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Abstract

The unique charging properties of graphene oxide (GO) are exploited in the preparation

of a range of non-covalent magnetic GO materials, using microparticles, nanoparticles

and magnetic surfactants. Adsorption and desorption is controlled by modification of

pH within a narrow window of < 2 pH units. The benefit conferred by using charge-

based adsorption is that the process is reversible, and the GO can be captured and

separated from the magnetic nanomaterial, such that both components can be recy-

cled. Hematite microparticles form a loosely flocculated gel network with GO, which

is demonstrated to undergo magnetic compressional dewatering in the presence of an

external magnetic field. For composites formed from GO and hematite nanoparticles, it
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is found that low hematite:GO mass ratios (< 5 : 1) favour flocculation of GO, whereas

higher ratios (> 5 : 1) cause overcharging of the surfaces resulting in restabilization.

The effectiveness of the GO adsorption and magnetic capture process is demonstrated

by separating traditionally difficult-to-recover gold nanoparticles (d ⇡ 10 nm) from wa-

ter. The fully recyclable nature of the assembly and capture process, combined with

the vast adsorption capacity of GO, presents obvious and appealing advantages for

applications in decontamination and water treatment.

Keywords: Graphene oxide; adsorption; hematite; magnetic nanomaterials; magnetic sur-

factants.

Introduction

Graphene oxide (GO) has attracted huge research momentum in recent years due to its

potential in a vast array of applications including optics,1 stabilization of interfaces2,3 and

more recently, water treatment.4 GO readily disperses in water to form stable colloidal dis-

persions, facilitating its deployment in aqueous systems.5 This effect stems from the low

acidity constant of carboxyl groups at the periphery of GO sheets (pKa = 4.3), meaning

they readily dissociate into carboxylate anions.6 Therefore, GO maintains a negative surface

charge down to very low values of pH (< 1) retaining charge-based stability across a wide

pH range.7 These surface properties, along with the vast surface area to mass ratio provided

by the sheets explain to a large extent why investigations into the use of GO as an adsorbent

material for removal of toxins from aquatic environments is becoming increasingly prevalent.

Previous studies have shown that GO is a suitable material for purifying water of many
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types of pollutants, from antibiotics8 to heavy metals.9
::::::::
Typical

:::::::::::
adsorption

:::::::::::
capacities

:::
of

::::
GO

::
of

:::
ca

:::
100

::::::
mg/g

::::
for

:::::::
heavy

::::::
metal

::::::::::::
ions9,10 are

:::::::::::::
approaching

:::::::
those

:::::
seen

:::
for

::::
the

::::::::
zeolites

::::::::::
typically

:::::::::::::
used,11 with

::::
the

:::::::::::
advantage

:::::
that

::::
GO

::
is
::::::::
readily

:::::
and

::::::::
cheaply

::::::::::
prepared

:::::
from

:::::::::::
abundant

::::::::
natural

::::::::
graphite

:::::::::::
deposits.

::
These discoveries have inspired the development of a wide variety of

graphene and graphene oxide composite materials that have shown great potential for many

environmental applications concerning pollution.12 Certain composites have been ideally for-

mulated and proven to be effective in the adsorption of gases,13,14 while others are specialized

for removing certain compounds from water such as dye molecules.15

However, for the use of GO in the capture of pollutants to be feasible, the material would

need to be recovered following sorption. This realization has lead to the production of

GO composites containing magneto-responsive components, providing a simple method for

removing the material from solution after it has been deployed. Magnetic composites incor-

porating GO and reduced GO have been successfully implemented in the removal of many

toxic metal elements from aqueous systems including arsenic,16,17 cadmium,18 selenium19

and mercury.20 In each of these accounts, the magnetic nanoparticles are introduced to the

GO through synthetic pathways that covalently bind the particles to the surfaces of the

sheets.

The drawback to using GO composite materials is that their production often involves com-

plex, high energy and multi-step procedures that permanently change the structural makeup

of the GO. In addition, they have a comparatively narrow range of uses. Therefore in essence,

the utilization of pure, ‘virgin’ GO as an adsorbent for water decontamination would be ideal.

Aside from being difficult to remove from solution, GO also possesses in vivo, toxic char-

acteristics associated with its oxygenated functional groups.21 Hence, viable methods for

recovering GO from solution must be developed for its use in large-scale industry to be plau-

sible.
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Hematite (↵-Fe2O3) is a magnetic compound that naturally occurs in large abundance.22 Its

surface chemistry is dependent on pH in aqueous media, with an isoelectric point (IEP) of

7-8.23,24 Therefore, in a solution at pH values below its IEP, the hematite particles would

be expected to experience strong, charge-based attractions with GO sheets, arising from

the opposing surface charges. Similarly, the magnetic ionic liquid surfactants: 1-methyl-3-

butylimidazolium tetrachloroferrate and dodecyltrimethylammonium trichloromonobromo-

ferrate, abbreviated henceforth to ‘mim’ and ‘DTA’ respectively, should interact with the

GO in a similar manner.25

This study investigates and demonstrates how surface charge can be manipulated to control

the adsorption of magnetic substances onto GO, and facilitate its removal from water. Our

methods utilise cheap and readily processed materials that circumvent the need to perform

difficult and lengthy syntheses of GO nanocomposites, and are low energy alternatives to

centrifugation and polymer flocculation. In addition, capture of GO via this route is fully

reversible as the GO can be redispersed into the solution by readjusting the system pH. Be-

cause the GO is unaltered by this process, there is no compromise to its original properties

following adsorption, thus the GO and magnetic material can be reused. The experimental

concept is shown schematically in Fig. 1a.

Results & discussion

Characterization of materials

Graphene oxide (GO) was synthesized from graphite particles using an improved Hummer’s

method.27 The shape and size of the resulting particles were then characterized by atomic

force microscopy (AFM) (see Supporting Information) and were found to be almost entirely
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Figure 1: (a) Conceptual shematic of the experiment: pH adjustment is used to effect charge
attraction or repulsion between the GO sheets and hematite particles. A magnetic field
can be used to separate the hematite from solution or dispersion. (b) Zeta potentials of
graphene oxide and hematite nanoparticles, demonstrating the pH ranges at which electrical
double-layer (EDL) attraction or repulsion would be expected. Data for hematite are from
Palomino and Stoll24

::::::
(solid

::::::::::
symbols)

:::
or

::::::::::
measured

:::
in

::::
this

::::::
work

::::::
using

::::::::::
hematite

::::::::::::::
nanoparticles

::::::
(open

::::::::::
symbols) and for GO are from Chen et al.

26

1 nm in thickness, indicative of monolayer GO.3,28,29 The lateral dimensions were typically

several micrometres, with the average flake sizes characterized previously by dynamic light

scattering.30

Optical properties were characterized by UV-visible spectrophotometry (see Supporting In-

formation), which was also used to quantify GO concentrations throughout, having been

initially calibrated gravimetrically. The spectra display the distinctive features expected for

GO: a distinct absorption maximum at approximately 230 nm corresponding to ⇡ ! ⇡*

transitions, and a shoulder at around 300 nm, believed to be n ! ⇡* transitions.31
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Graphene oxide and hematite microparticle systems

Figure 2: GO adsorption and recovery using hematite microparticles: (a) AC mode AFM
height image showing GO adsorbed onto hematite microparticles. (b) The corresponding
AFM amplitude image highlighting edge features. In (a) and (b), the white scale bars
represent 200 nm. (c) Micrograph of hematite microparticles at ⇥100 magnification.

::::
The

::::::::::
horizontal

:::::::::::
dimension

:::
of

::::
the

:::::::
image

::
is

::::
120

:::::
µm.

:
(d) A histogram showing the size distribution

(projected area) of the particles in (c). (e)
::::::::::::
Hysteresis

:::::
loop

:::::::::
showing

::::::::::::::::
magnetization

:::
of

::::
the

:::::::::
hematite

:::::::::::::::
microparticles

:::
as

::
a

:::::::::
function

::
of

:::::::::
applied

::::::::::
magnetic

:::::
field.

::
(f)

:::::::
Powder

:::::::
X-ray

:::::::::::
diffraction

:::::::::
spectrum

:::
of

:::::
the

:::::::::::::::
microparticles,

::::::
with

::::::::::
expected

::::::::::
positions

:::
of

::::::
peaks

::::
for

::::::::::
hematite

:::::::
shown

::::::
with

:::::::::
asterisks.

::::
(g

:
&

::
h)

:
The effect of an external magnetic field on GO (0.2 mg/mL) without

(left vials) and with (right vials) added hematite microparticles (0.05 g) at high (e) and low
(f) pH, demonstrating the separation of hematite from GO in the non-adsorbed state and
capture of GO-hematite complex when adsorption occurs at low pH.

:::::::::
Hematite

::::::::::
(↵-Fe2O3:::::::::::::::

microparticles
:::::
were

::::::::::::::
characterised

::::::
using

::::::::
atomic

:::::
force

::::
and

::::::::
optical

::::::::::::::
microscopies,

:::::::::::::::::
superconducting

::::::::::
quantum

:::::::::::::
interference

:::::::
device

:::::::::::
(SQUID)

::::::::::::::::
magnetometry

:::::
and

::::::::
powder

:::::::
X-ray
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:::::::::::
diffraction

:::::::::
(PXRD),

::::::::::::::::
demonstrating

:::::
their

:::::::::::::
morphology,

:::::
size,

:::::::::::::::
magnetization

::::
and

::::::::
crystal

::::::::::
structure

::::::::::::
respectively

::::::
(Fig.

:::::
2).

::::
To

::::::::::::
investigate

::::
the

:::::::::::
magnetic

:::::::::
response

:::
of

:::::::::::
hematite,

::
a
:::::
full

::::::::::
magnetic

::::::::::
hysteresis

::::::
curve

:::::
was

:::::::::::
produced.

:::::
The

:::::::::::::::
microparticles

::::::::::
exhibited

::::::
fairly

::::::
weak

:::::::::::::::::
ferromagnetism

:::
at

:::::
room

::::::::::::::
temperature

:::::
due

:::
to

::::
the

::::::::::::::::::::::::
Dzyaloshinsky-Moriya

::::::::::::::::::::::
mechanism,32,33 with

:::::::::::::::::
field-dependent

::::::::::::::
magnetization

:::::::::
around

:::
16

:::::
emu

:::::
g�1.

:::::
This

:::
is

::::::
much

:::::::
larger

:::::
than

:::::::
might

:::
be

:::::::::::
expected,

::::
but

:::
is

::::
not

:::::::::
suprising

::::
for

::
a
:::::::::::::
precipitated

::::::::::
material

:::::
with

:::::::
small

:::::::
crystal

:::::::::
domain

::::::::::::
sizes.34 No

:::::::::::
saturation

:::::
was

:::::::::
observed

:::
in

::::
the

:::::::
range

::::::::
studied

:::::::::
(-10,000

::::
Oe

:::
<

::
H

:::
>

::::::::
10,000

:::::
Oe).

:::::
The

:::::::::::
coercivity

:::::::::::::
approached

::::
250

::::
Oe.

:

::::::::::::::
Graphene

::::::::
oxide

::::::
and

:::::::::::::
hematite

::::::::::::::::::::
microparticle

:::::::::::
systems

From the large difference in isoelectric points for GO (pH ⇡ 0) and hematite (pH ⇡ 7), a

wide window exists in which the two materials exhibit opposite surface charges (Fig. 1b) and

thus could be expected to experience attraction due to their electrical double-layers. Pre-

vious work at gold-water interfaces has indicated that the approach of assembly via charge

attraction works well for GO,30 as have various layer-by-layer assembly studies.26,35–37

To assess the feasibility of magnetically extracting the GO using charge-assembled magnetic

materials, mixtures of GO and hematite microparticles were explored as a function of pH

(Fig. 2). AFM imaging of GO on the particle surfaces (Fig. 2a,b) indicated that it adsorbs

conformally (i.e. lying flat over the particle surfaces). The particles used had an average

radius ca. 2 µm, calculated from their projected area (Fig. 2c,d). These hematite particles

were only kinetically stable in water, and settled over time.

In order to exemplify the charge-mediated adsorption of GO onto the hematite particles,

Fig. 2e and f show the same set of vials at different pH conditions. In all cases, the two vials

both contain GO (0.2 mg/mL), but in each frame the right hand vial also contains 50 mg of

7
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hematite microparticles. At high pH (Fig. 2e
:::
2g) no change in the colour of the solution is

seen when hematite was added and the sample placed by a magnet, indicating that all of the

GO remained dispersed while the hematite is captured by the magnet. However, once the

solution had been marginally acidified (pH < 5), the GO and hematite co-flocculated and

were both captured by the magnet (Fig. 2f
:::
2h). This serves as a clear indication as to the

importance of pH and charge in controlling the surface chemistry in these systems.
::::::::::
Although

::::
iron

:::::::
oxides

:::::::::
become

:::::
more

::::::::
soluble

:::
at

::::
low

:::::
pH,

::::::
Jang

::
et

::::
al.

:::::::
showed

:::::
that

::::::::::
hematite

::::::::::::
dissolution

::
is

:::::::::::
vanishingly

::::::
slow

:::
at

::::
the

:::
pH

:::::::
values

::::::
dealt

::::::
with

::::::::
here.38

Figure 3: Flocculation of GO using hematite microparticles: (a) Samples containing 20 mg
of hematite with varying concentrations of aqueous GO dispersion at pH 2.8. (b) Equivalent
samples to those in (a) but at pH 11.5. (c) UV-visible spectrophotometry data showing the
concentration of GO remaining in the supernatant layer at high and low pH as a function
of initial GO concentration. The dashed, black line shows a y=x trend for comparison (i.e.
the limit of no adsorption).

To explore this effect quantitatively, a range of pH and concentration ratios were explored.

8



At low pH, the GO and hematite coprecipitate to form a magnetically responsive ‘network’

that settles out quickly, leaving clear water as the supernatant (Fig. 3a). It is notable that

this co-flocculated material appears to be a gelled particle network, as the volume occupied

is many times greater than the dry volume occupied by the constituent hematite and GO.

The higher the concentration of GO, the greater the volume of the ‘network’. Conversely, at

high pH, no precipitation of the GO was seen, and it remained dispersed in the water while

the hematite settled (Fig. 3b).

This effect is readily explained by strong charge attraction between the positive hematite

surfaces and the negative periphery of the GO sheets, due to the dissociated carboxylate

groups. We therefore posit a structure for this network whereby GO sheets link hematite

particles, acting as a bridging flocculant, in much the same way that many polyelectrolytes

are used as particle flocculants.39

At pH 11.5, the GO and hematite are both strongly negatively charged and hence expe-

rience a mutual repulsive electrical double-layer force. At pH 2.8, the GO maintains its

negative surface charge, however the hematite particles are strongly positively charged from

protonation of their surface oxide groups. It can be seen that effectively all of the GO has

been removed from the bulk solution in the low pH samples, whilst for the high pH samples,

the majority of the GO is still present (Fig. 3c). Some removal appears to have occurred

for the higher concentrations of GO at high pH, though this may be due to a self-salting

effect where the high volume fraction causes overlap of the electrical double-layers of the GO

sheets, resulting in a locally increased counterion concentration that acts to ’salt out’ the

sheets via charge screening.40–43

Exploring the effects of pH indicates a relatively narrow window in which the transition

9
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Figure 4: The effect of pH on flocculation of GO with hematite: (a) Samples containing
GO at 1.5 mg/mL with 20 mg of hematite microparticles present at different pH values.
(b) UV-visible spectrophotometry data showing the concentration of GO remaining in the
supernatant layer as a function of pH for the fixed starting concentrations specified in (a).

between complete flocculation and full dispersion is seen (Fig. 4). The results show that

at pH values of 6 and below, close to pure water can be retrieved. At pH 6.96, marginally

below the isoelectric point of hematite, the majority of the GO had adsorbed, leaving a low

concentration in dispersion and a slightly smaller GO/hematite network. Just above the

isoelectric point of hematite (pH = 7.48), some settling and adsorption is apparent, however

most of the GO remains dispersed. At pH values of 8 and above, the GO stays almost fully

dispersed. The apparent decrease in dispersed GO seen at pH 12.00 is most likely a result

of the GO starting to become chemically reduced, which is known to occur at high pH.30,44

10
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Graphene oxide and hematite nanoparticle systems
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Figure 5: (a) Apparent hydrodynamic diameters of synthesised hematite nanoparticles as a
function of pH as determined using dynamic light scattering (DLS). Error bars correspond
to the standard error for each point and the dashed line is a guide to the eye. (b) AFM
height image of hematite nanoparticles dried onto mica. The white scale bar represents
1 µm, and the dashed, blue line shows the position of a cross-sectional height profile that is
presented in (c). (d) The magnetic extraction of GO in water using hematite nanoparticles.
Both vials contain 0.2 mg/mL of GO, however the right-hand vial also includes a 0.2 mg/mL
concentration of nanoparticles.

Although microparticles are appealing for reversible capture and dispersion of GO due to the

large magnetic force they experience, they suffer from the problem of settling, which means

that energy is required to effectively disperse them for capture of GO. At small scales and in
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stirred, flowing or otherwise agitated systems (such as waste-water settling tanks, pipe flow,

etc.) this does not represent a significant problem. However, deployment at larger scales

requires a magnetic capture agent that is colloidally stable - that is, a material that will not

settle over time but will remain dispersed due to Brownian collisions with solvent molecules.

Our solution was to explore the deployment of small, hematite nanoparticles that form

thermodynamically stable dispersions. These nanoparticles were synthesized from iron (II)

sulphate heptahydrate using the procedure described by Chen et al.

45 Dynamic light scat-

tering (DLS) results indicate that the nanoparticles are most stable at low pH (2-4) where

their surface charge is strongly positive. Their apparent effective diameter at this point is

ca. 40 nm, whereas the particles readily attract one another and form larger flocs at pH 7 -

9 (Fig. 5a), close to the isoelectric point of the particles where the surface potential drops

below the 30 mV required for colloidal stability. AFM imaging indicated that the particles

were mostly below 20 nm in size, with surprisingly low polydispersity (Fig. 5b,c). A mix-

ture of hematite nanoparticles with aqueous GO dispersion at pH 3 resulted in a flocculated

material that was highly responsive to an external magnet (Fig. 5d).

To confirm specific adsorption of the hematite nanoparticles to the GO sheets, the GO-

nanoparticle composite material formed at pH 3 was imaged using AFM (Fig. 6a). It is

clear that the hematite nanoparticles show high and specific affinity for the GO, forming

large clusters on the surfaces of the sheets. This suggests that again, electrical double-layer

interactions are the driving force behind the adsorption and flocculation processes, as strik-

ingly few nanoparticles were seen on the mica substrate. Moreover, it is clear from Figure

6b that there is a highly specific pH range within which optimal interaction between the

nanoparticles and GO occurs, with no adsorption being evident in the high pH sample. This

is again in line with expectation from the surface charging behaviour of hematite and GO,

and echoes the characteristics of the hematite microparticle dispersions.

12
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Figure 6: (a) AFM height image of hematite nanoparticles adsorbed onto sheets of graphene
oxide at pH 3 and dried onto mica. The scale bar represents 200 nm. (b) Samples containing
0.15 mg/mL of aqueous GO and 0.15 mg/mL hematite nanoparticles at different pH values.
(c) Samples containing 0.1 mg/mL of GO in water (pH 3) and increasing concentrations of
hematite nanoparticles.

Despite the significant difference in lateral dimensions between the hematite nanoparticles

and the microparticles studied above, the mechanism of co-flocculation is likely similar,

whereby the nanoparticles act to bridge the GO sheets, causing a 3D network to form. The

number of effective cross-links between sheets would therefore be related to the ratio of

nanoparticles to GO, with higher nanoparticle loadings favouring a denser network structure

due to a larger number of ‘linkages’. This appears to be realised (Fig. 6c) where increasing

nanoparticle loading for the same amount of GO results in a smaller, denser flocculated

layer. By nanoparticle:GO ratios of >3:1, free (unflocculated) nanoparticles are evident in

the supernatant above the flocculated GO.

It is found therefore that an equal mass ratio of hematite nanoparticles to GO is ideal for

recovery. However, a particuarly interesting effect occurs at higher nanoparticle loadings,

13



whereby re-stabilization of the GO was observed. Dispersions thus formed were indefinitely

stable, indicating a surface potential above the 30 mV generally required for colloidal stabil-

ity. We posit that this effect occurs due to overcharging of the particle surfaces, whereby the

hematite nanoparticles act as a dispersant for the GO, increasing the surface potential of the

composite material to large, positive values. A similar effect has been seen whereby small,

highly charged nanoparticles stabilise larger colloids with low, opposite surface charges by

adsorption,46 with the effect explained as a balance of van der Waals attractions and elec-

trical double-layer effects. Similarly, the ‘supercharging’ of anionic silica by adsorption of

anionic surfactants has been noted, suggested to be entropic in origin.47 The concentration-

dependent flocculation/redispersion effects for nanoparticle adsorption on GO seen here are

to our knowledge the first such example for such a nanomaterial, and thus may be advanta-

geous in designed systems for bulk solution deployment of GO.

Graphene oxide and magnetic surfactant systems

There has been a recent surge of interest surrounding the use of magnetic surfactants as stabi-

lizers, due to their ability to form micelles, microemulsions and (macro) emulsion droplets as

soft colloids with magnetic response.48,49 They have also been employed in the field-induced

control of biomacromolecules50 and more recently, silica particles.51 However as yet, their ap-

plication for the magnetic recovery of nanomaterials remains unexplored. We investigate the

potential of two such surfactants, 1-decyl-3-methylimidazolium tetrachloroferrate (mim) and

dodecyltrimethylammonium trichloromonobromoferrate (DTA) as molecular alternatives to

the microparticle and nanoparticle systems examined above. Adsorption experiments were

carried out at pH 5.5 to ensure that the GO had a significant negative surface charge.

Interestingly, the behaviour of the magnetic surfactant/GO systems is similar to the hematite

systems (Fig. 7a,b), and the surfactant appears to serve two roles: firstly as a magnetic ma-

terial for field-induced recovery of the GO, but also as a flocculant. The surfactants were

14



Figure 7: (a & b) Magnetic response of magnetic surfactant-GO systems: all samples contain
0.2 mg/mL GO in water, but only the right-hand vials contain additionally 1 mM surfactant,
of which the corresponding molecular structure is shown directly beneath the vials. (c)
Adsorption isotherms for each surfactant on GO. Due to difficulties encountered in obtaining
spectra for the higher concentrations of mim, approximate points (marked with crosses)
have been added to demonstrate the approximate adsorption saturation concentration. The
dashed trendlines have been added as guides to the eye.

chosen for their positively charged head-groups, as these should experience a strong electro-

static attraction to the dissociated carboxylate groups on GO. To explore these characterstics

further, adsorption isotherms for each surfactant on GO were constructed (Fig. 7c). It is

seen that mim has a relatively low affinity for GO, adsorbing at less than 0.5 moles of sur-

factant per gram of GO even at high surfactant loadings. DTA on the other hand adsorbs

with moderate affinity at high surfactant concentrations, though we were unable to ob-

serve adsorption saturation (asymptotic flattening of the isotherm) due to the experimental

uncertainties associated with measuring small changes in absorbance at large concentrations.

The large difference in affinity aids interpretation of the magnetic response of the two sys-

tems (Fig. 7a,b). The DTA-GO system shows significant flocculation, forming a loosely-
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aggregated GO matrix, which is moderately attracted to the magnet. Conversely, the mim-

GO system forms a much denser flocculated material of which only a small amount responds

to the magnet. Thus it is clear that the more strongly adsorbed DTA surfactant is the more

effective of the two for magnetic recovery of GO. We theorise that there are two possible

reasons for the flocculation behaviour encountered for the surfactants here: a) the surfactant

adsorbs strongly to the anionic carboxylate groups around the GO periphery, thus neutral-

ising the charge and causing colloidal instability; or b) the GO sheets become coated with a

large amount of surfactant and are therefore rendered hydrophobic and attract one another.

Given the high concentrations of surfactant required for significant adsorption, the second

explanation seems much more likely. Similar flocculation behaviour is seen for GO when

reduction due to increased pH occurs,30 which also supports this hypothesis.

As it is the counterion that is paramagnetic, rather than the surfactant ion itself, this raises

an important question about the nature of the adsorption and magnetic response. Clearly the

fractional level of counterion dissociation is a key parameter, and this was previously deter-

mined using small-angle neutron scattering as 0.73 and 0.81 for mim and DTA respectively.25

These values are high compared to the same surfactant ions with ‘conventional’ bromide or

chloride counterions,25 indicating an increased hydrophilicity of the iron-containing, mag-

netic counterions. Thus it is suspected that bound surfactants contribute to the magnetic

response of the surfactant-GO materials in two ways. The first is that undissociated, bound

surfactants (adsorbed via hydrophobic interactions with the GO sheets or polar interactions)

will directly respond to the magnetic field. The second is that dissociated, bound surfactant

ions still retain their counterions in a diffuse layer near the surfactant-GO interface, and that

by magnetic movement of the dissociated counterions, the surfactant-GO complex is osmot-

ically ‘dragged’ with them. The relative contributions of these two effects would depend on

binding strength and concentration, and modelling studies are underway to understand this

further.
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Magnetic compression and dewatering of GO

Figure 8: Magnetic compression of GO-hematite materials: (a) The change in volume of a
GO-hematite microparticle matrix as a function of time when one is subjected to a magnetic
field and the other is not. Measuring began after the initial settling due to gravitational
forces had ceased. (b & c) Images of the two identical samples when first placed on the
magnet/cardboard magnet (b), and two days later (c).

For each of the magnetic materials employed, pH-dependent GO flocculation was observed,

and so it is pertinent to more systematically study the magnetic response of the co-flocculated

materials generated. In particular, the magnetic compressibility of the flocculated material

was explored by placing the materials on a strong permanent magnet and recording the

volume of the flocculated network as a function of time (Fig. 8).

For the case of hematite microparticles, the volume of the GO/hematite matrix was almost

halved over a two day period (Fig. 8a-c), indicating significant compression and dewatering.

However, when the same test was performed on systems containing hematite nanoparticles or

the magnetic surfactants, effectively no compaction occurred (see Supporting Information).

It is possible that in the cases with the nanoparticles and surfactant molecules, the matrix

is denser or more strongly bonded, and therefore unable to compact further regardless of

the magnet being present. However, an examination of the energy experienced per particle

due to the magnetic field is also illuminating: a 2 µm radius hematite particle, typical of the

microparticle material, would experience an energy due to the magnet of around 7⇥ 10�15 J
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(assuming a typical magnetization of 200 A/m for finely divided hematite52). A 20 nm ra-

dius particle with the same characteristics however would gain an energy of only 7⇥10�21 J,

around the same magnitude at thermal energy, kBT at 298 K, 4.1 ⇥ 10�21 J. It is difficult

to precisely estimate the energy for the surfactant system, but it is expected to be of a

similar magnitude per unit mass as hematite, given the susceptibilities of the surfactants

themselves.25

It should also be noted that the mass ratio for magnetic surfactant and nanoparticle ex-

periments (around 1:1 magnetic material:GO) was significantly less than for the micropar-

ticle case (2.6:1 magnetic material:GO), also contributing to the increased effectiveness of

microparticles. This does however indicate that by transitioning to nanomaterials where

surface area-to-volume ratios are significantly higher, lower loadings can be used to capture

GO from dispersion.

It is clear that the hematite microparticles are able to exert a significantly larger force on

the GO matrix, and although the nanoparticles and surfactants apply sufficient force in a

magnetic field to act against Brownian motion to enable collection of the material with a

magnet, they cannot effectively compress the matrix to dewater it. In fact, the compressional

strength of the GO-hematite microparticle matrix could be estimated from the applied force

due to the magnetic field, although this would require a more carefully controlled magnetic

field than was employed in the proof-of-principle measurements shown here. However, it is

clear that the ‘gel’ matrix strength is on the same order as the force applied by the mi-

croparticles in the field, and that the nanoparticles and magnetic surfactants are insufficient

to overcome the compressional strength of the GO matrix.

In contrast to previous studies where magnetic particles were found to have no significant

compaction effect on dewatering of suspensions,53 the fairly significant compression seen for
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the GO-microparticle case indicates that for the loosely focculated ‘gels’ produced, magnetic

compression is a viable and effective method for dewatering that merits further exploration.

pH reversibility of GO/hematite systems

Figure 9: (a & b) Demonstrations of how system pH can be used to reversibly capture
and redisperse GO in the presence of hematite

::::::::::::::
microparticles

:
(a) and hematite nanopar-

ticles (b). (c) The magnetic extraction of
:::
At

::::
pH

:::
3,

::::::::::
hematite

::::::::::::::::
microparticles

:::::::
alone

::::
are

:::::::
unable

:::
to

:::::::::
capture

:
gold nanoparticles from solution using

:::::::::::
dispersion.

:::::::
Both

:::::
vials

:::::::::
contain

the GO/
:::::
same

:::::::::::::::
concentration

::
of

:::::
gold

:::::::::::::::
nanoparticles,

:::::::::
however

::::
the

::::::::::::
right-hand

::::
vial

:::::
also

:::::::::
includes

::
10

::::
mg

:::
of

:
hematitesystem.

::::
(d)

::
A

:::::::::
mixture

:::
of

:::::::::
hematite

::::::::::::::::
microparticles

::::
and

:::::
GO

::::
can

:::::::::::
effectively

::::::::
capture

::::
and

::::::::
extract

:::::
gold

::::::::::::::
nanoparticles

::::::
from

:::::::::::
dispersion.

:
Both vials contain the same amount

::::::::::::::
concentration

:
of gold nanoparticles, however the right-hand vial also includes 0.2 mg/mL of

GO and 10 mg of hematite. (d) A UV-visible spectrum showing the amount of gold present
in the sample before and after capture with a magnet.The flat, green line corresponds to the
supernatant solution of a sample containing ⇥10 the amount of GO and hematite as that
represented by the purple line.

Having demonstrated that low pH conditions facilitate strong adsorption of hematite onto

GO, it is pertinent to explore whether this process is reversible. The motivation is that if

the captured material can be redispersed effectively, then GO can be used as a recyclable
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adsorbent for (waste) water treatment. The ability to reuse the adsorbent multiple times

offers clear energy, cost and environmental benefits. Figures 9a and 9b indicate that GO can

indeed be reversibly captured with hematite microparticles or nanoparticles by changing the

pH of the system. Acidic conditions facilitate the adsorption and capture of the GO, whereas

readjusting the pH of the samples to moderately basic conditions serves to release the GO,

restabilizing the dispersion and allowing selective separation of the magnetic particles from

the GO.

These observations also serve to again indicate that surface charge is the overriding, driving

force of the adsorption and dispersion processes for these materials, and van der Waals forces

(expected to be comparatively weak for the single-layer GO) are of secondary importance.

The approach of using non-covalent, charge based attractions in forming magnetic GO mate-

rials has significant advantages over existing magnetic GO composites, because in our case,

the GO and the magnetic material are able to be recovered without any compromises to

their original properties and hence, can be recycled or reused multiple times.

As a final demonstration of the power of this reversible deployment and capture process, we

use the magnetic GO colloids to capture gold nanoparticles of diameter 10 nm from disper-

sion (Fig. 9c
::
9d). By adjusting the pH to 3, the gold surface charge is moderately positive54

and thus experiences an attractive electrical double-layer force for the GO surfaces which

are negatively charged at this pH. The gold is expected to stick selectively to the GO sur-

faces, as the hematite is strongly positively charged at this pH. Fig. 9c
::
9e

:
demonstrates

conclusively from the loss of the characteristic plasmon signature for the gold particles that

after application of the GO-hematite material and magnetic recovery of the matrix, the gold

has been entirely removed from dispersion (at least within the detection limits of our exper-

iment).
::::
The

::::::::
‘blank’

::::::::::::
experiment

:::::::
where

:::::
only

::::::::::
hematite

::::::::::
particles

::::
are

::::::
used,

:::::::
shown

:::
in

:::::
Fig.

::::
9c,

::::::::::::::
demosntrates

:::::
that

::::
GO

:::
is

:::::::::
essential

:::
to

:::::
this

:::::::::
process,

:::
as

::::
the

::::::::::
hematite

:::::
and

:::::
gold

:::::::::::::::
nanoparticles
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:::
are

::::::
both

::::::::::
positively

:::::::::
charged

:::
at

:::::
this

:::::::
pH.54 This serves as a demonstration that non-covalent

GO-hematite composite materials can be effectively deployed for adsorption and subsequent

removal of nanomaterials from dispersion, with obvious applications in water treatment and

nanomaterials processing.

Conclusion

The formation of non-covalent, magnetic graphene oxide (GO) materials was explored us-

ing three magnetic materials: hematite microparticles, hematite nanoparticles and magnetic

surfactants. Each was found to co-flocculate GO at acidic pH, resulting in materials that

could be captured using an external magnetic field. The adsorption of GO at low pH is

attributed to attractive electrical double-layer forces between the GO and hematite or sur-

factants. Conversely in basic conditions, the dispersions remain stable due to like-charge

repulsions, and it was shown that this provided a mechanism for the redispersion and sep-

aration of GO post-magnetic capture. Such non-covalent materials show obvious cost and

energy benefits compared to bespoke syntheses of modified magnetic GO.16–19

The use of the magnetic surfactants and hematite nanoparticles minimizes the amount of

adsorbate required for recovering GO, but are much less magneto-responsive when compared

to hematite microparticles, which form a network with the GO that is not only captured, but

also readily compressed by exposure to an external magnetic field. This magnetic dewatering

result is more effective than for mineral systems,53 and points to tempting methods for the

further study of GO network properties and their compressional rheology.

An interesting effect was found with hematite nanoparticles, whereby low concentrations re-

sulted in flocculation of GO and higher concentrations caused restabilization, most likely by
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an effective over-charging of the GO surfaces. Such behaviour is not without precedent,46,47

but has not been noted for carbon nanomaterials before, and provides a unique route to

dispersions with enhanced stability and properties.

As well as magnetic capture of GO itself, these systems were shown to be effective for the

removal of a model nanomaterial, gold nanoparticles, from water. These results demonstrate

that the unique surface charging behaviour of aqueous GO systems can be readily exploited

and manipulated to reversibly control the assembly of GO with various magnetic materials.

By highlighting viable and recyclable colloidal techniques for deploying and removing GO

from water, the need to create high energy and chemically complex covalent magnetic GO

composites17,19 is overcome, making its use in large scale water treatment more cost-effective

and practical.

Materials & methods

Materials

Hematite (iron (III) oxide, Fe2O3), iron (II) sulphate heptahydrate, iron (II) dichloride tetrahydrate, phos-

phoric, sulfuric, and hydrochloric acids, potassium hydroxide and potassium permanganate (all 99% or

greater) were obtained from ChemSupply and used without further purification. Hematite microparticles

were prepared by grinding sintered hematite pieces (2-10 mm) in a pestle and mortar. The resulting powder

was characterised using light microscopy and powder X-ray diffraction measurements. Hydrogen peroxide

solution and aqueous ammonia (30% and 28% w/w in water respectively) were also from ChemSupply and

used as received. Sodium tetrachloroaurate and sodium citrate were from Sigma. The magnetic surfactants

1-decyl-3-methyl imidazolium tetrachloroferrate (mim) and dodecyltrimethylammonium trichloromonobro-

moferrate (DTA) were synthesised and purified as described previously 25 . Mica disks used as substrates

for AFM imaging were from ProSciTech (Thuringowa, QLD, Australia) and were freshly cleaved before use.

GO was synthesized from graphite flakes (Sigma, +100 mesh) from Bruceland (Clayton, Australia) using a

variation on the Hummers method described in Marcano et al. 27 . The graphite powder (1 g) was dispersed
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in 113 mL of a 9:1 ratio of concentrated sulphuric and phosphoric acids. This mixture was then stirred while

potassium permanganate (6 g) was added gradually. The temperature was elevated to 50 �C and the reaction

was left to stir overnight. The resultant orange/brown mixture was then left to cool to room temperature,

and poured over ice (ca. 300 mL) with approximately 1 mL 30% H2O2. Large particles were removed from

the crude reaction mixture by filtration, and the filtrate was then centrifuged at 6000 rpm for 1 hr and the

supernatant liquid was discarded and replaced with distilled water. This process was repeated several times

and the clean GO obtained was then dried at 45 �C.

Hematite nanoparticles were prepared from iron (II) sulphate heptahydrate (green vitriol) following the pro-

cedure of Chen et al. 45 . Iron (II) sulphate heptahydrate (8.36 g) was dissolved in 300 mL of water to

create a 0.1 M solution. The addition of 30% w/w hydrogen peroxide solution (10 mL) rendered the mixture

an intense orange colour, and this was then heated to 80 �C. In a separate vessel, 50 mL of aqueous ammo-

nia (2.8% w/w) was heated to 60 �C, and then mixed rapidly with the orange iron solution. The mixture

was allowed to stir for 20 minutes before the reddish precipitate was collected and washed five times by

centrifugation and redispersion in ultrapure water. A small volume of iron (II) dichloride solution (0.6 mL,

0.1 M) was added to the washed suspension as a catalyst, and the solution was adjusted to pH 4 using

hydrochloric acid and heated to boiling for 5 hours under reflux and gentle stirring. Upon completion of the

reaction, gentle centrifugation (1000 rpm, 2 minutes) was used to remove any large particles, leaving a dark

red solution of hematite nanoparticles.

Gold nanoparticles were synthesised using the method of McFarland et al. 55 . Briefly, a 1 mM solution of

sodium tetrachloroaurate was heated to boiling with vigorous stirring, and to this, sodium citrate solution

(38 mM) was added. The mixture was left to boil under stirring until the solution turned a deep red colour,

indicating the presence of nanoparticles, after which the solution was allowed to cool.

Methods

Samples shown throughout were made up to a standard volume of 1.5 mL. Hematite was ground with a

mortar and pestle before use, and pH adjustments were made with either hydrochloric acid or potassium

hydroxide, and measured with a calibrated pH meter. Prior to analysis, all samples were equilibrated for at

least 24 hours unless otherwise stated.

Magnetic response was assessed by placing a strong, permanent magnet beside or underneath the vials con-
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taining the samples. The magnets used were composed of sintered NdFeB (M35) in a 100 µm thick nickel

casing (Jaycar Electronics, Springvale, VIC, Australia). They were cylindrical in shape with diameter 19 mm

and length 28.2 mm, and the magnetic field intensity at the surface was ca 1.2 T.

Magnetization data were collected for dried samples, which were placed in sealed polypropylene tubes and

mounted inside a plastic straw for measurements in a magnetometer equipped with a superconducting quan-

tum interference device (SQUID, MPMS XL, Quantum Design, San Diego, CA, USA).

UV-visible spectrophotometry measurements were carried out using a Cary 60 instrument from Agilent

Technologies. The supernatant of each sample was analysed across a 200 - 800 nm wavelength range in

clean, quartz cuvettes. For samples in which the concentration of surfactant was the point of interest, the

GO was centrifuged down to ensure that the spectra obtained were representative of free surfactant only.

Correspondence of the measured absorbance values to prepared calibration curves for GO and both magnetic

surfactants were performed to obtain the post-adsorption concentrations of each material (see Supporting

Information).

Dynamic light scattering measurements of hematite nanoparticles were made using a Brookhaven ZetaPlus

instrument. The autocorrelation function of light scattered by the sample from a 30 mW red diode laser was

fitted to obtain particle diffusion coefficients, D, and translated into apparent particle hydrodynamic radii,

Rh, using the Stokes-Einstein equation.

Atomic force microscopy (AFM) imaging was performed using a JPK Nanowizard 3 AFM in AC (inter-

mittent contact) mode using Bruker NCHV model cantilevers, which had nominal resonant frequencies of

340 kHz and spring constants of 20-80 N/m. Images were obtained with a set-point force of <1 nN and

‘flattened’ only by subtraction of a straight line from each scan line.

Supporting information available

Additional data on characterisation of GO, hematite and magnetic surfactant systems. This material is

available free of charge via the Internet at http://pubs.acs.org.
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