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Abstract 

Researchers sometimes aggregate data, such as combining resident data into state-level means. 

Doing so can sometimes cause valid individual-level data to be invalid at the group level. We 

focus on cross-race misaggregation, which can occur when individual-level data are confounded 

with race. We discuss such misaggregation in the context of Simpson’s Paradox and identify four 

diagnostic indicators: aggregated rates that correlate strongly with the relative size of one or 

more subgroup(s), unequal sample sizes across subgroups, unequal rates or mean values across 

subgroups, and aggregated rates that do not correlate with subgroup rates. To illustrate these 

diagnostic indicators, we decomposed data on the prevalence of sexually transmitted diseases 

(STDs) to confirm cross-race misaggregation in Parasite Stress USA, an ostensible index of 

parasite prevalence known to be confounded with the proportion of African American residents 

per state.  

 

Keywords: Simpson’s Paradox, ecological fallacy, parasite-stress theory, sexually transmitted 

diseases, population demographics 
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Cross-race Misaggregation: Its Detection, a Mathematical Decomposition, and Simpson’s 

Paradox  

Researchers sometimes test hypotheses by analyzing data aggregated at the level of US 

states or countries. Such analyses face several obstacles to validity: Data points are non-

independent, measures might mean different things in different countries, and individual-level or 

subgroup relationships cannot be reliably inferred from group-level aggregated data (Pollet, 

Tybur, Frankenhuis, & Rickard, 2014). We elaborate on one cause of the latter obstacle: a 

validity threat we refer to as misaggregation. By this we mean valid data combined together such 

that the aggregate represents neither what the researcher intended it to represent, nor what it 

represented at the individual level. Instead, the aggregate is undermined by a confounder variable 

such that a true effect at the individual or subgroup level is obscured at the aggregate level 

because of a confounder. Confounder variables can be hard to identify, making misaggregation 

easy to overlook. We focus on race, a relatively easy-to-identify confounder variable, although 

many variables are potential confounders across states or countries, such as poverty levels, ethnic 

groups, and rural-vs-urban residency rates. To help researchers who use aggregated data avoid 

using invalid aggregated variables, we connect misaggregation to Simpson’s Paradox, identify 

four red flags that can help researchers detect misaggregation, and show how cross-race 

misaggregation can occur. Our primary illustration uses Parasite Stress USA, a variable that was 

intended to be an index of pathogen prevalence for the fifty states of the USA (Fincher & 

Thornhill, 2012) that has been found to be invalid due to confounding with race (Hackman & 

Hruschka, 2013; Hruschka & Hackman, 2014). 
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Simpson’s Paradox and Cross-race Misaggregation 

A key problem with aggregated data is when relationships observed at the group level are 

not the same as the relationships that occur at the subgroup or individual level. This is Simpson’s 

Paradox1 (Simpson, 1951). It can be seen in the following example, in which an effect of 

treatment is present in subgroups of men and women but disappears when their data are 

aggregated into a single group. Survivorship can be higher for treated men (61%, or 8/13) 

compared to untreated men (57%, or 4/7) as well as for treated women (44%, or 12/27) 

compared to untreated women (40%, or 2/5). When aggregated across the sexes, however, the 

efficacy of the treatment disappears: treated people (50%, or 20/40) survive no better than 

untreated people (50%, or 6/12; Simpson, 1951). The possibility of divergence in relationships 

across levels implies that researchers should not infer that relationships observed at the group 

level hold for subgroups or individuals (i.e., the ecological fallacy; Robinson, 1950). Simpson’s 

Paradox can occur when the relationship differs across subgroups due to a third, confounder 

variable.  

Known methods for detecting Simpson’s Paradox are pertinent to detecting 

misaggregation. Kievit, Frankenhuis, Waldorp, and Borsboom (2013) provided four methods to 

detect Simpson’s Paradox. First, if the data are bivariate and continuous, one can look at a 

scatterplot for any obvious subgroups with different patterns of results. Second, for contingency 

tables with an observed relationship at the aggregate level, one can compute a chi-square test of 

                                                 
1 Tu, Gunnell, & Gilthorpe (2008) argue that many labels, such as Simpson’s Paradox 

(Simpson, 1951), Lord’s Paradox (Lord, 1967), or suppression, refer to the same underlying 

phenomenon, the reversal paradox. We use the best known term, Simpson’s Paradox, to refer to 

reversals regardless of other features of the situation. 
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independence to see if the frequency distributions differ across subgroups. If they differ, then the 

subgroups should be analyzed separately. Third, researchers using regression can check the 

residuals for systematic (subgroup-based) differences in homoscedasticity, which could reflect 

the different slopes of the subgroups. The fourth diagnosis technique is to use latent cluster 

analysis to detect subgroups whose patterns of results diverge. Such clusters are based on their 

position on a bivariate scatterplot, although the technique can also be applied to multiple 

regression. (Kievit and colleagues made available an analysis tool that detects diverging clusters 

and statistically evaluates whether the observed relationship of interest differs statistically across 

those clusters.)  

However, for Parasite Stress USA, a measure of infectious-disease prevalence aggregated 

at the level of US states—which is known to be confounded with race—the diagnostic methods 

of Kievit and colleagues (2013) do not reliably indicate Simpson's Paradox (see Supplemental 

Material S1 available online). This is because the checks assume that each case has only one 

level on the confounder variable. For example, half of the participants are male and the other half 

female, and a positive correlation is observed when analyzing all participants together, but a 

negative correlation is observed within each sex. In such cases the confounder variable might be 

considered a between-cases confound because each data point is associated with only one level 

of the confounder variable. Parasite Stress USA (and likely other variables suffering from cross-

race misaggregation) differ systematically in that the confounder can be thought of as a within-

cases confound: each data point has within it all levels of the confounder variable. For such data, 

the methods suggested by Kievit and colleagues (2013) would be unlikely to reveal 

misaggregation. 
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Red Flags for Cross-race Misaggregation 

Given the frequency of research that uses data aggregated across demographic 

characteristics such as race, researchers could benefit from evaluating their data for the following 

four red flags, which are suggestive of misaggregation. The first red flag is when aggregated 

rates correlate strongly with the relative size of one or more subgroup. The second is when 

sample sizes are unequal across subgroups. The third is when rates or mean values differ across 

subgroups. The fourth is when aggregated rates correlate weakly or not at all with subgroup 

rates. Checks for the red flags require access to information about subgroups, which might be 

difficult to obtain. In many cases, relevant information is available for demographic subgroups, 

such as the population sizes of different racial groups. Thus the check for the first red flag is 

relatively easy to do for cross-race misaggregation. The first three checks are suggestive; the 

fourth is diagnostic (i.e., if total rates correlate with all subgroups, misaggregation has not 

occurred across those subgroups). We illustrate these red flags with Parasite Stress USA. 

Parasite Stress USA 

We build upon research that has identified problems with an aggregated index of 

pathogens—Parasite Stress USA—that has been used in tests of parasite stress theory. Parasite 

stress theory proposes that norms and practices that reduce the likelihood of pathogenic infection 

will be heightened among cultural groups situated in regions with more instances of infectious 

disease (Thornhill & Fincher, 2011). Evidence presented in support of parasite stress theory 

includes correlations of sociality variables with Parasite Stress USA or similar pathogen indexes 

(Fincher & Thornhill, 2012; Shrira, Wisman, & Webster, 2013; Thornhill & Fincher, 2011; 

Varnum, 2012, 2014). However, these findings may be invalid as Parasite Stress USA is 

confounded with the percentage of state populations that was African American, %Black 
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(Hruschka & Hackman, 2014). The confounding of Parasite Stress USA with %Black is argued 

to have resulted from African Americans having higher STD rates than non-Hispanic Whites and 

%Black varying substantially across states. Hruschka and Hackman (2014) provide suggestions 

for researchers who desire to use aggregated data but avoid the pitfalls, such as replicating with 

new data and at multiple levels, considering historical and social context, and testing alternative 

hypotheses.  

To further demonstrate and elucidate the confounding of Parasite Stress USA with 

%Black, we removed components of the data from the numerator and denominator of the 

aggregate to evaluate the contributions of the components. This decomposition confirms that 

unequal STD rates across racial subgroups played a key role. It also highlights the importance of 

unequal sample sizes (i.e., the proportion of state populations composed of non-Hispanic Whites 

compared with African Americans). Our decomposition did not address the contribution of 

variation in %Black; however, it was important because if it were constant across states, then the 

numerator would have been driven by the relatively high STD rates of African Americans and 

the aggregate would have been strongly correlated with STD rates of African Americans rather 

than with %Black. In short, cross-race misaggregation can result when a minority subgroup has 

disproportionate influence on the numerator but not the denominator of an aggregate index.  

 

Method 

 We obtained Parasite Stress USA from supplementary materials of Fincher and Thornhill 

(2012). They derived Parasite Stress USA from the Summary of Notifiable Diseases, United 

States for years 1993 to 2007, part of the annual Morbidity and Mortality Weekly Report of the 

Centers for Disease Control and Prevention (CDC). It is a standardized measure of the total 
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incidence of all notifiable diseases reported by all states for a year divided by the population, 

calculated separately for each state.  

Hackman and Hruschka (2013) demonstrated that Parasite Stress USA mainly represents 

STDs, because STD cases dwarf cases of other notifiable diseases. Using data from the CDC 

WONDER spanning 1998-2009, Hackman and Hruschka developed STD indexes using the two 

most common STDs, chlamydia and gonorrhea (CG), for the total population and separately for 

non-Hispanic Whites and African Americans. For the total population (i.e., collapsed over racial 

subgroups), the CG index was strongly correlated with Parasite Stress USA; r = .95, N = 50, p < 

.001. They reasoned that if parasite stress theory is valid, the pattern observed when collapsed 

over racial subgroups should also occur when analyzing the White and African American 

subsamples separately. We also used CDC WONDER data to recreate CG rates for our analyses. 

We developed three indexes of CG rates per 100,000 residents: one for the whole population, CG 

ratestotal; another for non-Hispanic Whites, CG rateswhite; and one for non-Hispanic African 

Americans, CG ratesblack. For consistency we also used this data source for calculating values 

%Black (note this source for %Black differs from that used by Hackman & Hruschka, 2013, and 

that their African American population included Hispanics).  

 

Results 

Parasite Stress USA Failed All Red Flag Checks 

Reproducing Hackman and Hruschka (2013), CG ratestotal strongly correlated with 

Parasite Stress USA, r = .96, N = 50, p < .001. Previous reports have noted the high correlation 

between Parasite Stress USA and %Black (Eppig, Fincher, & Thornhill, 2011; Hackman & 

Hruschka, 2013). Our data showed the same pattern: Parasite Stress USA correlated strongly 
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with %Black, r = .90, N = 50, p < .001. Thus, Parasite Stress USA failed the check for the first 

red flag. 

Parasite Stress USA failed the checks for the second and third red flags because across 

states non-Hispanic Whites and African Americans diverged substantially in sample size and 

rates of STDs, respectively. African Americans, on average, comprised only 7.50% of state 

populations whereas non-Hispanic Whites comprised 60.68% of state populations. In addition, 

across US states, the African American CG rates per 100,000 (Mdn = 1,810.79, M = 1,954.96, 

SD = 747.72) were an order of magnitude higher than those of non-Hispanic Whites (Mdn = 

157.78, M = 162.95, SD = 54.83), d = 2.45, Wilcoxon signed-rank test, Z = 6.15, p < .001. 

If Parasite Stress USA were simply a race-independent index of STD rates, it might 

correlate with race-stratified CG rates. The strongest correlation might be observed with the CG 

rates of the largest racial subgroup, non-Hispanic Whites. However, Parasite Stress USA did not 

correlate with CG rateswhite, r = -.03, N = 50, p = .858 (nor was CG ratestotal correlated with CG 

rateswhite, r = .13, N = 50, p = .354). Alternatively, given that African Americans accounted for a 

large number of CG cases in absolute numbers, Parasite Stress USA might correlate with CG 

ratesblack. This also did not occur, r = .11, N = 50, p = .464 (nor was CG ratestotal correlated with 

CG ratesblack, r = .23, N = 50, p = .112. Parasite Stress USA therefore failed the check for the 

fourth red flag. 

Decomposition of Parasite Stress USA: Why Aggregate Rates Correlate With %Black 

Parasite Stress USA is uncorrelated with race-stratified CG rates, but is strongly 

correlated with %Black. This is because the numerator of Parasite Stress USA was mostly STDs, 

and a large proportion of CG cases were in the African American subcomponent of state 

populations. This results in African American CG cases strongly influencing the numerator of 
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CG ratestotal across US states (and by implication Parasite Stress USA), but not its denominator, 

which is largely determined by members of other races. 

If African American CG cases exert such a strong influence on Parasite Stress USA, then 

removing them from the numerator of CG ratestotal should reduce its correlation with Parasite 

Stress USA. On the other hand, including only African American CG cases in CG ratestotal 

should not reduce the correlation much. These predictions were confirmed (see Table 1). 

Removing African American CG cases eliminated the significant correlations of CG ratestotal 

with both Parasite Stress USA and %Black. Conversely, using only African American CG cases 

hardly changed these correlations. For comparison, we excluded non-Hispanic White CG cases 

(see Table 1). Doing so had little effect on the relationships of CG ratestotal with either Parasite 

Stress USA or %Black. By contrast, including only non-Hispanic White CG cases dramatically 

altered the relationships. These results indicate that African American CG cases were critical for 

the strong relationships of CG ratestotal and Parasite Stress USA with %Black. 

To see whether African American or non-Hispanic White population sizes had a strong 

influence on the denominator, we excluded each in turn. Removing non-Hispanic Whites from 

state populations substantially altered correlations of CG ratestotal with Parasite Stress USA and 

%Black, but removing African Americans from the population size did not (Supplemental 

Material S2 available online). Therefore, African Americans had little influence over the 

denominator of CG ratestotal, and by implication Parasite Stress USA. In sum, African American 

CG cases can account for the observed strong relationships of Parasite Stress USA and CG 

ratestotal with %Black. 
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Table 1. Decomposition of Parasite Stress USA: Correlations among Parasite Stress USA, 

population percentage African American (%Black), and CG ratestotal. Modified CG ratestotal 

were produced by excluding African American or non-Hispanic White CG cases from the 

total number of cases, or including only African American or non-Hispanic White CG cases. 

The formulas for various calculations of CG rates are shown. 

 

CG ratestotal 

No  

CGblack 

No  

CGwhite 

Only  

CGblack 

Only  

CGwhite 

 

CGtotal / 

poptotal 

(CGtotal – 

CGblack) / 

poptotal 

(CGtotal – 

CGwhite) / 

poptotal 

CGblack / 

poptotal 

CGwhite / 

poptotal 

Parasite Stress USA .96*** .26+ .97*** .93*** -.45*** 

%Black .80*** -.10 .84*** .89*** -.34* 

CG ratestotal - .42** .97*** .84*** -.20 

+ p < .10, * p < .05, ** p < .01, *** p < .001 

 

Other Examples of Checks for Cross-Race Misaggregation 

Misaggregation may have invalidated other aggregated variables used in research on 

ecological (environmental) effects. For illustration purposes, we identified three for which 

African Americans and non-Hispanic Whites were likely to differ: incarceration rates (Kruger & 

De Loney, 2009), life expectancy (Thornhill & Fincher, 2011; Eppig et al., 2011), and homicide 

rates (Hackman & Hruschka, 2013; Shrira et al., 2013; Thornhill & Fincher, 2011). Table 2 

illustrates with these three variables how the identified red flags indicate the presence or absence 

of cross-race misaggregation. For incarceration rates, the fourth red flag for total, state-level rates 
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strongly suggests they may be confounded with race. Removing African American cases resulted 

in the correlation between total incarceration rates and %Black becoming negative (r = -.35, p = 

.016), and including only African American cases increased it (r = .96, p < .001). Thus the 

decomposition of state-level incarceration rates showed a pattern similar to that observed for CG 

ratestotal and Parasite Stress USA (see Supplemental Materials S3). This suggests that total 

incarceration rates indeed suffers from cross-race misaggregation. Despite three suggestive red 

flags for both life expectancy and homicide rates, total state-level values strongly correlated with 

both race-stratified rates; therefore, the fourth diagnostic checks indicates no misaggregation for 

life expectancy or homicide rates. The absence of misaggregation might be due to positive 

correlations for African Americans with non-Hispanic Whites (life expectancy, r(36) = .65, p < 

.001; homicide rates r(45) = .38, p = .009).  

 

Table 2. Illustrative red flag checks for three state-level aggregate variables: incarceration, life 

expectancy, and homicide. These examples pertain to US states and so all exhibit the second red 

flag of unequal racial subgroup sizes. 

 

variable  

(total state-

level rate) 

r with 

%Black 

first 

red 

flag? 

mean 

African 

American 

value  

mean 

non-

Hispanic 

White 

value 

third 

red 

flag? 

r with 

African 

American 

rates 

fourth 

red 

flag? 

r with 

non-

Hispanic 

White 

rates 

fourth 

red 

flag? 

cross-

race 

mis-

aggre-

gation? 

incar-

ceration1 
.65* yes 

2,572.63/ 

100,000 

425.23/ 

100,000 
yes2 .03 yes .77* no yes 

life 

expectancy3 
-.57* yes 

74.46 

years 

78.62 

years 
yes2 .73* no .95* no no 

homicide4 .70*4 yes 
22.99/ 

100,000 

2.97/ 

100,000 
yes2 .62* no .58* no no 

*p < .001 
1data from Harrison and Beck, 2006; excludes New Mexico and Wyoming 
2rates differ across races significantly, p < .001, using Wilcoxon signed-rank test 
3life expectancy at birth; data from www.measureofamerica.org, 2010-2011 dataset; correlation sample sizes are N = 45 

for %Black, N = 38 for African American mean, and N = 50 for non-Hispanic White mean 
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4data from the Uniform Crime Report (Federal Bureau of Investigation 2003, 2005, 2006, 2007, & 2009), stratified by 

offender race; no data for Florida; following Hackman and Hruschka (2013), we excluded data from New Mexico and 

Nevada because they had large Hispanic populations but did no distinguish Hispanic from non-Hispanic Whites; other 

states with large Hispanic populations distinguished between Hispanic and non-Hispanic Whites; N = 49 for total and 

African American, N = 47 for non-Hispanic White. 

 

 

Discussion 

Researchers are sometimes interested in testing whether ecological variables motivate 

particular kinds of behavior, using this as evidence of context-specific adaptations. If an 

ecological variable is confounded with demographic variables, then we are mistaking cross-

group differences, which might have any number of contextual or historical bases, with the 

ecological effect that we are specifically hypothesizing. Our analyses showed how data of 

infectious disease rates are confounded with race, and they illustrated four red flags suggestive of 

misaggregation. Although identifying confounding variables can be hard (and showing that no 

confounder is present may be impossible), researchers compiling and using an aggregated 

variable may check for these red flags. The red flags can be checked for demographic variables 

other than race (e.g., age, income). When the red flags indicate misaggregation, statistically 

controlling for the confounder variable (e.g., by including %Black as a predictor) might not solve 

the problem (e.g., due to multicollinearity). Stratified analyses may provide more valid 

inferences (Hruschka & Hackman, 2014). If lower-level data (e.g., stratified by race) are 

unavailable, these can sometimes be estimated from aggregated data (i.e., ecological inference) 

using methods developed in political science (King, 1997; Rosen, Jiang, King, & Tanner, 2001). 

Confounders can be hard to identify, so even in the absence of any of the identified red flags we 

advise researchers to be cautious when using aggregated data.  
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S1 

The methods by Kievit et al. (2013) need not always indicate that a bi-variate association 

is confounded. (Note that Kievit et al. did not claim that their methods would always reveal a 

Simpon’s Paradox.) Below we show for the bi-variate association of Parasite Stress USA that the 

diagnostic checks suggested by Kievit et al. need not indicate that associations involving Parasite 

Stress USA (a variable known to be confounded with race) are confounded with a third variable. 

For the association of Parasite Stress USA with collectivism (Fincher & Thornhill, 2012; 

collectivism data from Vandello & Cohen, 1999), a scatterplot of both variables does not suggest 

different clusters (Figure S1.1). A Breusch–Pagan test did not reject the assumption of the 

residuals being homoscedastic, BP = 0.20, df = 1, p = .652. A cluster analysis with the R package 

“Simpsons” by Kievit and Epskamp (2012) detected two clusters (Figure S1.2) but indicated no 

evidence for Simpson’s Paradox (the first cluster differed from the regression over the entire 

sample, the second cluster did not differ from the regression over the entire sample). 

As the three diagnostic checks are performed on a bi-variate association, their ability to 

detect confounds depends on the variables included. For example, a cluster analysis of the 

association of Parasite Stress USA and Honor killings (Thornhill & Fincher, 2011) revealed one 

cluster (Figure S1.3). A cluster analysis of the association of Parasite Stress USA and IQ (Eppig, 

Fincher, & Thornhill, 2011) revealed two clusters with slopes that differed from the slope of the 

total sample (Figure S1.4). However, in all three examples Parasite Stress USA was confounded 

with race to the same extent. 

 

 
Figure S1.1. Scatterplot and regression line for values of Parasite Stress USA and Collectivism 

for the 50 states of the USA. 
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Figure S1.2. Detail of R output of cluster analysis. The horizontal axis shows Parasite Stress 

USA, the vertical axis shows Collectivism. 
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Figure S1.3. Detail of R output of cluster analysis. The horizontal axis shows Parasite Stress 

USA, the vertical axis shows Honor killings. 
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Figure S1.4. Detail of R output of cluster analysis. The horizontal axis shows Parasite Stress 

USA, the vertical axis shows IQ. 
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S2 

African American CG cases strongly influenced the numerator of CG ratestotal (and by 

implication Parasite Stress USA), but do African American population sizes have an equally 

strong influence on the denominator? As can be seen in Table S2, removing the African 

American population from the total population did not substantially reduce the correlations of 

CG ratestotal with Parasite Stress USA or %Black. By contrast, removing the non-Hispanic White 

population from the total population did substantially reduce the correlations. Together with the 

results reported in Table 2, we see that African Americans had a dominant influence on the 

numerator of CG ratestotal (and by implication Parasite Stress USA) but little influence on the 

denominator.  

 

Table S2. Correlations among Parasite Stress USA, population percentage African American 

(%Black), and CG ratestotal. Modified CG ratestotal were produced by removing African American 

or non-Hispanic White components of the population. The formulas for various calculations for 

CG rates are also shown. 

 

CG ratestotal 

No 

popblack 

No 

popwhite 

 CGtotal /  

poptotal 

CGtotal /  

(poptotal – popblack) 

CGtotal /  

(poptotal – popwhite) 

Parasite Stress USA .96*** .87*** .53*** 

%Black .80*** .97*** .62*** 

CG ratestotal - .98*** .72*** 
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S3 

 Table S3 shows that modified incarceration rates behaved the same way as modified CG 

rates (see Table 2) indicating that incarceration ratestotal is confounded with %Black due to 

misaggregation. Thus, incarceration rates demonstrate the same indicators of misaggregation as 

CG ratestotal. This provides support for our claim that cross-race misaggregation is important for 

variables other than CG rates. 

 

Table S3. Correlations among Parasite Stress USA, population percentage African American 

(%Black), and incarceration ratestotal. Modified incarceration ratestotal was produced by excluding 

African American or non-Hispanic White incarceration cases from the total number of cases, or 

including only African American or non-Hispanic White incarceration cases. The formulas for 

various calculations of incarceration rates are shown. 

 incarceration 

ratestotal 

No  

casesblack 

No  

caseswhite 

Only  

casesblack 

Only  

caseswhite 

 

casestotal / 

poptotal 

(casestotal – 

casesblack) / 

poptotal 

(casestotal – 

caseswhite) / 

poptotal 

casesblack / 

poptotal 

caseswhite / 

poptotal 

%Black .65*** -.35* .81*** .96*** -.12 

incarceration 

ratestotal  
- .45** .86*** .76*** .48** 

+ p < .10, * p < .05, ** p < .01, *** p < .001 

 

 

 

 


