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Respiratory modulated sympathetic activity: a putative mechanism 1 

for developing vascular resistance? 2 

Mechanism for vascular resistance generation 3 

Linford J.B. Briant, Erin L. O’Callaghan, Alan R. Champneys, Julian F.R. Paton 4 

Key words: Vascular resistance, respiratory-sympathetic coupling, hypertension 5 

Abstract 6 

Sympathetic nerve activity (SNA) exhibits respiratory modulation. This component of SNA is 7 

important - being recruited under cardiorespiratory reflex conditions and elevated in the 8 

spontaneously hypertensive (SH) rat – and yet, the exact influence of this modulation on vascular 9 

tone is not understood, even in normotensive conditions. We constructed a mathematical model of 10 

the sympathetic innervation of an arteriole, and used it to test the hypothesis that respiratory 11 

modulation of SNA preferentially increases vasoconstriction compared to a frequency-matched tonic 12 

pattern. Simulations supported the hypothesis, where respiratory modulated increases in 13 

vasoconstriction were mediated by a noradrenergic mechanism. These predictions were tested in 14 

vivo in adult Wistar rats. Stimulation of the sympathetic chain (L3) with respiratory-modulated 15 

bursting patterns, revealed that bursting increases vascular resistance (VR) more than tonic 16 

stimulation (57.8±3.3% vs 44.8±4.2%; p<0.001; n=8). The onset of the VR response was also quicker 17 

for bursting stimulation (rise time-constant=1.98±0.09s vs 2.35±0.20s; p<0.01). In adult SH rats 18 

(n=8), the VR response to bursting (44.6±3.9%) was not different to tonic (37.4±3.5%; p=0.57). Using 19 

both mathematical modelling and in vivo techniques, we have shown that VR depends critically on 20 

respiratory modulation and revealed that this pattern-dependency in Wistar rats is due to a 21 

noradrenergic mechanism. This respiratory component may therefore contribute to the ontogenesis 22 

of hypertension in the pre-hypertensive SH rat - raising VR and driving vascular remodelling. Why 23 
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adult SH rats do not exhibit a pattern-dependent response is not known, but further modelling 24 

revealed that this may be due to dysfunctional NA reuptake. 25 

Abbreviations: SNA, sympathetic nerve activity; NA, noradrenaline; SMC, vascular smooth muscle 26 

cell; VR, vascular resistance; SH rat, spontaneously hypertensive rat. 27 

Key Points Summary: 28 

• Sympathetic activity exhibits respiratory modulation that is amplified in hypertensive rats 29 

• Respiratory modulated sympathetic activity produces greater changes in vascular resistance 30 

than tonic stimulation of the same stimulus magnitude in normotensive but not 31 

hypertensive rats 32 

• Mathematical modelling demonstrates that respiratory modulated sympathetic activity may 33 

fail to produce greater vascular resistance changes in hypertensive rats because the system 34 

is saturated as a consequence of a dysfunctional noradrenaline reuptake mechanism 35 

• Respiratory modulated sympathetic activity is an efficient mechanism to raise vascular 36 

resistance promptly, corroborating its involvement in the ontogenesis of hypertension 37 
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Introduction 38 

It is well known that sympathetic nerves discharge in bursting patterns, with cardiac, respiratory and 39 

lower-order rhythmicities (Habler et al., 1994; Malpas, 1998; Gilbey, 2001; Janig, 2006; Pilowsky, 40 

2009). A component of the respiratory rhythm has a central origin, and is known to be a major 41 

contributor to sympathetic oscillations (Habler et al., 1994; Malpas, 1998). 42 

The central modulation of sympathetic nerve activity (SNA) by respiration, occurs due to coupling of 43 

pre-sympathetic centres in the medulla oblongata with central pattern generators of respiration 44 

(Haselton & Guyenet, 1989; Malpas, 1998; Mandel & Schreihofer, 2009; Zoccal et al., 2009; Moraes 45 

et al., 2014). This results in SNA being entrained to respiration, with bursts occurring predominantly 46 

in the inspiratory/post-inspiratory phase (Habler et al., 1994; Janig, 2006; Malpas, 2010; Zoccal & 47 

Machado, 2011). As well as contributing to baseline sympathetic output, a recruitment of this 48 

rhythm is important for mediating sympathoexcitatory responses to cardiorespiratory reflex 49 

activation (Guyenet, 2000; Dick et al., 2004; Mandel & Schreihofer, 2009; Moraes et al., 2012; Zoccal 50 

et al., 2014). 51 

The respiratory rhythm of SNA is also a crucial contributor to the sympathetic over-activity seen in 52 

animal models of hypertension (Simms et al., 2010; Zoccal & Machado, 2011). Amplified respiratory-53 

sympathetic coupling has been reported in the pre-hypertensive spontaneously hypertensive (SH) 54 

rat, indicating that an enhancement of this rhythm may be a significant contributor to the 55 

pathogenesis of hypertension (Simms et al., 2009; Briant et al., 2014; Moraes et al., 2014). The 56 

importance of respiratory modulation of SNA has also been highlighted in human hypertension; 57 

altered breathing patterns induce improvements in blood pressure in patients with essential 58 

hypertension (Joseph et al., 2005). Despite the clear importance of this component of SNA, the 59 

precise physiological role of respiratory modulation on vasoconstriction remains uncertain, even in 60 

normotensive conditions. 61 
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Previous studies comparing the vascular responses to sympathetic stimulation evoked by burst-like 62 

and tonic patterns have shown inconsistent results. In vivo studies in cat skeletal muscle (Andersson, 63 

1983) and rabbit hindquarters (Ando et al., 1993) suggest that oscillations in SNA do not enhance 64 

absolute vasoconstriction when compared to tonic stimulations of the same average firing 65 

frequency. Others, however, have reported that ‘irregular’ sympathetic stimulation patterns do 66 

preferentially increase vasoconstriction compared to tonic (regular) stimulation in the rat (Nilsson et 67 

al., 1985; Hardebo, 1992; DiBona & Sawin, 1999), cat (Bloom et al., 1987) and pig (Lacroix et al., 68 

1988). Similar pattern-dependent observations, in the skin resistance responses (Kunimoto et al., 69 

1992) and cardiac noradrenaline spill-over (Lambert et al., 2011) to sympathetic bursting, have been 70 

made in humans. As well as exhibiting contrasting results, no one study focuses exclusively on the 71 

vasoconstrictive effects of sympathetic stimulation applied at respiratory related frequencies, nor 72 

considers changes in the amplitude of this respiratory rhythm of sympathetic activity - as seen in 73 

hypertension (Simms et al., 2010). 74 

Initially, we used mathematical modelling to explore the effect of respiratory modulation on vascular 75 

resistance. We generated a mathematical model of the sympathetic innervation of an artery in a 76 

normotensive (Wistar) rat and the corresponding contractile response. The sympathetic component 77 

of this model was stimulated with tonic and respiratory bursting patterns, and the consequential 78 

changes in arterial radius were calculated. From these results, we hypothesised that respiratory 79 

modulated bursts of sympathetic activity preferentially increase vascular resistance compared to 80 

tonic increases in sympathetic output. We then explored these computational findings by 81 

investigating the influence of respiratory modulated bursting in vivo in adult Wistar and SH rats. We 82 

then used the model to predict which mechanism underlies the dependence of the vascular 83 

response to sympathetic patterning in Wistar and SH rats.  84 
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Methods 85 

Computational Overview 86 

A mathematical model was constructed of an artery with sympathetic innervation (Figure 1). This 87 

was used to make experimental predictions about the dependence of VR on sympathetic stimulation 88 

pattern. The model is based on previously published models (Lemon et al., 2003b, a; Bennett et al., 89 

2005; Briant et al., 2015) and experimental data (Hillarp & Olivecrona, 1946; Iversen, 1967; Luff, 90 

1996). A descriptive overview of the model is given here, as well as the main modelling assumptions 91 

made. Full equations of the model of sympathetic innervation of a single smooth muscle cell (SMC) 92 

can be found in our previous paper (Briant et al., 2015). 93 

Modelling assumptions summary 94 

The following assumptions were extracted from experimental data of the modelled system or 95 

designed to reduce the computational complexity of the model. 96 

1. The modelled arterial segment is 750μm long (axially) and receives innervation from 100 97 

sympathetic varicosities, all with probability of release = 1. The artery model therefore has 98 

innervation from 100 sympathetic neurones, each with one release site.  99 

2. The firing of these neurones, driven by current pulse injection, is synchronous. (These 100 

neurones discharge in unison.) 101 

3. The artery wall can be modelled as a cylindrical shell of SMCs. This is a grid of 3 x 150 SMCs 102 

(see Figure 1B, C). 103 

4. These SMCs are electrically, chemically and mechanically uncoupled. This assumption 104 

reduced the computational complexity of the model and has been shown to be consistent 105 

with experimental data in previous computational studies (Bennett et al., 2005). 106 

5. Released NA can diffuse to activate neighbouring SMCs. 107 

6. NA release is driven by the firing of a model sympathetic neurone (Briant et al., 2014). The 108 

modelled kinetics of the NA release process are depicted in Figure 1A. 109 
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7. Contraction of individual SMCs is governed by a mathematical model of this process 110 

previously described (Briant et al., 2015). 111 

Model equations 112 

The model consisted of a previous published model describing NA release from sympathetic nerve 113 

terminals and how this released NA causes SMC contraction (Briant et al., 2015) in combination with 114 

a model of the SMC layer of an artery wall. 115 

Model simulations begin with stimulation of sympathetic postganglionic neurones with tonic and 116 

(respiratory) bursting patterns of current pulses. These neurones innervate a cylindrical layer of 117 

SMCs (representing the contractile part of an artery wall; Figure 1B); the action potentials generated 118 

propagate down the axons, triggering release of NA onto the artery wall at various ‘release sites’ 119 

(varicosities), as described in Briant et al. (2015). This released NA diffuses across the artery wall (see 120 

below), and causes vasoconstriction of the artery (Figure 1D). 121 

Artery model morphology 122 

The structure of sympathetic innervation of arteries documented in rats (Luff, 1996) was used to 123 

constrain the model. The artery segment modelled is innervated by a ‘terminating bundle’ of 124 

postganglionic axons (Figure 1B). The number of SMCs, or the region of a vessel, innervated by an 125 

individual axon from this bundle is unknown (Luff, 1996). It is known that terminating bundles of the 126 

main ventral artery of the rat tail spans a few mm of the vessel perivascularly (Sittiracha et al., 1987; 127 

Luff, 1996). For this reason, and for computational efficiency, the morphology of the model was 128 

defined as a 750μm axial segment of artery. Given that SMCs have a width of 5μm and are arranged 129 

circumferentially around the artery (Krizmanich & Lee, 1993), the modelled segment comprised 150 130 

(750/5) SMCs axially. In canine, SMCs in situ have a length of <200μm (Wadsworth et al., 1988) and 131 

resistance vessels in humans have a typical luminal radius of 100μm (Intengan et al., 1999). 132 

Therefore the modelled artery consists of 3 SMCs circumferentially (giving a radius of 95μm). The 133 

arterial wall is considered to be represented by a single cylindrical shell of SMCs, representing the 134 
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first layer of SMCs at the medial-adventitial border receiving innervation (Luff, 1996). The modelled 135 

artery is thus an array of 150 x 3 SMCs in cylindrical co-ordinates (Figure 1C). 136 

NA release, diffusion and SMC contraction 137 

NA is released onto the SMC array at distinct sites (varicosities; Figure 1C). Each sympathetic axon in 138 

the terminating bundle has ~26000 varicosities along its terminating length (Dahlstrom & Haggendal, 139 

1966). The probability of release from an individual site following stimulation is known to be less 140 

than 0.01 (Astrand & Stjarne, 1989); each propagating action potential therefore causes release at 141 

<260 sites. Thus, to make the model computationally manageable, the artery segment is considered 142 

to have 100 varicosities, each with a probability of release of 1. Terminating axons are known to 143 

undergo extensive branching which exhibits little structure (Burnstock & Costa, 1975; Luff, 1996). 144 

Release sites were therefore randomly placed on the arterial segment using a pseudo-random 145 

number generator in MATLAB to assign varicosity location. 146 

Diffusion of the released NA (from the 100 different release sites) across the artery wall was 147 

modelled with the diffusion equation in cylindrical co-ordinates (ݎ, ,ݖ  in a similar fashion to 148 ,(ߠ

Bennett et al. (2005). However, the radius of the model was considered to be constant ݎ = ݎ̅  as the artery is modelled as a thin cylindrical shell of SMCs. The concentration of 150 ݉ߤ95 149=

noradrenaline, [NA], depends on the location(s) at which NA is released. Upon release onto the 151 

arterial surface, its diffusion is governed by the 2D-heat equation in cylindrical coordinates: 152 ߲[ܰܣ]߲ݐ = ܦ ቆ1̅ݎ ߲ଶ[ܰܣ]߲ߠଶ + ߲ଶ[ܰܣ]߲ݖଶ ቇ + ܳ 

 153 
The NA diffusion constant is taken to be the same as that of dopamine, ܦ = 6.9 × 10ି଺ܿ݉ଶିݏଵ 154 

(Nicholson, 1995; Bennett et al., 2005). Q is a source term describing the release of NA from 155 

stimulated varicosities, and is a function of space and time. This term is the output from the model 156 

of the exocytosis of vesicles containing NA previously described (Briant et al., 2015). During 157 

diffusion ̅ݎ =  is kept constant, even when the model radius decreases due to SMC 158 ݉ߤ95

contraction. 159 
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The numerical solution of this equation was found using an explicit finite difference scheme. The NA 160 

concentration at time ݐ = (݊ + ,ݐ∆(1 ߠ = ,ߠ∆݅ ݖ =  is given by 161 ݖ∆݆

௜,௝௡ାଵ[ܣܰ] = ௜,௝௡[ܣܰ] + ௜,௝ାଵ௡[ܣܰ]ఏ൫ݏ − ௜,௝௡[ܣܰ]2 + ௜,௝ିଵ௡[ܣܰ] ൯ + ௜ାଵ,௝௡[ܣܰ]௭൫ݏ − ௜,௝௡[ܣܰ]2 + ௜ିଵ,௝௡[ܣܰ] ൯+ ܳ௜,௝௡  ݐ∆

where (݅, ݆) iterates over the spatial grid in cylindrical coordinates (ݖ, ఏݏ ,iterates over time ݊ ,(ߠ =162 

஽∆௧∆ఏమ and ݏ௭ = ஽∆௧∆௭మ. The spatial domain is ߠ ∈ ݖ and [ߨ0,2] ∈ [0,0.75]݉݉. The vessel boundaries at 163 ݖ = 0 and ݖ = 0.75݉݉ have 0 boundary conditions. The initial [NA] profile is 0. 164 

NA released from sympathetic terminals, diffuses across the artery wall and binds to α1-165 

adrenoreceptors on the SMCs, causing them to generate a contractile force, as defined for a single 166 

SMC in Briant et al. (2015). 167 

Contractile forces, lengths and resistance 168 

We related the contractile force generated by each of the SMCs comprising the artery wall to a 169 

change in arterial radius, by assuming a linear relationship between SMC force and SMC length as 170 

follows. The contractile force produced by each modelled SMC is at a maximum 1.6μN, according to 171 

experimental recordings (Yagi et al., 1988). Phenylephrine stimulation of aortic smooth muscle cells 172 

yields a maximum of a 30% change in cell length (Julien et al., 2001). The contractile force and length 173 

of the cell were therefore assumed to be linearly related, so that at 0μN the length of the cell is 174 

200μm and at 1.6μN the length is 140μm (70% of 200μm). 175 

As the SMCs in the model are arranged and are assumed to contract circumferentially, the change in 176 

length of each SMC can be summed around each of the 150 circumferential rings, and a change in 177 

circumference obtained (Figure 1D). This is represented as a radius (r), noting that the basal radius of 178 

the model is ̅ݎ =  Averaging this radius over each of the 150 rings of SMCs, gives a 179 .݉ߤ95

representation of the change in radius of the artery at each time-step. To measure contraction of the 180 

model at each time-point, a proxy for vascular resistance, ܸܴ~ 1 ସൗݎ  was used. This measure is 181 

proportional to the vascular resistance, according to the Hagen-Poiseuille law. 182 
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Model simulation 183 

The grid spacing used was ∆ݖ = ߠ∆ and ݉ߤ5 = 6° (corresponding to a circumferential step 184 

of 10݉ߤ) and the time-step used was ∆ݐ =  Simulations of the model were performed on a 185 .ݏ1݉

two dual-core Opteron 8GB RAM node, using the computational facilities of the Advanced 186 

Computing Research Centre, University of Bristol, UK (http://www.bris.ac.uk/acrc/). Simulations of 187 

the artery wall model for 100s with sympathetic stimulation took ~30mins. Code for the model has 188 

been posited on MathWorks FileExchange 189 

(http://www.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A196854). 190 

In Vivo Experimental Methods 191 

All experiments conformed to the UK Home Office guidelines regarding the ethical use of animals 192 

and were approved by the University of Bristol Ethical Review Committee. Male Wistar rats (n=8, 13-193 

15 week, 250-350g) and SH rats (Okamoto and Aoki (1963); n=8, 13-15 week, 250-350g) were used 194 

for the main protocol, and additional Wistar rats (n=2, 13-15 week, 250-350g) were used for a 195 

pharmacological protocol. Animals were deeply anaesthetised with halothane, until loss of 196 

withdrawal to paw pinch. Urethane and α-chloralose were then administered i.p. (1.2g/kg and 197 

60mg/kg, respectively; Sigma-Aldrich, USA). Core temperature was monitored and maintained at 36-198 

38°C with a homoeothermic heat pad (Harvard Apparatus, UK). The left jugular vein was cannulated 199 

with a catheter for rehydration with standard lactated Ringer’s solution throughout the experiment 200 

(0.1-0.2mL every 20-30min). Animals were then prepared for cardiovascular measurements (Figure 2) 201 

described below. Rats were euthanized with an i.v bolus of urethane (1.5-2.0g/kg) at the end of the 202 

experiment. 203 

Cardiovascular recordings 204 

The carotid artery was cannulated with a catheter (PE-50 tubing; 100I.U/ml heparin in 0.9% saline) 205 

and connected to a pressure transducer for continuous recording of arterial blood pressure (BP). 206 

Heart rate (HR) was derived from the pulsatile BP waveform online. Mean blood flow (BF) from the 207 
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left femoral artery was measured using a Transonic 1.0PSB Precision Flowprobe (Transonic USA, 208 

Ithaca, NY). The artery was dissected free of the femoral vein using glass hooks to minimise nerve 209 

damage, and the flow probe positioned rostral to the profunda femoris artery, which was tied off to 210 

increase femoral artery blood flow. The leg was wrapped in insulating material to keep it warm and 211 

encourage blood flow. Coupling gel (Aquasonic, Parker Labs, Fairfield, NJ) was placed between the 212 

artery and the flow probe to ensure good ultrasound coupling. All wounds were closed to prevent 213 

dehydration and insulated to minimise heat loss and prevent cutaneous vasoconstriction. The 214 

cardiovascular recordings reached stable values ~10mins after preliminary surgical procedures. 215 

All BP and BF data was recorded using a data acquisition hardware (Micro1401-3, Cambridge 216 

Electronic Design (CED), Cambridge, UK) and Spike2 software (CED, Cambridge, UK) and sampled at 217 

1kHz. Vascular resistance (VR) was calculated as BP/BF online, and was smoothed (τ=0.05s). 218 

Sympathetic stimulation 219 

The rat was placed in a supine position and a lateral incision (~4cm) was made ~0.8cm posterior to 220 

the xiphoid process. The abdominal muscle layer was opened and the superior epigastric arteries 221 

cauterised. Using cotton swab sticks and gauze, a window to the left lumbar region was created by 222 

gently reflecting the liver anteriorly (against the diaphragm), the stomach and spleen right-laterally 223 

and the small intestine posteriorly. The lumbar sympathetic chain (L) was located by following the 224 

left renal vein to its apposition to the abdominal aorta and identifying the L4 sympathetic ganglia 225 

under the abdominal aorta. After dissecting the lumbar sympathetic chain away from surrounding 226 

tissue, the chain was transected at L2 and the peripheral end (between L2 and L3) placed inside a 227 

silicon cuff with bipolar platinum-iridium electrode contacts. The cuff electrode was secured in place 228 

by suturing to the psoas major muscle (Ethibond polyester suture 6-0, Ethicon, USA).  A 1:1 mixture 229 

of petroleum jelly (Vaseline®, UK) and polyethylene glycol (PEG-200, Alfa Aesar, UK) was applied to 230 

the exposed nerve for protection and electrical isolation. 231 
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To stimulate the nerves, the cuff electrode were connected to an isolated voltage stimulator (DS2, 232 

Digitimer, UK) which was triggered externally via the acquisition hardware. The output was 233 

manipulated using a custom-designed software script (Spike2, CED, UK) allowing stimulation with 234 

different patterns (bursts and tonic) and frequencies. 235 

Stimulation protocol 236 

Stimulation amplitude was fixed as the voltage at which a half-maximal change in blood flow was 237 

produced in response to a 15s train of high-frequency (40Hz) tonic pulses (2ms pulse width).  The 238 

range of stimulus voltages was 0.5-2.5V and this ensured the stimulation amplitude was both sub-239 

maximal and supra-minimal (Figure 2C). The voltage ranges we used were similar to those applied 240 

with comparable cuff electrodes to sympathetic nerves described previously (Stauss & Kregel, 1996; 241 

Rathner & McAllen, 1998). 242 

The sympathetic nerve was then stimulated with different patterns; tonic and bursting (Figure 2B). 243 

Two bursting patterns were considered in this study, motivated by resting respiratory modulation of 244 

sympathetic nerve activity to match a slow and fast respiratory rate (60-120 breaths per minute) 245 

observed in vivo (Habler et al., 1994; Malpas, 1998). The burst duration was fixed at 250ms - 246 

approximately the duration of a respiratory modulated waveform of sympathetic activity recorded in 247 

situ (Paton, 1996; Simms et al., 2009), and used previously in vivo (Stauss & Kregel, 1996). 248 

These two bursting patterns consist of bursts of voltage pulses occurring every 1s (1Hz bursting) and 249 

0.5s (2Hz bursting) matching the aforementioned respiratory rates. The number of pulses in each 250 

burst was altered, allowing control of the average firing frequency of the stimulation (see below). To 251 

determine the dependency of vascular resistance on stimulation patterning (bursting vs tonic), the 252 

aforementioned tonic and two ‘respiratory’ bursting patterns were applied to the sympathetic chain, 253 

controlling for the average firing frequency across the patterns. The sympathetic chain was 254 

stimulated with average firing frequencies of 2Hz, 4Hz, 8Hz and 10Hz, for both tonic and the two 255 
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bursting patterns. For each pattern, the number of pulses per burst was adjusted to achieve the 256 

desired average firing frequency (4Hz average firing frequency example in Figure 2B). 257 

Pharmacological assessment of the transmitters mediating the VR response 258 

Pharmacological experiments were conducted on a separate cohort of Wistar rats (n=2) to assess the 259 

contribution of α1-adrenorecptors in mediating the changes in vascular resistance using prazosin 260 

(1mg/kg i.v.). Arginine vasopressin (AVP; 5µM) was infused at 10-100µl/min pump (syringe pump 261 

NE-1000, New Era Pump Systems) to restore blood pressure to control levels in the presence of 262 

prazosin. Bolus i.v. administration of phenylephrine (PE; 30-50µg/kg) was used to test the efficacy of 263 

the α1-adrenoreceptor blockade. 264 

Statistical tests and data analysis 265 

Data were expressed as mean ± standard error (SEM). n = refers to the number of animals. Statistical 266 

significance, defined as p<0.05, was assessed using Student’s two-tailed t test, ANOVA with 267 

Bonferroni post hoc tests, Kruskal–Wallis non-parametric test with Dunn’s multiple comparison test 268 

or repeated measures ANOVA (Prism 5, GraphPad Software, San Diego, USA). Time-series data were 269 

exported to MATLAB 6.1 (The MathWorks Inc., Natick, MA, 2000) for further analysis. 270 
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Results 271 

Respiratory modulated bursting increases vascular resistance in a mathematical model of an 272 

artery 273 

The model was driven with tonic and respiratory modulated bursting and the arterial radius and VR 274 

responses calculated (Figure 3). In response to tonic stimulation at an average firing frequency of 275 

8Hz (Figure 3A1), the spatial NA concentration increased (Figure 3A2), and consequently the arterial 276 

radius decreased (Figure 3C). As the average firing frequency of the tonic stimulation increased, the 277 

arterial radius (r) decreased further in a sigmoidal fashion (Figure 3C); EC50 of 8.1Hz. Sympathetic 278 

neurones were stimulated with bursts (1s inter-burst interval, 250ms burst duration; Figure 3B1) – 279 

mimicking respiratory modulated bursting in situ (Simms et al., 2009; Briant et al., 2014; Moraes et 280 

al., 2014; Stalbovskiy et al., 2014). It was found that such stimulation increased the spatial NA 281 

concentration markedly in comparison to tonic patterning (Figure 3B2). As the average firing 282 

frequency of the bursting stimulation increased, the decrease in radius (r) was greater than that 283 

observed using frequency-matched tonic stimulation (EC50=6.2Hz; Figure 3C). Conversely, 1/r4 - a 284 

proxy for VR - increased with increasing average firing frequency (Figure 3D). In summary, and 285 

consistent with our hypothesis, bursting patterns with respiratory rhythms preferentially increased 286 

VR compared to tonic patterns in the mathematical model. 287 

Vascular resistance response depends on sympathetic patterning in vivo 288 

These computational findings were then tested in vivo. Following L2 transection, MAP 289 

(66.3±3.2mmHg) and VR (67.9±14.8mmHg·min/ml) in Wistar rats (n=8) was not significantly different 290 

from MAP (73.7±4.1mmHg; p=0.22) and VR (95.5±15.8mmHg·min/ml; p=0.09) in SH rats (n=8). The 291 

sympathetic chain was stimulated in Wistar rats with tonic and two bursting patterns (1Hz and 2Hz 292 

inter-burst frequencies) at the same average firing frequency (representative example shown in 293 

Figure 4). Stimulation increased BP and decreased BF (Figure 4A), indicating that VR had increased 294 

(Figure 4C). At 8Hz stimulation, bursting patterns produced a greater increase in VR compared to 295 
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tonic stimulation (Figure 4C). Steady-state VR was also higher in response to bursting stimulation 296 

than tonic. Note that HR did not change during stimulation (Figure 4B), confirming that the change in 297 

VR was most likely due to vasoconstriction and not an alteration in cardiac output. 298 

 299 

Vascular responses to tonic and bursting stimuli were compared systematically over a range of 300 

frequencies in 8 Wistar rats (Figure 5). VR in response to stimulation was represented as a % of the 301 

maximum response. The rise-time (Figure 5B), steady-state (Figure 5C) and maximum (Figure 5D) VR 302 

response to tonic and bursting (at 1Hz or 2Hz) were measured. At low average firing frequencies 303 

(2Hz, 4Hz), the maximal VR response was not dependent on pattern, as revealed by a two-way 304 

repeated measures ANOVA (Figure 5D). However, at 8Hz and 10Hz stimulation, the maximal VR 305 

response was greater for bursting patterns. For example, for an average firing frequency of 8Hz, 306 

bursting at 1Hz produced a VR response that was 57.8±3.3% of maximum, compared to 44.8±4.2% 307 

for tonic patterning (p<0.001). The ANOVA revealed that stimulation pattern was a significant source 308 

of variation (p<0.001). Bursting therefore produces a greater maximum VR response than tonic 309 

stimulation. Similarly, the steady-state response of VR was also dependent on stimulation patterning 310 

(Figure 5C), as revealed by a two-way repeated measures ANOVA, with bursting patterns producing 311 

a greater steady-state VR than tonic patterns at 8 and 10Hz. Thus, in Wistar rats, burst stimulation 312 

with a respiratory rhythm produced a greater VR response than tonic patterns. A single exponential 313 

was fit to the rise-profile of the VR response to 10Hz stimulation (n=8, Figure 5B). The measured 314 

time-constant of this rise in response to tonic stimulation (2.35±0.20s) was significantly greater than 315 

that of 1Hz (2.06±0.10s; p<0.05) and 2Hz (1.98±0.09s; p<0.01) bursting. Bursting patterns therefore 316 

also produced a faster rise time in the VR response than tonic patterns in adult Wistar rats. 317 

We also conducted a separate stimulation protocol in 6 Wistars that controlled for intra-burst firing 318 

frequency (Figure 5E). Tonic and bursting (1Hz and 2Hz) patterns of 80 stimulus pulses were 319 

delivered, whilst fixing intra-burst firing frequency at 8, 16 or 32Hz. At 32Hz intra-burst frequency, 320 
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1Hz bursting (69.9±6.6%, p<0.001) and 2Hz bursting (66.0±6.4%, p=0.002) evoked a greater maximal 321 

VR response than tonic patterning (46.8±7.6%), as revealed by two-way repeated measures ANOVA. 322 

Enhanced vascular resistance response to respiratory bursting is mediated by a noradrenergic 323 

mechanism 324 

Addition of prazosin, an α1-adrenergic receptor antagonist, completely blocked the increases in 325 

vascular resistance produced by tonic and bursting patterns of nerve stimulation and by exogenous 326 

phenylephrine (Figure 6).  We applied all 3 stimulus patterns (10Hz average firing frequency, n=2) to 327 

the sympathetic nerve before prazosin administration (Figure 6A1). In the presence of prazosin, no 328 

response to 10Hz average firing frequency nerve stimulation was observed for any of the patterns 329 

(Figure 6A2). The efficacy of the α1-adrenoreceptor blockade was confirmed by the absence of a 330 

response to i.v. PE infusion (Figure 6B). These data indicate that the increased VR response to 331 

bursting in the adult Wistar (Figures 4, 5) is due to an NA-mediated mechanism. 332 

Dependency on sympathetic stimulation pattern is lost in the SH rat in vivo 333 

In SH rats (n=8), the steady-state response to stimulation was dependent on the average firing 334 

frequency of stimulation (p<0.01), as observed in Wistar rats (see above) and revealed by a two-way 335 

repeated measures ANOVA (Figure 7). Stimulation pattern, however, was no longer a significant 336 

source of variation (p=0.21). At 8Hz stimulation, tonic stimulation produced similar VR responses to 337 

bursting at 1Hz and 2Hz (25.5±3.0% vs. 29.8±3.2% [p=0.13] and 24.0±3.2% [p=0.78], respectively). 338 

Similarly, the maximum VR response to each stimulation pattern was not different: for example, the 339 

maximum VR response to 8Hz tonic stimulation (37.4±3.5%) was not different to that produced by 340 

1Hz (44.6±3.9%; p=0.57) or 2Hz (35.9±2.9%; p=0.30) burst patterns. Thus, peak and steady-state VR 341 

responses do not depend on stimulation pattern (tonic or respiratory bursting) in the adult SH rat. 342 

Finally, the rise-profile of the VR response to 8Hz stimulation in SH rats was fit with a single 343 

exponential, and the time-constant of rise to tonic (2.28±0.24s) versus 1Hz (2.24±0.21s) and 2Hz 344 

(2.14±0.19s) burst patterning was not different (p=0.67; Figure 7B). Thus, the rate of VR response 345 
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does not depend on stimulation pattern in the adult SH rat. Therefore, adult SH rats exhibited a loss 346 

of the pattern-dependent response to sympathetic stimulation. 347 

Role of NA uptake in pattern dependent response of vasculature to sympathetic stimulation 348 

We used the model to investigate which mechanism may explain the pattern dependency in the 349 

Wistar rat (Figure 8). We focused on alterations in the reuptake of NA, as this has been implicated in 350 

pattern-dependent contractile responses in the rat tail artery in vitro (Gonon et al., 1993; Stjarne et 351 

al., 1994; Stjarne & Stjarne, 1995). To test this hypothesis, the rate of reuptake of NA was reduced 3-352 

fold from its original value (of kh=0.003ms-1; see Briant et al. (2015)), and the model was again driven 353 

with tonic and bursting patterns (Figure 8A). As a consequence of this parameter alteration, the 354 

model artery was found to lose its pattern dependency, with both tonic and bursting patterns now 355 

producing similar changes in arterial radius (Figure 8A), a situation analogous to the SH rats (Figure 356 

7). These data suggest that NA reuptake mechanisms may cause the pattern dependent response 357 

seen in Wistar rats. 358 

Our computational data (Figure 8A) also suggested that the loss of pattern-dependency in the SH rat 359 

may be due to a reduction in the rate of NA reuptake. Diminished NA reuptake mechanisms have 360 

been reported in human hypertension (Rumantir et al., 2000; Schlaich et al., 2004) and in the SH rat 361 

(Cabassi et al., 2001; Shanks et al., 2013); we therefore tested whether NA reuptake may explain the 362 

loss of pattern dependency in the SH rat in vivo. When the decay profile of the VR response 363 

(following the offset of the stimulus) was analysed in the experimental data (0.48±0.02s-1 for Wistar; 364 

n=8), the decay time-constant was seen to be significantly reduced in the SH rat (0.39±0.03s-1; n=8; 365 

p=0.016; Figure 8B, C). These experimental data suggest that SH rats exhibit prolonged 366 

vasoconstriction following sympathetic input, which may be evidence of reduced NA reuptake 367 

mechanisms in the anaesthetised adult SH rat in vivo. 368 
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Amplified respiratory modulation in the Wistar rat 369 

Finally, we stimulated the sympathetic chain with tonic and bursting patterns in 8 Wistar rats at 4Hz 370 

and 8Hz average firing frequencies (Figure 9). For each pattern, the difference in the maximum VR 371 

response at 8Hz and 4Hz was calculated (Figure 9C). This gain in the peak VR response due to tonic 372 

patterning (10.9±3.1%) was smaller than the gain by 1Hz bursting (26.3±4.1%, p=0.01) and 2Hz 373 

bursting (20.1±3.6, p=0.02).  374 
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Discussion 375 

In this investigation we have used mathematical modelling and in vivo techniques to quantify the 376 

influence of respiratory modulation of sympathetic activity on vascular resistance. The modelling 377 

indicated that respiratory modulated bursting of SNA should increase VR more than tonic 378 

stimulation at the same average firing rate. Subsequent in vivo experiments confirmed that 379 

respiratory modulated bursting preferentially increases the rate of rise and absolute value of VR in 380 

Wistar but not SH rats. In Wistar rats, respiratory modulation of sympathetic activity is therefore a 381 

crucial determinant of vascular tone; its recruitment more quickly and reliably increases VR 382 

compared to tonic increases in sympathetic output. The modelling data suggested that this pattern 383 

dependence was due to a NA mechanism and this was supported by pharmacological data in vivo. 384 

Model of sympathetic innervation of artery 385 

We note that this is the first such model of the contractile response of an artery following 386 

sympathetic stimulation. Importantly, the model output mimicked experimental data 387 

phenomologically and was useful for guiding data collection, testing hypotheses and asking new 388 

questions.  Our model does, however, come with limitations; we have not modelled numerous 389 

processes that are involved in neuro-muscular signalling at arteries, including co-transmitters and 390 

pre-synaptic receptors. Nevertheless, our model accurately captures the responses we observed in 391 

vivo, and so provides a good explanation of the origins of the contractile response of artery to 392 

sympathetic stimulation.  393 

Importance of respiratory modulation of sympathetic activity 394 

Our results highlight the importance of respiratory modulated bursting of sympathetic activity as a 395 

reliable and robust method of neuro-vascular communication. We have demonstrated that 396 

respiratory modulated bursts of SNA are important for autonomic function as they produce robust 397 

changes in VR, with a quicker response time than seen with tonic stimulation. This may explain why 398 

respiratory modulation of sympathetic activity is both recruited and augmented to mediate 399 
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cardiorespiratory response to reflex challenges (Guyenet, 2000; Dick et al., 2004; Mandel & 400 

Schreihofer, 2009; Moraes et al., 2012; Zoccal et al., 2014) as during these defensive reflexes it will 401 

be important to elevate vascular tone reliably and quickly. 402 

Can we expect to see our result of an amplified vascular response to bursting physiologically, given 403 

that it occurs at average firing frequencies of 8Hz? Gain at the pre-to-postganglionic node in the 404 

vasoconstrictor pathway is known to occur, especially during bursts of activity (Birks et al., 1981; 405 

Birks & Isacoff, 1988). Sympathetic preganglionic neurones in the un-anaesthetised (in situ) Wistar-406 

Kyoto rat fire at 2.5Hz with an SD of 1.6Hz (Briant et al., 2014; Stalbovskiy et al., 2014). Pre-to-407 

postganglionic gain is known to be approximately 2.5 (Bratton et al., 2010; Springer et al., 2015), 408 

therefore we may expect firing frequencies in sympathetic postganglionic neurones in the Wistar 409 

rats of 7.5Hz (3 x 2.5; 3Hz being in 0.5SD). Indeed, frequencies of ~6Hz have been reported in 410 

anaesthetised rat sympathetic ganglia in vivo (McLachlan et al., 1998; Bratton et al., 2010). 411 

Furthermore, we note that in conditions of sympatho-excitation, average firing frequencies of 412 

individual sympathetic preganglionic neurones can be markedly increased to beyond 8Hz 413 

(Stalbovskiy et al., 2014). Therefore, inputs to sympathetic postganglionic neurones of 8Hz are seen 414 

physiologically under conditions of sympathetic recruitment. The fact that these firing rates are seen 415 

during chemoreflex activation is pertinent, given that sympathetic-overactivity and amplified 416 

respiratory modulation in hypertension has been attributed to changes to chemoreflex sensing in SH 417 

rats (Zoccal & Machado, 2011). Moreover, in the pre-hypertensive SH rat, where average 418 

preganglionic firing frequencies under resting conditions of 3.5Hz have been reported (Briant et al., 419 

2014), after accounting for gain we may expect postganglionic firing rates of 8Hz (3.5 x 2.5). 420 

Therefore, these results at 8Hz can be expected to occur in the Wistar and SH rats under 421 

physiological conditions. 422 

Noradrenergic mechanism underlying the pattern-dependent vascular response 423 

Both the experimental and modelling data presented indicate that the pattern-dependency of the 424 

vasculature to sympathetic stimulation is mediated by a NA mechanism. Such a mechanism could 425 
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involve; increased exocytosis of large NA vesicles, increased release of NA co-transmitters or 426 

saturation of NA reuptake. 427 

Exocytosis of vesicles containing NA would be expected to be more reliable in response to bursts of 428 

sympathetic activity, due to the increase in release probability associated with repetitive firing 429 

(Lisman, 1997). Moreover, bursts arriving at the sympathetic terminal may increase the release 430 

probability of larger vesicles, which would be expected to have a greater effect on SMC contractility. 431 

Evidence for this comes from amperometric measurements of synaptic events in A1 and A2 432 

noradrenergic neurones (Chiti & Teschemacher, 2007). Large NA release events comprised a small 433 

proportion of the total amperometric events (2%), but represented a significant proportion of the 434 

total charge (>25%). These large quantal events were reported to release up to 45-fold more 435 

molecules of NA than the smaller events. Peripheral noradrenergic (sympathetic) nerve terminals 436 

also contain large, NA-packed vesicles (Iversen, 1967; Luff, 1996). Respiratory modulated bursts 437 

incoming to the sympathetic terminal may trigger exocytosis of these “large dense-cored vesicles” 438 

(LDCV), greatly increasing the end-plate concentration of NA and therefore the contractile response 439 

of the vascular bed. Higher frequency stimulation has indeed been shown to increase the release 440 

probability of LDCV from sympathetic terminals (Stjarne, 1989; Cifuentes et al., 2008). Increased 441 

release probability of LDCV may therefore describes a mode for more effective and efficient 442 

increases in vascular resistance in response to respiratory bursting. 443 

Sympathetic nerve terminals are known to co-release neuropeptide-Y (NPY) and adenosine-444 

triphosphate (ATP) (Huidobro-Toro & Donoso, 2004; Burnstock, 2009; Wier et al., 2009). It is known 445 

that early during a train of postganglionic action potentials, SMCs are activated by ATP (Wier et al., 446 

2009). In the rat tail artery, ATP is quickly eliminated from the receptor area in 50-100ms (Bao et al., 447 

1993), and therefore has a short-lived influence on contractility. Given our stimulations lasted 15s, it 448 

is therefore unlikely that ATP contributes to the pattern dependent effect that we have reported in 449 

Wistar rats. We note that LDCV also co-store NPY (Klein & Lagercrantz, 1981; Lundberg et al., 1989; 450 
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DePotter et al., 1997; Brock et al., 2000). Therefore, respiratory modulated bursts may evoke LDCV 451 

exocytosis, increasing the end-plate concentrations of both NPY and NA; it may be an interaction 452 

between these co-transmitters that determines the pattern-dependent response. However, the 453 

modulatory influence of NPY on NA-mediated SMC contraction is not completely understood (Wier 454 

et al., 2009). Importantly, during prolonged stimuli – for example, our 15s stimulation protocol - 455 

vasoconstriction is due to NA release (Wier et al., 2009). In line with this, we observed a complete 456 

abolition of the vascular response to stimulation following administration of a α1-adrenoreceptor 457 

antagonist (prazosin). Taken together, these data suggest that the vascular response (and its 458 

pattern-dependence) is due to some NA mechanism. 459 

While sympathetic bursting may increase NA release, another factor to increase end-plate NA 460 

concentration is the rate of reuptake or down regulation of reuptake mechanisms. Reuptake of NA is 461 

thought to ‘saturate’ during long (Gonon et al., 1993) and high-frequency (Stjarne et al., 1994) trains 462 

of sympathetic stimulation (Stjarne & Stjarne, 1995). It may be expected that NA reuptake becomes 463 

saturated during a burst of sympathetic activity - such as a respiratory modulated burst (see Figure 464 

10A). With increased NA concentration in the neuro-muscular junction the contractile response of 465 

the artery wall would be maintained until de-sensitisation of the α1-adrenoreceptors occurred. 466 

When the rate of NA reuptake in the model was reduced, the exaggerated vasoconstriction 467 

observed in Wistar rats was no longer dependent on the stimulation pattern. These simulation data 468 

are consistent with a saturation of NA reuptake occurring during a burst; saturation of NA reuptake 469 

may therefore explain the enhanced VR response to respiratory modulated bursting seen (in Wistar) 470 

in vivo. 471 

Respiratory modulation of sympathetic activity in the spontaneously hypertensive rat 472 

Whole nerve recordings of SNA in the SH rat have demonstrated in situ that the sympathetic-473 

respiratory coupling is amplified, and that this occurs before the onset of hypertension (Simms et al., 474 

2009). Whole-cell patch-clamping studies in situ have revealed that components of this amplified 475 
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respiratory coupling may originate from both central (Moraes et al., 2014) and peripheral (Briant et 476 

al., 2014) changes in neuronal excitability. The amplitude of respiratory modulated bursts of 477 

sympathetic preganglionic neurones are doubled in the pre-hypertensive rat (Briant et al., 2014). 478 

Our results of in vivo stimulation in the Wistar rat, indicate that such a doubling in respiratory 479 

modulated bursting greatly increases VR (Figure 9). We propose that such a mechanism is involved in 480 

the development of hypertension and that this occurs at the pre-hypertensive stage 481 

(neonatal/juvenile) in the SH rat (see Figure 10B). Importantly, respiratory sympathetic coupling is 482 

already exaggerated early in neonatal life in SH rats (Simms et al. 2009). 483 

In hypertension, resistance arteries undergo eutrophic and/or hypertrophic remodelling (Intengan & 484 

Schiffrin, 2001), with adult SH rats exhibiting predominantly inward eutrophic remodelling (Mulvany 485 

et al., 1996). Our results in the adult SH rat differ from that of adult Wistar rats, in that respiratory 486 

modulated bursting does not produce an enhanced VR response compared to tonic patterning of the 487 

same average firing frequency (Figure 10C). These results do not undermine the importance of 488 

respiratory modulation of SNA, as hypertension is already established at this age, but do warrant an 489 

explanation. One explanation for these data is that the vascular remodelling present at this age in 490 

the SH rat may increase the responsiveness of the vasculature to sympathetic drive (Mulvany, 1983; 491 

Walsh, 1983; Mulvany, 1984; Nyborg & Bevan, 1988), causing the vasculature to lose its ability to 492 

respond further to sympathetic respiratory patterning perhaps due to saturation of vasoconstrictor 493 

machinery. 494 

NA reuptake has been reported to be dysfunctional in human hypertension (Rumantir et al., 2000; 495 

Schlaich et al., 2004), with a downregulation of the reuptake protein seen in the SH rat (Rho et al., 496 

1981; Cabassi et al., 2001; Shanks et al., 2013). Our in vivo data in the SH rat show that the decay 497 

profile of the VR response was slower in the SH rat (Figure 8B), consistent with a decrease in the rate 498 

of reuptake of NA in the adult SH rat. Furthermore, when the rate of reuptake was reduced in the 499 

model, bursting patterns of stimulation no longer preferentially enhanced VR (Figure 8A). Thus, NA 500 
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reuptake dysfunction may also explain the loss of pattern-dependency seen in the adult SH rat - 501 

consistent with this strain being characterised by hyper-responsiveness to sympathetic stimulation, 502 

irrespective of stimulation pattern. We note that these findings do not preclude the possibility that 503 

other mechanisms may be influencing the change in pattern-dependency in the SH rat, for example 504 

altered α1-adrenoreceptor sensitivity (Supiano et al., 1994; Supiano et al., 1999) or NPY signalling 505 

(Westfall et al., 1990). Indeed, whether this loss of pattern-dependency is due to faulty NA reuptake, 506 

vascular remodelling or other mechanisms, remains to be validated experimentally in animals. 507 

Concluding remarks 508 

We have for first time shown that vascular resistance depends critically on respiratory modulation 509 

using both mathematical modelling and in vivo techniques, and revealed that this preferential 510 

response to respiratory bursting in the Wistar (but not SH rat) is due to a noradrenergic mechanism. 511 

We suggest that an amplification of this respiratory component would be an important contributor 512 

to the development of hypertension in the pre-hypertensive SH rat to raise vascular tone and 513 

contribute to vascular smooth muscle remodelling (Zoccal et al., 2009; Simms et al., 2010). Why 514 

adult SH rats do not exhibit a pattern-dependent response is not known, but may be due to 515 

dysfunctional NA reuptake mechanisms and/or vascular remodelling in the adult SH rat. 516 
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Figure Legends 517 

Figure 1: Morphology of modelled artery segment and its sympathetic innervation 518 

(A) The kinetics of sympathetically mediated contraction of a smooth muscle cell (SMC) in the 519 

model. These kinetics have been described in detail previously (Briant et al., 2015). (B) Experimental 520 

data shows that a pre-terminal bundle (ptb) follows the vessel perivascularly (Luff, 1996). Varicose 521 

axons extend out of the ptb in a terminating bundle (tb). These varicosities are release sites of NA 522 

onto the SMCs. The terminal bundle consist of varicose axons, spanning a distance of 750μm of the 523 

artery axially. SMCs are arranged circumferentially and have dimensions 5μm x 200μm (Luff, 1996). 524 

A cylindrical layer of SMCs was therefore modelled, represented on a 2D grid (C). The coordinates 525 

are now polar (θ,z). The modelled artery wall was endowed with 100 varicosities to fit data from the 526 

release probability from sympathetic varicosities (Stjarne, 2000). Each of the 100 varicosities is 527 

considered to be driven by the same membrane potential pattern, as recorded from the axon of a 528 

model of a sympathetic postganglionic neurone (Briant et al., 2014). The arterial radius is 529 

determined by considering each ring of SMCs; a particular circumferential ring of SMCs (z=constant; 530 

shaded area), with 3 varicosities releasing NA onto them, can be seen. Release of NA causes the 531 

SMCs to contract, changing their length (D). The sum of these contracted lengths gives the 532 

contracted circumference (and therefore radius). SMCs are not coupled mechanically, electrically or 533 

chemically. 534 

Figure 2: Measuring sympathetically driven changes to hindlimb vascular resistance in vivo 535 

(A) Schematic of the in vivo rat preparation. Recordings of blood pressure (BP) from the carotid 536 

artery and blood flow (BF) from the femoral artery were made. The profunda femoris was tied, to 537 

increase flow past the recording probe. The sympathetic ganglia (L3) was located and the 538 

sympathetic chain between L2-L3 connected to a cuff electrode for stimulating with current pulses, 539 

increasing muscle vasoconstrictor (MVC) drive to the hindlimb. (B) Each pulse had a duration of 2ms 540 

and amplitude of 0.5-2.5V. These were played in with 3 stimulation patterns; tonic, bursting with a 541 
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1Hz inter-burst frequency (1Hz bursting) and bursting with a 2Hz inter-burst frequency (2Hz 542 

bursting). The sympathetic chain was stimulated with these 3 patterns for 15s, whilst maintaining 543 

average firing frequency at 2, 4, 8 or 10Hz. The three patterns for 4Hz average firing frequency is 544 

shown. (C) The amplitude of the stimulus was titrated by giving supra-threshold (40Hz, tonic, 15s) 545 

pulses of varying amplitude (0.5-2.5V). The change in mean BF was plotted as a function of 546 

amplitude, and the working amplitude chosen set to that producing a ~50% decrease in mean BF 547 

(shaded area). BF=blood flow; MVC=muscle vasoconstrictor. 548 

Figure 3: Respiratory burst stimulation evokes greater arterial contractions in a mathematical 549 

model of an artery  550 

Model response to tonic (A) and bursting (B) stimulation at an average firing frequency of 8Hz. 551 

Stimulating the model to tonically fire at 8Hz (A1) drove NA release at the varicosities (A2). This 552 

release, peaking at 7μM, diffused across the arterial segment, and caused a reduction in arterial 553 

radius r (C) and an increase in a proxy for VR (1/r4), as given by the Hagen-Poiseuille equation (D). 554 

The tonic response of the arterial radius and VR in the model (squares) increased with increasing 555 

average firing frequency. Stimulating the model with bursts (250ms duration; 1s burst interval) (B1), 556 

and the same average firing frequency of 8Hz, caused a greater release of NA (B2) that peaked at 557 

14μM. This released NA caused a greater change in arterial radius (C) and VR (D), compared to 558 

frequency-matched tonic stimulation (circles). NA=noradrenaline; VR=vascular resistance. 559 

Figure 4: Respiratory burst patterning evokes a greater increase in vascular resistance in Wistar 560 

rats in vivo 561 

The sympathetic ganglia were stimulated with tonic and bursting patterns (with the same average 562 

firing frequency) for 15s. In response to 8Hz stimulation, blood pressure (BP) increased and blood 563 

flow (BF) decreased (A), and consequently VR increased (C). Bursting patterns of stimulation 564 

produced a larger increase in VR than tonic patterns. This was characterised by a larger, initial 565 

transient increase in VR and also a larger steady-state response (dashed line). (B) Note that the heart 566 
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rate (HR) did not change during the stimulus epoch (shaded region). (D) The 15s stimulus for both 567 

tonic and bursting (2Hz inter-burst frequency) patterns. BF=blood flow; BP=blood pressure; 568 

VR=vascular resistance. 569 

Figure 5: Respiratory bursting preferentially increases vascular resistance in the Wistar rat in vivo 570 

The VR response to tonic and bursting (1Hz and 2Hz) patterns was measured and compared in 571 

Wistar rats (n=8). (A) VR was normalised by the maximal VR response (evoked by a 40Hz tonic train) 572 

and expressed as a percentage. For 10Hz average firing frequency, 1Hz and 2Hz bursting rhythms 573 

produced a greater maximal (peak) and steady-state (dashed line) VR response than tonic 574 

stimulation. (B) The rise-profile of the VR response to tonic and bursting patterns was investigated. A 575 

single exponent was fit to the rise profile (inset; dashed lines) and the time-constant of rise 576 

measured. The time-constant of rise for tonic (2.35±0.20s) was greater than that for 1Hz 577 

(2.06±0.10s; p<0.05) and 2Hz (1.98±0.09s; p<0.01) bursting. VR therefore increases faster in 578 

response to bursting than tonic patterns. (C) The steady-state VR response was measured for all 579 

average firing frequencies of stimulation in Wistar. At 8Hz and 10Hz average firing frequencies, the 580 

response was greater for bursting with a 1Hz inter-burst frequency, compared to tonic stimulation. 581 

Two-way mixed-measures ANOVA revealed that frequency (p=0.013), stimulation pattern (p<0.001) 582 

and an interaction of these two (p=0.001) all significantly influence the steady-state VR response. (D) 583 

Maximum VR response was also measured, and was significantly influenced by pattern (p<0.001; 584 

two-way repeated measures ANOVA). At 8Hz and 10Hz, bursting patterns produced a greater 585 

maximum VR response that tonic patterns. (E) In 6 Wistars, we also delivered 80pulses at fixed intra-586 

burst frequencies (8, 16 and 32Hz), for tonic and bursting (1Hz and 2Hz) patterns, and measured the 587 

maximum VR response. At 16Hz and 32Hz, bursting evoked a greater increase in VR than tonic 588 

patterning. Two-way repeated measures ANOVA, Bonferroni post-hoc, p<0.05=*; p<0.01=**, 589 

p<0.001=***; One-way repeated measures ANOVA, Bonferroni post-hoc, p<0.05=†, p<0.01=††; VR, 590 

vascular resistance 591 
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 592 

Figure 6: Enhanced vascular resistance response to respiratory bursting is mediated by a 593 

noradrenergic mechanism 594 

The contribution of noradrenaline (NA) to the VR response to sympathetic stimulation was tested in 595 

WYK rats (n=2). (A1) A stimulation (10Hz average firing frequency) was applied to the sympathetic 596 

nerve, at all 3 patterns; tonic, 1Hz bursting and 2Hz bursting. (A2) Prazosin (1mg/kg) was then given 597 

(i.v.) to block α1-adrenoreceptors. The stimulation patterns were repeated and no response was 598 

seen. (B) This was repeated in n=2 animals. Given that the response following blockade was 599 

completely abolished, we conclude that: (1) the VR response was mediated by a NA mechanism and 600 

(2) the enhanced VR response to respiratory modulated bursting was also due to a NA mediated 601 

mechanism. 602 

Figure 7: Stimulation pattern does not influence the VR response in the SH rat 603 

(A) The VR response to tonic and bursting (1Hz and 2Hz) patterns was measured and compared in SH 604 

rats (n=8). Time-series data indicated that the VR response was independent of stimulation 605 

patterning (bursting vs tonic). (B) The rise-profile of the VR response to tonic and bursting patterns 606 

was investigated in the SH rat. A single exponent was fit to the rise profile and the time-constant of 607 

rise measured. The time-constant of rise for tonic (2.28±0.23s) was not different to that for 1Hz 608 

(2.25±0.21s, p=0.99) and 2Hz (2.14±0.19s, p=0.31) bursting, as revealed by one-way repeated 609 

measures ANOVA (p=0.668). The rate of increase of VR in response to sympathetic stimulation is 610 

therefore independent of patterning in the SH rat. (C) The steady state VR response was not 611 

different across the stimulation patterns, as revealed by a two-way ANOVA. (D) Similarly, the 612 

maximal VR response did not differ across the stimulation patterns. p<0.05=*; ns=not significant (all 613 

p-values greater than 0.3); VR, vascular resistance; SH rat, spontaneously hypertensive rat. 614 

 615 
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 616 

Figure 8: Role of NA uptake on pattern dependency 617 

(A) The rate of reuptake of NA from the synaptic cleft was reduced 3-fold in the model. The model 618 

was then stimulated with tonic (squares) and 1Hz bursting (circles) patterns of activity at average 619 

firing frequencies of 2-12Hz. The response of the original model with normal rates of NA reuptake is 620 

also shown (shaded circles/squares). Following decreased rate of NA reuptake, the response of the 621 

model becomes independent of stimulation pattern. (B, C) The decay profile of VR (following a 15s 622 

10Hz tonic stimulus) in Wistar (n=8) and SH (n=8) rats was fit with a single exponential. The time-623 

constant of decay of VR in SH rats (0.48±0.02s) was significantly smaller than in Wistar (0.39±0.03s; 624 

p=0.016), suggesting decreased reuptake of NA in the SH rat. p<0.05=*, p<0.01=**, p<0.001=***; 625 

VR, vascular resistance; SH rat, spontaneously hypertensive rat. 626 

Figure 9: Amplification of respiratory modulation preferentially increases vascular resistance in 627 

vivo 628 

The sympathetic nerve was driven with voltage pulses with a tonic and bursting (1Hz and 2Hz inter-629 

burst) patterns at 4Hz and 8Hz frequencies in Wistar rats (n=8). This doubling of frequency mimics 630 

the amplification of respiratory-sympathetic coupling seen in the SH rat (Simms et al., 2009; Briant et 631 

al., 2014; Moraes et al., 2014). (A) Tonic patterning at 8Hz produces a marked increase in VR 632 

compared to 4Hz. (B) Bursting (1Hz inter-burst frequency) with an 8Hz average firing frequency 633 

similarly produces a greater VR response than 4Hz, but the difference (arrowed) in these two 634 

responses was greater than the tonic difference. (C) This difference between the 4Hz and 8Hz VR 635 

response for each stimulation patterns was measured (dashed lines). This difference was greater in 636 

response to 1Hz bursting than tonic (one-way ANOVA; p<0.05), suggesting that an amplification of 637 

the respiratory component will produce a greater increase in VR than an equivalent tonic increase. 638 

Hence a doubling of sympathetic output (4Hz→8Hz) via increased respiratory modulaƟon (as in the 639 
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pre-hypertensive SH rat), would greatly increase VR compared to an equivalent tonic increase in 640 

output. 641 

Figure 10: Respiratory modulated bursting of sympathetic activity in the ontogenesis of 642 

hypertension 643 

Spikes arriving in the sympathetic terminal trigger the release of noradrenaline (NA; ①). (A1) During 644 

tonic stimulation (top trace) in Wistar rats, much of the released NA is cleared by the NA reuptake 645 

(RU) transporter (NET; ②). Some of the released NA binds to α1-adrenoreceptors (α1Rs) on the 646 

smooth muscle cell (SMC; ③) membrane, causing a contractile response. (A2) During recruitment of 647 

respiratory modulated bursting (top trace) of sympathetic activity in Wistar rats, there is less RU as it 648 

becomes saturated (↓RU) and so more NA is available (↑[NA]) to bind to α1Rs, enhancing the 649 

contractile response (↑VR). (B) Simms et al. (2009) demonstrated that pre-hypertensive SH rats 650 

exhibit amplified respiratory modulated bursting (top trace) and greater increases in VR following 651 

reinstatement of this rhythm. This is consistent with the amplified bursts causing greater NET 652 

saturation (↓↓RU), resulting in greater NA concentrations in the neuro-muscular junction 653 

(↓↓[NA]), and therefore a much larger contractile response (↑↑VR). Chronic vasoconstriction may 654 

also lead to inward remodelling of the blood vessels, as SMCs are rearranged around a smaller 655 

lumen (bottom; Intengan and Schiffrin (2001)). Together, this may contribute to the ontogenesis of 656 

hypertension in this strain. (C) In the adult SH rat, NET is dysfunctional (crosses), as reported 657 

previously (Rumantir et al., 2000; Cabassi et al., 2001; Schlaich et al., 2004). Hence, the contractile 658 

response is no longer dependent on the stimulation pattern; the elevated synaptic NA concentration 659 

is prolonged in both bursting and tonic patterns (top traces) producing marked vasoconstriction. 660 

↑/↑↑=increase/large increase; ↓/↓↓=decrease/large decrease; pre-hyp=pre-hypertensive; 661 

SH=spontaneously hypertensive. VR=vascular resistance; [NA]=neuro-muscular junction NA 662 

concentration; RU=reuptake  663 
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