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Abstract—Monitoring actions at home can provide essential
information for rehabilitation management. This paper presents
a comparative study and a dataset for the fully automated,
sample-accurate recognition of common home actions in the
living room environment using commercial-grade, inexpensive
inertial and visual sensors. We investigate the practical home-
use of body-worn mobile phone inertial sensors together with
an Asus Xmotion RGB-Depth camera to achieve monitoring
of daily living scenarios. To test this setup against realistic
data, we introduce the challenging SPHERE-H130 action dataset

containing 130 sequences of 13 household actions recorded in a
home environment. We report automatic recognition results at
maximal temporal resolution, which indicate that a vision-based
approach outperforms accelerometer provided by two phone-
based inertial sensors by an average of 14.85% accuracy for
home actions. Further, we report improved accuracy of a vision-
based approach over accelerometry on particularly challenging
actions as well as when generalising across subjects.

I. INTRODUCTION

In this paper we focus on monitoring daily household
activities in the home environment. It is here where patients,
for whom activity monitoring is most challenging and nec-
essary, spend most of their time after hospital discharge.
Monitoring the level and type of patients’ physical activity is of
general interest to clinicians across a wide variety of subjects,
including obesity, diabetes, and depression-related research, as
well as regarding aftercare for orthopaedic, cardiac and other
surgery [1]. Traditionally, physical activity levels have been
monitored using questionnaires, occasional clinical check-ups,
and more recently, wearable devices – with a focus on a coarse
categorisation of activity levels by wrist-worn inertial sen-
sors [2]. To date, the use of wearable accelerometers remains a
popular choice as source for inferring human activity levels due
to its low cost, low energy consumption and data simplicity.
Among these, triaxial accelerometers are the most broadly used
motion sensors to recognise ambulation activities [3].

Visual sensor based techniques have emerged over recent
years for which there exists a significant body of literature
describing the inference of activities from 2D colour intensity
imagery [4]. However, the increasing availability of depth-
measuring sensors, especially the introduction of the Microsoft
Kinect, has generated an opportunity for utilizing depth in
conjunction with traditional RGB camera data allowing for
richer and more fine-grained analysis of human activity [5].

Recent work by Chen et al. [3] presents a comparative
study of such RGB-D (colour and depth imaging) sensors ver-
sus accelerometer sensors. The work also introduces a fusion
approach for both modalities of data. They show that RGB-D

and accelerometer data can be used to generate comparable
results when tested on the Berkeley MHAD dataset [6]. This
dataset is, however, recorded in a laboratory environment
where most actions in the dataset are related to body exer-
cises (jump, punch etc.).

Developing a reliable home monitoring system has drawn
much attention in recent years due to the growing demands for
integrated health care. Existing approaches to current home
monitoring systems often include custom-fit environmental,
physiological and vision sensors, such as in the SPHERE
project [1]. Such systems can enable several types of appli-
cation, to increase personal safety for elderly patients and
to facilitate clinicians to diagnose and monitor patients. This
new patient-clinician interactive mode improves the reliability
and effectiveness of diagnosis to some extent, significantly
shortens the travel time and hospital stay for patients, and
reduces the work load for clinicians [7]. Visual sensors in
particular have the potential to address several limitations of
current systems [8]: they are data-rich and able to capture
multiple events simultaneously, and they are easy to integrate
into already existing living environments.

The paper has two key contributions. Firstly, we introduce
a dataset for fine-grained action recognition within a real
home environment in the SPHERE project’s house [9]. The
dataset, exemplified in Figure 1, contains 13 household actions
performed over 10 sessions - a total of 130 sequences. The
setup consists of 1) an Asus Xmotion RGB-Depth camera
mounted at the corner of a living room, and 2) two three-
axis mobile phone accelerometer sensors worn at the waist
and the dominant wrist. Secondly, we present a comparative
study towards activity monitoring using these visual and
accelerometer sensors in a living environment. We outline
areas where a visual approach exceeds the performance of
an accelerometer sensor, showing its merits in (a) detecting
particularly challenging actions, and (b) in generalising across
subjects.

II. VISUAL DATA COLLECTION AND PROCESSING

Visual Data Collection. We simultaneously collect RGB and
depth images using the commercial product Asus Xmotion.
Motion information can be recovered best from RGB data
as it contains rich texture and colour information. Depth
information, on the other hand, reveals details of the 3D
configuration. We extract and encode both motion and depth
features over the area of a bounding box as returned by the
human detector and tracker provided by the OpenNI SDK [10].
Figure 2 gives an overview of the feature extraction process
and illustrates the motion and depth information extracted. To



Fig. 1: Three-axis acceleration signals and sample colour images corresponding to the actions.
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Fig. 2: Feature extraction. Feature descriptor is formed from motion and
appearance information extracted from colour and depth images, respectively.

normalise the utilised image region due to varying heights of
the subjects and their distance to the camera, the bounding
box is scaled by fixing its longer side to M = 60 [pixels]
while maintaining aspect ratio. The scaled bounding box is
then centred in a M ×M square box and horizontally padded.

Motion Feature Encoding. Motion information can generally
be readily extracted from this box independent of varying hu-
man appearance, Inspired by [11], optical flow measurements
are taken and split into horizontal and vertical components.
These are re-sampled to fit the normalised box and a median
filter with kernel size 5 × 5 is applied to smooth the data
in each direction. The normalised bounding box is divided
into an N × N non-overlapping grid and the orientations of
each grid cell are quantised into nb bins. The parameters
for our experiments are empirically determined as (optimal)
values of N = 2, nb = 9. The second and third rows in
Figure 3 show optical flow patterns and its motion features
for different actions. Here, we only show the magnitude of
horizontal flow FH and vertical flow FV in one figure to save
space.

These patterns in hand, a local motion feature descrip-
tor F = FH⊔FV is constructed by concatenating the histogram
of optical flow features in each block from both orientations.
To encode motion spatio-temporally, we choose a temporal
window of 15 frames suggested in [6] which is approximately
half a second around the current frame to be concatenated for
establishing the final descriptor.
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Fig. 3: First row: colour images with detected human from different action
sequence. Second row: optical flows patterns. Third row: motion features. Last
row: visual representation of histogram of gradients.

Depth Feature Encoding. Information computed from struc-
tured light alleviates the effect of appearance and lighting
variations, allowing for independent depth recovery. For home
environments with partial occlusions and unconstrained object
interaction, however, we found that the performance of avail-
able skeleton trackers [12] is unreliable – specially when the
subject is not facing the camera. Instead, we opt to extract
features directly from depth imagery employing the histogram
of gradients (HOG) feature on raw depth images [13] applied
to the normalised box. The last row in Figure 3 shows the
visual representation of the HOG feature for different actions.
Essentially, these descriptors are able to encode a person’s
silhouette, its contours and the edges and depth gradients
within its area.

The complete visual feature descriptor consists of appear-
ance features extracted from the depth image of the current
frame and the 15-frame motion context from colour images.

III. INERTIAL DATA COLLECTION AND PROCESSING

As shown in [3], accelerometers placed on wrist and waist were
found to be the most effective for human action recognition.
Having more sensors [6] may improve performance, but it is



Sequence ID Sit still Stand still Sitting Standing Walking Wiping Dusting Vacuuming Sweeping Cleaning Picking Squatting Stretching total

1 586 580 318 382 802 741 615 807 823 642 574 764 678 8312

2 834 287 332 353 952 623 664 735 759 789 536 747 621 8232

3 525 665 210 268 876 691 918 744 752 742 493 835 639 8358

4 905 872 548 672 840 1005 713 742 755 627 580 914 918 10091

5 609 604 517 619 714 962 756 963 1091 834 529 730 1430 10358

6 621 568 423 542 1014 751 750 1062 1002 724 814 799 1010 10080

7 557 1076 426 397 1110 359 499 841 880 615 1011 422 673 8866

8 682 1466 371 378 1257 827 437 1180 1294 888 417 640 1034 10871

9 399 442 344 432 673 759 553 892 754 933 445 849 852 8327

10 517 408 267 422 618 587 602 807 720 679 432 676 716 7451

Sum 6235 6968 3756 4465 8856 7305 6507 8773 8830 7473 5831 7376 8571 90946

ACC 63.02 80.18 35.36 43.56 76.95 66.04 22.59 62.16 51.57 59.60 49.73 42.34 60.21 56.67

Visual

HOG 24.76 35.19 42.81 58.01 79.05 54.41 15.98 64.98 57.71 90.15 58.70 25.33 51.77 52.20

FLOW 80.42 73.82 82.22 83.61 83.69 63.55 41.40 65.95 61.14 79.90 70.86 65.43 52.70 68.57

FLOW+HOG 76.65 77.43 83.57 85.98 85.83 67.00 29.32 75.09 68.89 88.75 77.24 60.52 60.87 71.52

Visual+ACC 76.71 82.46 83.65 86.67 86.91 67.32 34.01 79.92 69.43 89.01 78.70 64.05 67.89 73.99

TABLE I: Number of frames per sequence and action, together with recognition rate(%) of visual(HOG, FLOW feature) and accelerometer (ACC feature) data.

not convenient for participants to wear and charge many on-
body sensors, especially in a daily living scenario. We opt for
subjects to wear two accelerometers mounted at the centre of
the waist and the dominant wrist only.

Inertial Data. Raw time series data from accelerometers is
measured as [X,Y, Z] vectors, where each column corresponds
to acceleration in orthogonal spatial dimensions. Figure 1
illustrates readings of the accelerometer for various actions.
Raw data cannot be directly utilised for action recognition,
and instead three commonly used features [14] are extracted
from each of the three axes for each device, giving a total
of 18 attributes. These features include the first- and second-
order statistics, namely the mean and the variance; we also use
correlation measures between each axes pair. The features are
generated from a temporal window of 30 samples taken over
approximately 1 second. Mean acceleration is calculated by the
average value of the signal over the window for each axis and
Standard deviation captures the range of acceleration values
over the same window. Correlation is calculated between each
pair of axes, such as the correlation between the X and Y axis
is corr(X,Y ) = cov(X,Y )/σXσY .

IV. EXPERIMENTAL DATA

We introduce the SPHERE-H130 action dataset for human
action recognition from RGB-Depth and inertial sensor data
captured in a real living environment. The dataset is generated
over 10 sessions by 5 subjects containing 13 action categories
per session: sit still, stand still, sitting down, standing up,
walking, wiping table, dusting, vacuuming, sweeping floor,
cleaning stain, picking up, squatting, upper body stretching.
Overall, recordings correspond to about 70 minutes of total
time captured. Actions were simultaneously captured by the
Asus Xmotion RGB-depth camera and the two wireless ac-
celerometers. Colour and depth images were acquired at a rate
of 30Hz. The accelerometer data was captured at about 100Hz
sampled down to 30Hz, a frequency recognised as optimal for
human action recognition [15]. Figure 1 shows an example of
accelerometer data reading (waist) and sample colour images
for the actions in the dataset. Note, that activities of daily living
have low inter-class variability, but high intra-class variability
due to diverse subjects and living habits. Figure 4 shows
snapshots from “stretching” as an example that actions may
be performed differently and can vary significantly across
different subjects.

V. EXPERIMENTAL RESULTS AND EVALUATION

For evaluation, we perform leave-one-subject-out cross
validation (CV1) where final recognition results reported are

Fig. 4: Snapshots from two “Stretching” sequences. Actions may be performed
differently and can vary across subjects.

averaged over all subjects to remove any bias. We utilise a
Support Vector Machine (SVM) with a Radial Basis Func-
tion (RBF) kernel to classify the data1. Table I lists the
number of frames for each action and sequence. Associated
with this, we show the percentage of the total number of
frames for each action. The recognition rates reported in
the table include appearance features only (HOG), motion
features only (FLOW), appearance and motion feature fusion
(FLOW+HOG), accelerometer data (ACC), and the fusion of
both visual2 and accelerometer data (Visual+ACC).

In general, the overall recognition rate of visual sensors is
found to be 14.85% higher than that of accelerometers. Notice
that a substantial recognition improvement can be attributed
to actions, for which part of the containing movements are
similar. For example, “sitting down” and “standing up” are
misclassified as “picking up” by accelerometers, but can be
recognised by cameras due to different body poses. Some
actions, e.g. wiping the table and dusting, are confused by both
sensors, as these actions are performed in a very similar way. It
can also be observed that a combined visual-inertial approach
does not lead to a significant recognition improvement than
when using only visual data. Figure 5 depicts the recognition
confusion matrices corresponding to the use of inertial and
visual sensors, respectively.

Activities performed by different subjects may vary signifi-
cantly. To investigate the transfer of learned action descriptions
across different subjects, we conduct an experiment by using
one sequence for training and another sequence from the same
subject for testing (CV2). The results listed in Table II show
the overall recognition rate over all actions for CV1 and CV2.
It is noticeable that in CV2 there is a significant improvement
of accelerometer performance compared to the CV1 test, while
similar results are produced by visual data and the fusion of
visual and accelerometer data. In practice, it is unrealistic to
have all the users’ data available for system training. This
demonstrates one advantage of using visual sensors for action

1The libsvm [16] implementation was used in the experiments
2FLOW+HOG is referred to as visual data in the following sections
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Fig. 5: The confusion matrices by (a) accelerometer data and (b) visual data.

recognition for the home dataset at hand: visual information
learned for action recognition can be more readily transferred
across subjects than inertial information.

ACC Visual Visual+ACC

CV1 56.67 71.52 73.99

CV2 70.16 72.12 75.01

TABLE II: Overall recognition rate (%) for CV1 vs CV2 tests.

VI. CONCLUSION AND FUTURE WORK

This paper presented a comparative study and relevant
dataset for the fully automated recognition of common home
activities via inertial(accelerometer) and visual sensors. We
introduced the challenging SPHERE-H130 action dataset3 that
covers home-typical human activities in 130 sequences of 70
minutes of multi-modal recordings. Both vision and inertial
sensors are low cost, easy to operate, and suitable for deploy-
ment among different applications, residents, and households.
Comparing vision and inertial sensors for actions in the home
environment, results indicated that a vision-based approach
outperforms body-worn accelerometer sensors by an average of

3The dataset is released on SPHERE website http://www.irc-sphere.ac.uk/
work-package-2/ar

14.85% accuracy for the dataset. A combined descriptor only
marginally outperformed vision descriptors. More importantly,
we found that vision provides better generalisation across
subjects and is able to differentiate some complex actions
that accelerometry fails to decouple. We conclude that visual
approaches should play a role in future monitoring systems
for the home. Future work will include comparisons between
different modalities for particular target variables including
energy expenditure and related monitoring tasks.
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