish, we thereforemust have
that

q ae 0 0. D.12
a

a l k( ∣ ) ( )( )å w =-

Considering only the elements with k= 0 (and l d1, , 1= ¼ - ), alongwith the equation q ae P e0 ,
a

( ∣ ) ( )å =
which says that Eve’s probability to output e is just themarginal distribution, we notice that this set of equations,
when combined, has the familiar formof a discrete Fourier transform (up to normalization):

q e

q e

q d e

P e1 1 ... 1
1 ...

1 ...

0 0

1 0

1, 0

0

0

. D.13
d

d d

1

1 1 2

( ∣ )
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⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
w w

w w -

=
-

- -
     

Thus, this equation is readily inverted, andwe obtain as solution q ae P e d0( ∣ ) ( )= for all a e, . In particular,
this implies that Eve’s guess is completely uncorrelated fromAlice’s, and her guessing probability is

P q ee
d

P e d0
1

1 .
e eg ( ∣ ) ( )å å= = = Thus 1 dit of randomness is obtained fromAlice’smeasurement.
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