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On the Interpretation of Bending-Torsion Coupling for Swept, Non-Homogenous Wings 

O. Stodieck 1, J. E. Cooper2, P. M. Weaver3 

Department of Aerospace Engineering, University of Bristol, Queens Building,  

University Walk, Bristol BS8 1TR, U.K. 

The wide range of conflicting definitions of the axis on a general swept, non-uniform, non-

homogenous wing about which there is no bending / torsion coupling are reviewed. A 

generalization of these definitions is made, with an emphasis on whether deflections and loads 

on a local streamwise section or the entire wing are considered. Determining this axis enables 

a better understanding as to why various aeroelastic tailoring and adaptive stiffness solutions 

are effective for flutter suppression and gust loads suppression applications. It is 

demonstrated, using a flexibility matrix approach, that the loading case must be considered in 

order to be able to accurately determine the flexural axis of a typical wing structure. The 

methodology is demonstrated using three numerical models: a simple swept wing, an 

aluminum wing box, and a tow-steered, variable stiffness, composite plate wing. Finally, the 

sensitivity of the flexural axis is considered and it is shown that the global flexural axis is much 

more sensitive to modeling or measurement errors than the local flexural axis.   

Nomenclature 

b    = vector in simultaneous linear equations 

c     =  local streamwise wing section chord-length 

fij    = flexibility influence coefficients 

kx, ky, kxy   =  local laminate bending and twisting curvatures 

r    =  vector of vertical deflections ri (in z-direction) at wing reference degrees of freedom 

                                                           
1 Ph.D. Research Student – Industrial Case Award, AIAA Student Member  
2 Royal Academy of Engineering Airbus Sir George White Professor of Aerospace Engineering, AFAIAA 
3 Professor in Lightweight Structures, AIAA member 
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s     =  wing span 

w’’    =  wing spanwise bending curvature 

xL   =  location of the flexural center or local flexural axis on a streamwise wing section   

xG   =  location of the global flexural axis on a streamwise wing section 

x, y, z    =  orthogonal wing coordinate-system  

A    = square matrix in simultaneous linear equations 

Dij    =  classical laminate theory D-matrix terms  

E(X)    =  statistical mean 

F    =  flexibility matrix 

P, Q   =  streamwise wing section shear loads (in z-direction) 

Mx, My, Mxy =  local laminate bending and twisting moments per unit-length 

M, T   =  applied spanwise bending moment and torsion 

R    =  vector of applied vertical force Ri (in z-direction) at wing reference degrees of freedom 

Ri    = applied vertical force at ith degree of freedom 

θ    =  streamwise wing section twist angle relative to the root 

θ’    =  streamwise wing section twist rate with respect to distance along the beam 

σ    =  standard deviation 

μ    =  warping constraint constant  

 

I. Introduction 

Aeroelasticity1,2 has had a significant effect upon aircraft performance and wing designs since the beginning of 

manned flight. As well as the catastrophic phenomena of flutter and divergence, the in-flight wing shape, control 

surface performance, gust and maneuver response, and a wide range of critical load cases all depend upon the static 

and dynamic aeroelastic characteristics of each airplane2. Much work is currently being devoted to green designs, 

where aeroelastic effects are used beneficially in order to achieve reduced weight, loads alleviation and more efficient 

wing shape throughout the flight envelope. Possible design approaches to achieve these goals are aeroelastic tailoring3 

and adaptive stiffness morphing structures4. 
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The key phenomenon to understanding aeroelastic behavior is the coupling between bending and torsion 

deflections, and their combined interactions with the aerodynamic forces. Indeed, all aeroelastic textbooks e.g. Refs  

1 and 2, stress that the greater the distance between the aerodynamic center and the structural axis about which the 

bending and torsion motions are uncoupled (usually referred to as the flexural or elastic axis), then the larger the static 

aeroelastic twist, or the lower the flutter or divergence airspeeds. However, most aeroelastic design is undertaken 

through the optimization of coupled computational structural (FE) and aerodynamic (CFD or panel) models, and 

therefore a lot of the understanding as to why particular optimized solutions are found for the application of 

aeroelastically tailored structures or morphing is lost.  

Despite its importance, there is still a great deal of confusion as to the actual definition of the axis about which 

there is no bending / torsion coupling. Indeed, it is some 60 years since Tatham wrote an article3 attempting to 

differentiate between the shear center, flexural center and flexural axis. If swept wings are modeled as simple beams 

then, unless the coupling effects due to sweep are included (typically, a swept-back wing twists nose-downwards when 

a load is applied upwards – a process referred to as wash-out) in the analysis, errors in the analysis occur.  

In this work, a review of the conflicting definitions of a range of relevant terms is made. In particular, it is shown 

that for wings that are either swept, non-uniform or non-homogeneous, concepts such as the shear center are not 

relevant for understanding of aeroelastic deformations, and that as well as the full wing geometry, the specific loading 

cases must be considered in order to truly determine how, for instance, passive loads alleviation strategies can be 

understood. A unification of the terminology is suggested, and then a flexibility matrix based methodology for 

determining the flexural axis is demonstrated, initially on a simple system, and then on two more complex examples 

involving a swept wing box and a composite anisotropic plate wing. Finally, the effect of uncertainty in the process 

to determine the flexural axis is considered. The objective is not to develop an approach for reducing a 3D FEM model 

to a simple beam structure, but to demonstrate how a greater understanding of wing aeroelastic behavior, and how to 

improve it, can be obtained through consideration of the flexural axis position. 

 

II. Review of Relevant Literature 
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An investigation of the literature shows that there has been a widespread difference in the terminology used to 

describe the wing axis about which there is no bending / torsion coupling. A summary of the different terms and 

definitions found in the literature is provided in Table 1.  

 

Table 1. Relevant definitions in the literature 

Term Definition Reference 

Shear 

center 

“the point in the cross-section through which shear loads produce no twisting” Megson (1999)6; 

Young (2002)7 

“the point in the plane of the section at which a shear force can be applied to 

the section without producing a rate of twist of the section”  

Niles (1954)8; 

Peery(1950)9; 

Bisplinghoff (1996)1 

“the point about which the resultant moment of the shear flows in the walls of 

the section due to bending alone (i.e. without torque) is zero”  

Tatham (1951)5; 

Kuhn (1936)10; 

Fung (1993)11  

“the position where a shear force can be applied without causing twist at that 

section” 

Weisshaar (1987)3 

“For beams with bending-twist coupling such as composite beams, one can 

modify the definition of shear center by considering only the twist caused by 

the shear forces and excluding the twist produced by bending moment through 

the bending-twist coupling” 

Yu(2002)12 

Flexural 

center 

“the point on a wing section at which a load must be applied so as to produce 

zero twist of that section relative to the root” 

Tatham (1951)5 

“For a slender, curved, cantilever beam, the flexural center of a cross-section is 

defined as a point in that section, at which a shear force can be applied without 

producing a rotation of that section in its own plane.” 

Fung (1993)11 
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Center of 

twist / 

Torsional 

Center 

“a point in a cross-section that remains stationary when a torque is applied in 

that section. If the supporting constraint of the beam is perfectly rigid, the 

flexural center coincides with the center of twist” 

Fung (1993)11 

Elastic 

Center 

“If the distance between the [shear center] and the torsional center is sufficiently 

small to be neglected for practical purposes, the average location of the two 

centers will hereinafter be called the "elastic center" of the section.”  

“The elastic center is, in practice, calculated as the [shear center]” 

Kuhn (1936)10 

Reference 

Axis 

“In conventional engineering beam models, the Reference Axis is usually 

chosen to be the shear center or ‘elastic axis’ ” 

Weisshaar (1987)3 

Elastic 

axis 

“the spanwise line along which loads must be applied in order to produce only 

bending and no torsion of the wing at any station along the span” 

Kuhn (1936)10 

“Forces applied to the wing on this axis produce translation of all sections of 

the beam without rotations and torques produce pure twisting of all sections 

about this axis.” 

Bisplinghoff (1996)1 

“the locus of shear centers” Fung (1993)11; 

Yu(2002)12 

“the locus of points at which a transverse force may be applied and cause only 

bending and no twist (about a specified axis) on the section on which the force 

is applied” 

Weisshaar (1987)3 

Flexural 

line 

“For a given loading, a flexural line is defined as a curve on which that loading 

may be applied, so that there results no twist at any section of the beam. In 

general, different load distributions correspond to different flexural lines, and 

there exist load distributions that do not have a flexural line.” 

Fung (1993)11 

 

Flexural 

axis 

“A straight line through the flexural center perpendicular to the plane of 

symmetry (or [wing] root plane).” 

Tatham (1951)5 
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It may be seen that some terms have conflicting definitions, or share a definition with different terms. Whilst the 

usage of these terms and definitions may be justified in the context from which they are quoted, these can lead to 

confusion and misuse in the general case, potentially causing modeling errors as well as misinterpretations of analysis 

results. This lack of clarity is particularly true regarding the ‘shear center’ and the ‘flexural center’, which often tend 

to be confused for historical reasons5. While these two points may coincide for simple straight constant section 

homogenous beams, this is not the case in general. Ambiguity between the shear center and flexural center definitions 

also frequently leads to confusion between the elastic axis and the flexural axis. It seems important at this point to 

repeat Tatham’s request that ‘until definite standardization is introduced these terms should always be defined clearly 

whenever they are used’.   

 

Independent work on straight helicopter rotor blades has shown a blade-position dependency of shear center 

location for anisotropically laminated box-beams where the effects of bend/twist coupling on straight beams is 

somewhat analogous to the bend/twist coupling response of isotropic but swept wings. Indeed, Rehfield and Atilgan13 

state “there will be twisting even if shear forces are applied at the shear center. Therefore, use of the locus of shear 

centers (elastic center) as a reference axis does not simplify a coupled bending/torsion analysis” 

In an attempt to unify these conflicting descriptions, the following definitions are used throughout the rest of this 

study: 

 

 The shear center is the position on a 2D cross-section where there is zero rate of change of twist along the 

beam for a shear load applied to that cross-section and does not include bend twist coupling (i.e. the shear 

center is characteristic of a particular section alone).  

 The elastic axis is the locus of shear centers along a wing. 

 The reference axis is the locus of some geometric or otherwise characteristic position (e.g. mid-chord, locus 

of mass centroids) along a wing.   

 The flexural center is the position of a shear load on a streamwise wing cross-section where there is zero twist 

on that cross-section relative to the wing root, but not necessarily zero twist elsewhere on the wing (i.e. the 

flexural center is characteristic of the wing at a particular section). 
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 The local flexural axis is the locus of flexural centers along the wing. 

 The global flexural axis is the position of a distributed set of loads applied simultaneously along a wing that 

will result in zero twist along the entire wing (i.e. the global flexural axis is characteristic of the wing under a 

specific load case). 

 

To illustrate the difference between the flexural center and shear center concepts some figures from Tatham5 are 

reproduced in Figure 1 for a typical aft-swept wing .  Two different point loads are applied, one at the flexural center 

of streamwise section AB (a) and the other at the shear center of beam section AC (b). It can be clearly seen the 

streamwise section twist angle is only zero when the shear load is applied at the flexural center, while the rate of twist 

with respect to length is only zero when the shear load is applied at the shear center.  

 

  

 

Figure 1. (i.) Aft-swept wing of span L with streamwise section AB and 2D-section AC; (ii.) hypothetical curves 

of twist per unit length for loads applied at (a) the flexural center and (b) the shear center at station A; (iii.) 

plot of total twist along the span, obtained as integrals of the curves in (ii.) (from Tatham5)  

 

Although the flexural axes locations are not required to calculate the static, dynamic and aeroelastic behavior of a 

wing, they are useful to understand its behavior from an aeroelastic point of view. By plotting the local and global 

flexural axes, we may gain some useful insight into the wing behavior for static and dynamic flight load cases which 

cannot be obtained by plotting the shear centers or elastic axis alone. In particular, the flexural axes may provide some 

physical insight into the workings of elastically tailored or morphing wing solutions which are generated using 

optimization methods.  
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The local flexural axis is a measure of the local bend-twist coupling along the wing span. The twist increment on 

a streamwise wing section induced by a shear force applied on that section can be qualitatively estimated by measuring 

the offset between the shear force line of action and the local flexural axis. For a given load distribution, the distance 

between the load application points and the global flexural axis is indicative of the twist induced along the wing span. 

The twist angle along the wing depends on the loading, the wing’s torsional and bending stiffness distributions and 

also the inherent coupling between the two motions. For example, if the lift on a streamwise section acts aft of the 

flexural center then it generates a nose-down twist increment at this section, which tends to reduce the magnitude of 

the applied lift force at that section. Note that aft-swept wings exhibit an in-built bending torsion coupling (wash-out) 

whereby an upwards bending deflection results in a nose-down twist which typically provides a mechanism for 

alleviating gust loads and also contributes to the resulting increase in divergence airspeed.  This coupling occurs due 

the flexural axis moving forward from the beam reference axis.   

Determining the flexural axes enables a better understanding of how different aeroelastic solutions function in 

terms of bending – torsion coupling.  Care must be taken when using beam structures instead of 3D FEM wing models 

(not the objective of this work) to ensure that correct bending-torsion couplings are included otherwise erroneous 

aeroelastic predictions will be obtained. 

III. Determination of the Flexural Axes 

 

In the following sections, a simple method based on the determination of the wing flexibility matrix is 

demonstrated that can be used to locate the local and global flexural axes. First, a very simple 2-strip wing model is 

considered to describe the equations used to determine the flexural axes and to show the importance of the load 

distribution on the location of the global flexural axis. Then, a more complex wing-box model and two composite 

wing models illustrate how geometrical features and material anisotropy affect the location of the flexural axes. 

Subsequent sensitivity analyses determine the effect of flexibility matrix errors on the location of the flexural axes. 

All analyses assume linear stiffness, small deflection behavior and no chordwise bending.   

A. Use of the Flexibility Matrix to Determine the Flexural Axes of a Simple 2-Strip Wing Model 
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Figure 2. Simple 2-strip wing model   

 

Consider the flat swept-wing type plate aluminum structure shown in Figure 2 with defined degrees of freedom 

(DOF) 1 – 4.  The semi-span was 1m, thickness 0.5mm, with the root and tip chords 0.2m and 0.15m respectively, the 

local streamwise chords for sections A and B are defined as lengths cA and cB respectively. The wing was modelled 

using shell finite elements and unit vertical forces were applied independently to each of the DOF and the resulting 

deflections at all DOF were computed.  The vertical deflections ri obtained at each DOF i due to individual unit vertical 

loads Ri give each column of the flexibility matrix  

 

R  =  [

𝑟1
𝑟2
𝑟3
𝑟4

]  = [

𝑓11 𝑓12 𝑓13 𝑓14
𝑓21 𝑓22 𝑓23 𝑓24
𝑓31 𝑓32 𝑓33 𝑓34
𝑓41 𝑓42 𝑓43 𝑓44

] [

𝑅1
𝑅2
𝑅3
𝑅4

] =  FR    

with F = [

2.944 2.719 7.219 7.015
2.719 3.149 7.252 7.635
7.219 7.252 24.17 23.99
7.015 7.635 23.99 24.968

] ∗ 1. 𝑒 − 4 

(1)    

where fij are the flexibility coefficients which are the displacement resulting at DOF i due to a unit load applied at 

DOF j. This flexibility matrix illustrate the typical characteristic of a swept back wing where washout, a nose-down 

twist coupling with upwards bending, occurs. 

 For a load P applied at some position x on a stream-wise section of chord c, it is necessary to find the equivalent 

loads at the leading and trailing edges on that section in order to apply a flexibility matrix type approach. From Figure 

3, it can be seen that the equivalent load and moment for a stream-wise section of chord c, assuming that there is no 

chord-wise deflection and also that the zero angle of attack quarter chord pitching moment coefficient CM0 = 0, are 

obtained for leading and trailing edge forces R1 and R2 such that  

Y

X

1

2

3

4

A

B
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 𝑃 = 𝑅1 + 𝑅2   ;    𝑐𝑅2 = 𝑃𝑥       ⇒ 𝑅1 = 𝑃(1 −
𝑥

𝑐
)  and  𝑅2 = 𝑃

𝑥

𝑐
 (2)  

 

Figure 3. Determination of equivalent forces at the leading and trailing edge DOFs 

 

The local flexural axis position at section A can be determined by applying a unit load at distance xFA , which 

produces zero twist on that section. Making use of equation (2) we obtain the conditions 

 
       𝑟1 = 𝑟2            𝑅1 = 𝑃(1 −

𝑥𝐹𝐴

 𝑐𝐴
)                    𝑅2 = 𝑃

𝑥𝐹𝐴

𝑐𝐴
      𝑅3 = 0    𝑅4 = 0  (3)  

and substitution into the top two rows of equation (1) gives the local flexural axis position at section A. A similar 

process can be repeated for streamwise section B using the bottom two rows. The resulting local flexural axis positions 

for each strip are found as  

 
𝑥𝐹𝐴 =

𝑐𝐴(𝑓11−𝑓21)

(𝑓11−𝑓12−𝑓21+𝑓22)
  and    𝑥𝐹𝐵 =

𝑐𝐵(𝑓33−𝑓43)

(𝑓33−𝑓34−𝑓43+𝑓44)
 (4)  

where the normalized flexural center location is measured from the leading edge (x=0) towards the trailing edge (x=1).  

For the given flexibility matrix in equation (1), this gives the two local flexural center positions as 

 
𝑥𝐹𝐴

𝑐𝐴
= 0.3435      and    

𝑥𝐹𝐵

𝑐𝐵
= 0.1515  (5)  

which means that the flexural center position for strip A is over twice the distance from the leading edge as that for 

strip B.    

The approach can be extended in order to find the global flexural axis positions xGA and xGB at sections A and B 

for a constant spanwise load. In this case, vertical loads P and Q are now applied simultaneously to both streamwise 

strips, such that there is zero twist in both of the strip, implying that the deflections at each degree of freedom are 

constrained such that r1 = r2 and r3 = r4, and the loads are defined by equation (2) for each strip. For the normalized 

(divide by each local chord) values of xGA and xGB, these constraints infer that equation (1) becomes 

P 

x 

R1 R2 

c 
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r  =  [

𝑟1
𝑟1
𝑟3
𝑟3

]  = [

𝑓11 𝑓12 𝑓13 𝑓14
𝑓21 𝑓22 𝑓23 𝑓24
𝑓31 𝑓32 𝑓33 𝑓34
𝑓41 𝑓42 𝑓43 𝑓44

] [

𝑅1
𝑅2
𝑅3
𝑅4

] =  [

𝑓11 𝑓12 𝑓13 𝑓14
𝑓21 𝑓22 𝑓23 𝑓24
𝑓31 𝑓32 𝑓33 𝑓34
𝑓41 𝑓42 𝑓43 𝑓44

] [

𝑃(1 − 𝑥𝐺𝐴)
𝑃𝑥𝐺𝐴

𝑄(1 − 𝑥𝐺𝐵)
𝑄𝑥𝐺𝐵

]     
(6)  

where there are now four unknowns, the positions of the applied loads and the bending deflections of each strip. 

Following some algebraic manipulation and elimination of the bending deflections, the global flexural axis positions 

are found from the set of simultaneous equations 

[
𝑃(𝑓11 − 𝑓12 − 𝑓21 + 𝑓22) 𝑄(𝑓13 − 𝑓14 − 𝑓23 + 𝑓24)
𝑃(𝑓31 − 𝑓32 − 𝑓41 + 𝑓42) 𝑄(𝑓33 − 𝑓34 − 𝑓43 + 𝑓44)

] [
𝑥𝐺𝐴
𝑥𝐺𝐵

]  = [
𝑃(𝑓11 − 𝑓12) + 𝑄(𝑓13 − 𝑓23)

𝑃(𝑓31 − 𝑓41) + 𝑄(𝑓33 − 𝑓43)
] (7)  

 

 

which, for the given flexibility matrix, and assuming unit loads P = Q gives  

 
   
𝑥𝐺𝐴

𝑐𝐴
= −0.0050    and       

𝑥𝐺𝐵

𝑐𝐵
=  0.3327 (8)  

It can be seen that these values are significantly different from the local flexural axis values found previously, and that 

the global flexural axis on strip A is now slightly upstream of the leading edge.  

 

 The global flexural axis positions depend upon the ratio between the loads on strips A and B. Figure 4 shows the 

change of position of the global flexural axis position with respect to the ratio of load B / load A and which is load-

ratio dependent; its position on strip A varies a great deal, always being forward of the leading edge for loads ratios > 

1 whereas that of strip B lies around the 35% chord position for all cases. Figure 5 shows the different positions of the 

shear center, local and global flexural axes for unit loading, double in-board load, and double outboard load cases; it 

can be seen that there is a significant difference between the various load cases, particularly between the local flexural 

axis and the global cases.  

    On a real aircraft wing there is usually a pitching moment contribution (CM0 ≠ 0) due to the camber of the wing 

surface.  However, the same methodology as above can be used to determine the various flexural axis positions as the 

aerodynamic loads that are applied to an aircraft lifting surface act normal to the wing surface and these can be resolve 

to lift, drag and pitching moment, which in turn can be resolved to forces acting at the leading and trailing edges.    
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Figure 4. Global flexural axis position for a varying applied load ratio on the 2-strip swept wing 

 

Figure 5. Position of shear center, local and global flexural axes on the 2-strip swept wing 
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B. Flexural Axes of an Aluminum Wing Box  

 

Now consider the representative aft-swept, tapered, symmetric aluminum wing-box FE model shown in Figure 6, 

containing conventional spars, ribs, skins and stringers formed from an outer wing-box (OWB) and half a center wing 

box (CWB) with dimensions described in Table 2. The wing box sweep, span, height and chord are representative of 

the NASA Common Research Model14, although the wing box considered here is straight (constant sweep and taper), 

it has no dihedral or twist, and panels are flat for simplicity. The skins, spars and ribs were modeled with a uniform 

panel thickness of 5mm and uniform section stringers and the CWB is fully constrained at its root. The FE model was 

analyzed using NASTRAN v2012.1 and included 12000 shell elements and 4000 stringer beam elements. 

 

Table 2. Aluminum wing box parameters 

 

CWB Semi-span CWB Chord CWB Height Stringer Pitch OWB Rib pitch 

3.05m 7.04m 1.04m 0.40m 1.36m 

OWB span OWB Tip Chord OWB Tip Height OWB Front Spar Sweep Angle 

26.19m 1.66m 0.16m 35.77deg 

 



American Institute of Aeronautics and Astronautics 
 

 

 

14 

 

 

Figure 6. Aluminum wing box model 

 

1. Flexural Axis Computation 

 

The flexibility matrix for this wingbox was determined by applying unit loads at 11 pairs of leading edge and 

trailing edge positions (on 11 streamwise wing sections). The approaches described in the previous section, adjusted 

to include the larger number of loading pairs, were then used to determine the local and global flexural axes for three 

possible types of different distributed loads: uniform, triangular and elliptical. Although the distributed loads, and 

hence the flexural axis position, would vary at different points in the flight envelope, only computation of a few typical 

distributions is required as the methodology requires only the ratio of the distributed loads to be defined. Such an 

analysis requires much less computation compared to determining the static wing deflection at all points of the flight 

envelope.  Figure 7 compares the results obtained for each case and it can be seen that the local flexural axis is 

positioned at the elastic axis in-board but then moves forward of the leading edge at around the mid span. The three 

continuous loading cases lead to different results for the global flexural axis, and they are all forward of the leading 
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edge at the root, and then move onto the wing planform towards the wing tip. Since the triangular and elliptic load 

distributions tend to zero at the tip of the wing, the corresponding global flexural axes are only plotted over the inboard 

10 streamwise wing sections.  

Note that the kink in the global flexural axes at wing root (section #2 in Figure 7) is a feature of the load transfer 

between the swept OWB and unswept CWB. Due to the change in sweep angle, the rear spar tends to be stiffer and 

more highly loaded than the front spar at the root of the OWB15, such that the OWB effectively twists about a point 

aft of the elastic axis at the root of the OWB. This locally increases the moment arm of a shear load applied towards 

the leading edge of the wing and causes the global flexural axis to move aft at wing section #2. The global flexural 

axis moves forward significantly again at section #1, to compensate for the twist induced by the OWB loads transferred 

mainly through the rear spar; this behavior of the flexural axis position at the root is a characteristic of the imposed 

boundary conditions. 

  

 

Figure 7. Local and global flexural axes and elastic axis for the aluminum wing box 

 

C. Flexural Axes of a Tailored Composite Wing 
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As a further example, we consider the simple unswept and untapered cantilevered plate wing previously used for 

studies into the application of tow-steered, variable stiffness composites16. Two different wing composite laminates 

are considered: a unidirectional (UD) ply laminate (constant fiber angle in each ply) and a variable-angle-tow (VAT) 

ply laminate (continuous fiber angle variations in the outer plies as function of the spanwise location). Both are 8-ply 

symmetric laminates with an inner ply stack of [-45/+45]s and outer ply fiber angles shown in Figure 8. Both laminates 

were optimized such as to minimize the wing root forces due to different applied (1-cosine) discrete gust loads. Since 

the laminates are not balanced, the bending and torsion deformations are coupled.  

 

 

Figure 8. Optimized UD and VAT composite layups for the cantilevered plate wing14 

 

1. Flexural Axis Computation 

  

The flexibility matrix was determined as before by applying unit loads at 16 pairs of leading edge (x=0) and trailing 

edge (x= 76.2mm) positions and the local and global flexural axes determined for three different distributed loads: 

uniform, triangular and elliptical. It can be seen that the global and local flexural axes differ significantly. For the UD 

case, shown in Figure 9, the local flexural axis moves forward of the leading edge beyond the mid-span, whereas, the 

global flexural axes all have the opposite gradient and are placed, on the wing, at spanwise positions close to the 

wingtip. The global flexural axes have similar trends for the different load distributions, with bigger differences at the 

root. It should be noted that all flexural axes are straight lines in this case.  
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Figure 10 shows the same results for the VAT test case, where the local flexural axis is again very different from 

the global flexural axes, the former moving forwards with increasing spanwise position, whereas the three global cases 

all demonstrate the same “s” type shape. All of the distributed load cases show the same extreme forward position of 

the global flexural axis towards the wing root, similar to the axes found for the aft-swept aluminum wing box in the 

previous section. 

 

 

Figure 9. Local and global flexural axes for the optimized UD laminate wing 

 

Figure 10. Local and global flexural axes for the optimized VAT laminate wing 
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2. Analytical Computation of Composite Wing Flexural Axes 

 

For this simple wing, the flexural axes positions can be verified analytically. Classical Laminate Theory17 provides 

analytical relations between the local bending and twisting moments per unit length and mid-plane curvatures for a 

composite laminate. For a chordwise rigid wing (𝑘𝑥=0), with no constraint on the chordwise moment, it can be shown 

that the wing spanwise bending curvature (𝑤′′) and twist rate (𝜃′) are related to the bending moment (M) and torque 

(T) by 

 [
𝑀
𝑇
] = 𝑐 [

𝐷22 2𝐷26
2𝐷26 4𝐷66

] [
𝑤′′

𝜃′
] (9)  

and solving for the twist rate gives 

 

𝜃′ =
𝑇 𝐷

4𝑐
 

with  

𝑇 = 𝑇 −
2𝐷26
𝐷22

𝑀      ;        𝐷 =
1

𝐷66 − 𝐷26
2/𝐷22

 

(10)  

where 𝑇 and 𝐷 are modified torque and reduced stiffness terms, respectively. Note that the reduced torque 𝑇 can be 

larger or smaller than the applied torque 𝑇, depending on the sign of the applied moment and the sign of the stiffness 

coupling term 𝐷26; however, the stiffness D always reduces 

The location of the local flexural axis (or flexural center) xL at a certain spanwise location yp is determined by 

setting the chordwise section twist angle θ(yp) due to a shear load P applied at (yp , xL) to zero (for 𝜃(0) = 0). By 

substituting the bending moment and torsion distributions due to P into equation (10) and then integrating this 

equation, we find 

 

𝜃(𝑦𝑝) = ∫ 𝜃′𝑑𝑦 = 0
𝑦𝑝

0

𝑇 = 𝑃 (𝑥𝐿(𝑦𝑝) −
𝑐

2
)

𝑀 = 𝑃(𝑦𝑝 − 𝑦) }
 
 

 
 

⇒    𝑥𝐿(𝑦𝑝) =

2∫
𝐷 𝐷26
𝐷22

(𝑦𝑝 − 𝑦)𝑑𝑦

𝑦𝑝

0

∫ 𝐷 𝑑𝑦
𝑦𝑝

0

+
𝑐

2
 (11)  

where c is the local streamwise wing section chord-length.  
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Knowing the spanwise distributions of the stiffness parameters 𝐷22, 𝐷26 and 𝐷66, the local flexural axis position 

xL(yp) can then be calculated at any spanwise location yp. The prediction can be improved by including the wing root 

warping constraint6 in equation (10), such that 𝜃′(0) = 0 is satisfied, thus 

 

 𝑥𝐿(𝑦𝑝) =

2∫
𝐷 𝐷26
𝐷22

(𝑦𝑝 − 𝑦) (1 −
cosh (𝜇(𝑦𝑝 − 𝑦))
cosh (𝜇 𝑦𝑝)

) 𝑑𝑦

𝑦𝑝

0

∫ 𝐷 (1 −
cosh (𝜇(𝑦𝑝 − 𝑦))
cosh (𝜇 𝑦𝑝)

) 𝑑𝑦
𝑦𝑝

0

+
𝑐

2
 

(12)  

where 𝜇 is a laminate dependent warping constant. For the wing examples presented here, 𝜇 was calibrated to provide 

a good correlation between the analytical predictions and the flexibility matrix predictions. For a more rigorous 

approach, 𝜇 could be determined as a function of the laminate stiffness properties and plate dimensions18;  however, 

this is beyond the scope of  this current work.  

 The location of the global flexural axis xG(y) can be determined for a specific applied load case by simply setting 

the twist rate to zero in equation (10). For instance, a uniform constant load distribution P(y) = P on the wing of span 

s, this leads to 

 
𝑇 = −𝑃∫ 𝑥𝐺(𝑦) −

𝑐

2
 

𝑦

𝑠

𝑑𝑦

𝑀 = 𝑃 (𝑠 − 𝑦)2 2⁄

} ⇒     𝑥𝐺(𝑦) = 2
𝐷26
𝐷22

(𝑠 − 𝑦) −
𝜕 (𝐷26 𝐷22)⁄

𝜕𝑦
(𝑠 − 𝑦)2 +

𝑐

2
 (13)  

For the UD laminate, since 𝜕 (𝐷26 𝐷22)⁄ 𝜕𝑦⁄ = 0, equation (13) shows that the global flexural axis is a straight line 

from 𝑥 =  2𝑠 (𝐷26 𝐷22)⁄ + 𝑐/2  at the root to 𝑥 =  𝑐/2  at the tip of the wing.  Similar results can be obtained for 

different lift distributions. 

 The flexural axes calculated using the flexibility matrix approach and the analytical expressions are compared in 

Figure 11 and Figure 12. The two predictions correlate relatively well, although some discrepancies are observed, 

which originate mainly in the limited number of mode shapes assumed by the Rayleigh-Ritz method used to calculate 

the plate flexibility matrix. As the number of mode shapes and reference points along the span is increased, the 

numerical results tend towards the analytical predictions.          

 



American Institute of Aeronautics and Astronautics 
 

 

 

20 

  

Figure 11. Comparison of numerical and analytical flexural axis predictions for the UD laminate 

 

Figure 12. Comparison of numerical and analytical flexural axis predictions for the VAT laminate 

IV. Sensitivity Analysis of Flexural Axes Prediction 

 

It is of interest to determine the sensitivities of the flexural axes, calculated in Section III, with respect to errors and 

uncertainty. These are likely to occur in the flexibility matrix computation due to either inaccuracies in the structural 

and aerodynamic computational modeling, or measurement errors when the flexural axes have been determined 

experimentally. The sensitivity in the estimated flexural axes positions is computed using Monte-Carlo simulations. 

 

A. Sensitivity Analysis of Flexural Axes Position for Aluminum Wing- Numerical Results 
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A Monte Carlo sensitivity analysis was performed to determine the effect of variations in the flexibility matrix on 

the flexural axes locations. A uniform random error of up to ±1% was applied to the flexibility matrix terms of a 

million samples (maintaining matrix symmetry) and the probability distributions of the resulting flexural axes 

locations errors extracted for the uniform load, triangular and elliptical load cases. Normal distributions were typically 

for all of the global flexural axis variations whereas there was some skewness in the local flexural axis distributions 

towards the wing tip.  

The error sensitivity of the flexural axes can be then be visualized by plotting the 95% confidence range of the 

flexural axis at each spanwise locations, as shown in Figure 13. These results show that the global flexural axes 

locations are highly sensitive to errors in the flexibility matrix, as small input errors of ±1% can induce variations of 

several span lengths in the predicted streamwise position of the global flexural axis. The variations for the constant 

loading case are much greater than the other two global loading distributions. Conversely, the local flexural axis is 

significantly less sensitive to errors than any of the global flexural axes calculations.  

Similar findings were obtained from the sensitivity analysis of the composite wing box test cases and are therefore 

not shown for reasons of conciseness.   

 
Figure 13.  95% Confidence bounds for local and global flexural axes 
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V. Conclusions 

The definitions of the axis on a general swept, non-uniform, non-homogenous wing about which there is no bending 

/ torsion coupling have been reviewed. A generalization of these definitions is made, with an emphasis on differences 

between whether a local streamwise section or the entire wing is considered. Through the use of a flexibility matrix 

approach, it has been demonstrated that the loading case must be considered in order to be able to accurately determine 

the flexural axis of a typical wing structure and how this can be used to interpret the aeroelastic behavior of the wing. 

The approach was demonstrated using three models: a simple swept wing, an aluminum wing box, and a tow-steered 

composite plate wing showing significant differences between the local and global flexural axes. Finally, the 

sensitivity of the flexural axis was considered and it was shown that a global flexural axis prediction is much more 

sensitive to modeling or measurement errors than that of the local flexural axis.   
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