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Abstract

We analyse the effects of rotation on the propagation of an axisymmetric intrusion through a linearly stratified ambient

fluid, arising from a sustained source at the level of neutral buoyancy. This scenario occurs during the horizontal

spreading of a large volcanic ash cloud, which occurs after the plume has risen to its neutral buoyancy level. A simple

and well-accepted approximation for the flow at late times is that inertial effects are negligible. This leads to a lens-

shaped intrusion governed by a balance between Coriolis accelerations and horizontal pressure gradients, with a radius

scaling with time as rN ∼ t1/3. However, we show using shallow-layer model that inertial forces cannot be neglected

until significant times after the beginning of the influx. These inertial forces result in the flow forming two distinct

domains, separated by a moving hydraulic jump: an outer ‘head’ region in which the radial velocity and thickness vary

with time, and a thinner ‘tail’ region in which the flow is steady. Initially, the flow expands rapidly and this tail region

occupies most of the flow. After about one half-revolution of the system, Coriolis accelerations halt the advance of the

front, and the hydraulic jump separating the two regions propagates back towards the source of the intrusion. Only after

approximately one and a half rotations of the system does inertia become insignificant and the Coriolis lens solution, with

rN ∼ t1/3, become established. Importantly, this means that neither inertia nor Coriolis accelerations can be neglected

when modelling intrusions from volcanic eruptions. We exploit the two-region flow structure to construct a new hybrid

model, comprising just two ordinary differential equations for the intrusion radius and location of the hydraulic jump.

This hybrid model is much simpler than the shallow-layer model, but nonetheless accurately predicts flow properties

such as the intrusion radius at all stages of motion, without requiring fitted or adjustable parameters.

1. Introduction

Large-scale, density-driven flows, which are predomi-

nantly horizontal, are common in environmental and geo-

physical settings. They arise due to compositional dif-

ferences between the intruding fluid and the surrounding

ambient, which perturb the pressure distribution, generate

horizontal pressure gradients and give rise to the motion.
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However the effects of the earth’s rotation can influence

the flow; in particular, rotation-induced forces tend to op-

pose the gravitational spreading [1] and these effects may

be most pronounced for large-scale and long-lived phenom-

ena. In this contribution, we analyse the motion due to

a sustained influx of fluid at its height of neutral buoy-

ancy within a continuously stratified ambient. Specific

examples include intrusions within stratified lakes [2] and

the atmospheric dispersion of volcanic ash clouds [3]. The

latter has been a recent focus of much research activity

given the potential for catastrophic effects of ash on air-
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craft engines and the closure of airspace to mitigate this

hazard [4, 5]. Volcanic plumes rise from their source, mix-

ing with the atmosphere, until their bulk density matches

that of the surroundings. They then intrude, predomi-

nantly horizontally, at this level of neutral buoyancy with

their motion driven at least in part by the perturbation

they cause to the background distribution of density in

the atmosphere [3].

In this study we investigate the effects of rotation on

a sustained intrusion in a continuously stratified ambient,

which is otherwise quiescent, and we analyse its radial mo-

tion as it spreads away from its source. Rotation slows and

inhibits the radial motion and, in the absence of dissipa-

tive processes, the flow is expected to approach a state of

geostrophic balance in which the gravitational and Corio-

lis forces are in equilibrium [1]. This geostrophic balance

has been studied in a different scenario, in which a volume

of relatively dense fluid is released instantaneously within

a uniform, less dense ambient [6, 7]. In this situation, the

dense fluid eventually forms a basal, static ‘lens’, although

due to its own inertia, the flow may initially overshoot the

final state before recovering to it [7, 8]. Similar behaviour

occurs in flows in continuously stratified environments [9],

with the final state, after many rotations, exhibiting an

ellipsoidal shape [8], which continues to grow slowly if fed

by a sustained source [10, 11, 12]. Continuously stratified

fluids support the propagation of internal waves, and while

these can significantly influence the transient behaviour of

intrusions [9], they do not alter the geostrophic balance

underlying this final ellipsoidal shape.

Recent studies have revealed that, in the absence of rota-

tion, sustained axisymmetric flows evolve differently from

their two-dimensional counterparts; rather than evolving

to a self-similar state in which representative thickness

and velocity fields exhibit the same temporal dependence

throughout the entire current, there are different depen-

dencies in the tail of the current from at its front. This im-

plies that straightforward scaling, which is so often useful

for this kind of motion, is misleading and leads to incor-

rect predictions of the behaviour of sustained axisymmet-

ric flows [3]. In this study, our contributions are twofold.

Firstly, we develop a shallow layer model for the thickness

and depth-averaged radial and angular velocities of a sus-

tained intrusion in the regime where the inertia of the flow

is initially dynamically important, but progressively wanes

as the effects of rotation begin to play a role. This progres-

sion from inertia- to rotation-dominated spreading is par-

ticularly relevant to ash clouds arising from large sustained

volcanic eruptions, but to our knowledge no experimental

data are available for this configuration. The results from

our shallow-layer model reveal how the lens-like solution

emerges even from a flow that is initially dominated by

inertia (i.e. a flow with an initially large Rossby number).

We show that it is misleading to treat the flow as lens-like

throughout its evolution, and that for a significant dura-

tion the flow instead exhibits a steady tail attached to the

source with a time dependent frontal region. Secondly,

we present a simplified model for the propagation of the

intrusion, which captures the transition from an inertially-

dominated flow to one in geostrophic balance. For flows

arising from instantaneous slumps of dense fluid in a rotat-

ing ambient of uniform density, it has been demonstrated

that reduced ‘integral’ models capture the key temporal

dependencies in the flow (see, for example, [13] and [8]).

These models are useful because they permit rapid com-

putation of a flow state without the need for the integra-

tion of the more complete shallow water equations. How-

ever, this ‘box’ model approach is inappropriate for these

sustained axisymmetric intrusions. Instead we generalise

the approach of Ungarish et al. [14] to develop a hybrid

model that encompasses the effects of rotation. This is a

non-trivial extension because Coriolis processes arrest the

flow and lead progressively to geostrophic balance, fea-

tures that are absent from the non-rotating counterpart.

We show that this new hybrid model is capable of accu-

rately reproducing the behaviour predicted by the more
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complete governing equations and that it is therefore a

tool of considerable practical importance.

The paper is structured as follows. First, we formulate

the problem, identify the key dimensionless parameters

that characterise the effects of rotation and compute solu-

tions of the shallow-layer model numerically (§2). We fur-

ther demonstrate how the lens-like solution is approached

progressively in time, a calculation that requires matched

expansions between the bulk of the flow and the frontal

region. In §3 we develop the hybrid model for these flows,

showing how it simplifies and yet accurately captures the

dynamics. We present results and give interpretations in

§4, before summarising our findings in §5.

2. Shallow layer model

We analyse the radial propagation of relatively shallow

intrusions through a continuously stratified, rotating envi-

ronment (figure 1), which is characterised by two inverse

timescales: an angular velocity Ω, and a buoyancy fre-

quency, N , defined by N 2 = −g(dρ/dz)/ρc, where z is the

vertical coordinate, g is the acceleration due to gravity, ρ

is the ambient fluid density and ρc is the density of the

intruding fluid. The dimensionless Coriolis parameter is

defined by

L =
Ω

N
, (1)

and characterises the strength of the rotation [cf. 8]. For

typical atmospheric conditions, where N ≈ 10−2s−1 and

Ω ≈ 10−5s−1, we therefore anticipate that L = O(10−3)

but we shall consider solutions for a wide range of values.

The motion of intrusions through a surrounding fluid of

constant buoyancy frequency occurs symmetrically about

the level of neutral buoyancy and is driven by the radial

gradients of the pressure field due to the perturbation to

the background stratification. Intrusions through a con-

tinuously stratified environment may be modelled using a

shallow layer model, in which vertical fluid accelerations

are assumed negligible (see, for example, [8] and the ref-

erences therein). This neglects the generation of internal

waves and only resolves the predominantly horizontal mo-

tion about the level of neutral buoyancy. This assumption

that internal waves do not significantly alter the dynam-

ics of axisymmetric intrusions continuously supplied by a

buoyant plume is supported by the experiments of An-

song & Sutherland [15], in which only ∼ 4% of the flow

energy was transferred to internal waves. This contrasts

with other flows, such as intrusions generated by a sud-

den collapse of mixed fluid, in which internal waves can

play a more significant role [9]. Large-scale experiments

may be necessary to determine conclusively how internal

waves and other disturbances to the ambient stratification

interact with the volcanic intrusions that motivate this

study[3].

In this investigation, we focus on flows due to a sus-

tained volume flux of fluid 2πQ at an inflow radius r = ri

and we form axisymmetric governing equations in terms

of cylindrical polar coordinates with the symmetry axis

aligned with gravity, for the half thickness, h, and the

depth-averaged radial and angular velocities, u and ω, re-

spectively. The dependent variables are rendered dimen-

sionless by the lengthscale (Q/(2N ))1/3, timescale N−1,

radial velocity scale (QN 2/2)1/3 and angular velocity scale

Ω. The dimensionless equations are then given by

∂h

∂t
+

1

r

∂

∂r
(rhu) = 0, (2)

∂u

∂t
+

1

2

∂

∂r
(u2 + h2) = L2ωr(2 + ω), (3)

r
∂ω

∂t
+ u

∂

∂r
(ωr) = −u(2 + ω). (4)

The derivation of these equations can be found in [8]

(§13.1; note that the intrusion corresponds to S = 1 in

that formulation). The ‘Coriolis acceleration’ terms on

the right-hand side of these equations are due to the back-

ground rotation of the system, and it is the effect of these

terms that is the focus of this investigation. It is insightful

to rearrange (2)–(4) into an expression of energy conser-
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Figure 1: Schematic of the rotating axisymmetric intrusions under consideration, illustrating the main parameters describing the system: the

volume flux 2πQ at the source, the rotation rate of the system, Ω, and the stratification of the background atmosphere, parametrised by N .

Within the intrusion the density is constant (ρ = ρc) and the flow is described by the half-thickness h, radial velocity u and angular velocity

ω, each functions of the radial distance r and time t.

vation,

∂

∂t

(
h

2

(
u2 + L2r2ω2

)
+
h3

6

)
+

1

r

∂

∂r

(
ruh

2

(
u2 + L2r2ω2 + h2

))
= 0, (5)

which reflects a balance between the rate of change of

the kinetic and potential energies, their advection and the

work done by the hydrostatic pressure. The governing

equations (2)–(4) form a hyperbolic system with dimen-

sionless characteristic speeds, c, c±, given by

c = u and c± = u± h. (6)

On the characteristic dr/dt = u, we have

r
dω

dr
= −2(1 + ω), (7)

and upon integrating this equation, we find that ω adopts

the steady distribution

ω = −1 +B0/r
2, (8)

where B0 is a constant of order unity, which is determined

from the boundary conditions. From (8) we note that the

intrusion is counter rotating (ω ≈ −1) far from source.

The shallow water system (2)–(4) is subject to ini-

tial and boundary conditions. At the front of the cur-

rent r = rN (values at the front, or nose, are denoted

with the subscript N) we apply the kinematic condition

drN/dt = uN , along with a dynamic boundary condition,

uN =
F√

2
hN , (9)

where F is of order unity. When the thickness of the intru-

sion is much smaller than the height of the ambient fluid,

as assumed here, F is well approximated by a constant,

with a practical value of 1.19 [8, 14]. At the source r = ri,

there is a sustained influx of material, given by

ruh = 1 at r = ri. (10)

This material exits with angular velocity ωi in the rotating

frame, so that pdf

ω = ωi at r = ri, (11)

which, from (8), sets B0 = (ωi + 1)r2i . (In the simulations

that follow we further assume that the fluid at source ro-

tates with the rotating frame, so that ωi = 0 and B0 = r2i .)

Finally, if the source is supercritical at r = ri, we must im-

pose a additional second boundary condition, which can be

given by specifying a source energy flux per unit mass flux

(see (5))

u2i + L2
i r

2
i ω

2
i + h2i = E (12)

or a source Froude number Fr i = ui/hi.

In spite of the apparent simplicity of the shallow layer

equations, the solution of a practical problem may en-

counter various difficulties such as internal jumps in the
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flow state that manifest themselves as discontinuities in

the dependent variables. Additionally there are compli-

cations as the symmetry axis is approached due to the

coordinate singularity there. In general sophisticated nu-

merical solvers must be used for integrating the governing

partial differential equations, as detailed below. Simplified

solutions play an important role in revealing the dynamic

processes and in making rapid calculations of the state of

the flow.

2.1. Steady states

We first analyse steady solutions to the shallow-water

model (2)–(4), noting that these play a vital role in in both

time-dependent solutions (§2.2) and in the construction of

our simplified hybrid model (§3). In a steady state, we

deduce from (2) that the dimensionless radial mass flux is

constant and given by

hur = 1. (13)

Furthermore, from the expression of angular momentum

conservation (4), provided the radial velocity is non-

vanishing, (8) and (11) imply

ω = −1 +
B0

r2
. (14)

Finally, from the expression of energy conservation (5) and

the constant radial mass flux (13), we find

∂

∂r

(
u2 + L2ω2r2 + h2

)
= 0, (15)

which on integration yields

h2 + u2 = C2
0 − L2

(
r2 +

B4
0

r2

)
. (16)

The constant C2
0 is prescribed by the boundary conditions

hi, ui at the inner radius ri,

C2
0 = h2i + u2i + L2

(
r2i +

B4
0

r2i

)
. (17)

Further simplifying (16) using (13), we obtain separate

quadratic equations for u2 (and h2), which are real-valued

for ri ≤ r ≤ rmax, where rmax is defined below. These are

given by

u2 =
1

2

[
D2 +

√
D4 − 4/r2

]
, (18)

h2 =
1

2

[
D2 −

√
D4 − 4/r2

]
=

2

D2r2 +
√

(D2r2)2 − 4r2
,

(19)

where the latter form avoids cancellation errors when r is

large [see also 16]. Here,

D2 = D2(r) = C2
0 − L2

(
r2 +

B4
0

r2

)
. (20)

Equation (16) admits also another solution for u2 and h2,

in which the sign of the square roots is swapped; but this

solution, which corresponds to subcritical motion, is not

realised in time-dependent flows because it is not compat-

ible with the boundary condition at the flow front (9).

The solution h(r), u(r), ω(r) given by (14), (18) and (19)

is analytical and exact. The non-rotating case is recovered

by setting L = 0 and because in that case D2 = C2
0 , the

solutions of (18) and (19) are real-valued for all r > ri

(i.e. rmax is unbounded). In this non-rotating case, h

decays monotonically at large r, while u increases to the

asymptote C0 [14].

For the rotating case L > 0 the behaviour is qualita-

tively different. We see from (20) that D2 decreases and

becomes negative for sufficiently large r, and therefore,

in the rotating case, the domain of solution is restricted

to r < rmax by the requirement that the square roots in

(18) and (19) are real-valued, i.e., D2 ≥ 2/r. For L � 1

(the regime expected in atmospheric flows) we evaluate

D2(rmax) = 2/rmax, and obtain

rmax =
C0

L

(
1− L

C3
0

)
+ . . . , (21)

u(rmax) = h(rmax) =

(
L
C0

)1/2(
1 +

1

2

L
C3

0

)
+ . . . . (22)

The radius rmax is the maximum potential domain of in-

fluence of the inertia influxed by the source, and is the

radius at which the flow becomes critical (c− = 0). Since
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Figure 2: Flow half-thickness h (solid line) and radial velocity u

(dashed line) as functions of radius r, for L = 0.01, 0.05 and 0.1. The

crosses indicate the small-L asymptotic approximations rmax and

u(rmax) = h(rmax), given by (21) and (22). Here ri = ui = hi = 1,

ωi = 0.

the constant C0 is of order of unity and L � 1, (21) im-

plies this domain of steady evolution may be extensive.

On the other hand, at a sufficiently large radius the effects

of rotation become dominant, even when L � 1.

Typical profiles of h and u are shown in figure 2. In

presence of Coriolis effects, h and u in the tail acquire a

non-monotonic behaviour with r. For small L, h decreases

with r for most of the domain, while u increases gently

to a maximum of about C0. Close to rmax, the trend is

inverted. The crosses on each line in figure 2 are the ap-

proximations (21)–(22) for the corresponding value of L,

which show excellent agreement for L ≤ 0.1.

2.2. Temporal evolution: numerical computations

Having found steady solutions to the governing shallow

layer equations (2)–(4), we now use numerical techniques

to find time-dependent solutions. To do this we first rear-

range the system into flux conservative form [17] and de-

fine a new radial variable rescaling the flow domain [ri, rN ]

to the unit interval [18]. We then discretise the flow do-

main spatially using the non-oscillatory semi-discrete for-

mulation of [19]. The shock-capturing property of this

scheme means that the conservation of mass and momen-

tum at jumps is automatically enforced. At the current

nose, the kinematic boundary condition drN/dt = u(rN , t)

determines the evolution of rN (t). The dynamic bound-

ary condition applied at the nose is given by (9) when

the current is radially advancing (drN/dt > 0). We ap-

ply this condition by augmenting the system of equations

obtained from the discretisation of the flow domain with

two additional ODEs, corresponding to the (9) (rewritten

as d/dt(uN/hN ) = 0) and to the equation satisfied on the

forward-moving (+) characteristic at the nose. Together

these specify the time evolution of hN (t) and uN (t) in

terms of h, u, ∂h/∂r and ∂u/∂r, evaluated at r = rN .

When the current nose is retreating (drN/dt < 0), the

dynamic condition (9) can no longer be justified [8], and

the appropriate boundary condition at the nose is that

the boundary moves at the same speed as the c+ charac-

teristic, specified by setting hN (t) = 0. We integrate the

system of equations arising from the spatial discretisation

of the flow domain, along with those for hN (t), uN (t) and

rN (t), using a second-order Runge-Kutta method, with a

CFL number of 1/4.

A typical numerical solution is plotted in figure 3. The

flow initially expands radially and comprises two distinct

regions: a time-dependent frontal region and a steady tail

(figure 3a). These regions are connected by a shock, the ra-

dial location of which we denote by r1(t). This two-region

solution structure is observed in the absence of rotation

[14, 3], reflecting the relative unimportance of Coriolis ac-

celerations relative to inertial times in the initial stages of

the flow. The form of the steady tail region is influenced

by the Coriolis accelerations in rotating flows, as detailed

above. Though Coriolis accelerations influence the steady

tail (§2.1), they have a more significant effect on the ad-

vancing flow front, slowing the radial advance of the cur-

rent and eventually causing it to stop. This results in a sec-

ond phase of motion (figure 3b) in which inertial overshoot

causes the current radius to decrease with time (a similar

overshoot was observed by [7] in axisymmetric rotating
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gravity currents through an unstratified ambient). In this

phase of motion the location of the shock separating the

two flow regions also rapidly retreats towards the origin,

due to continued outward flow within the tail region reach-

ing the arrested or retreating flow head. The mechanism

for this counter-intuitive motion of the shock is described

in more detail in §3.3. After the initial stages of motion,

the retreat of the shock means that the time-dependent

frontal head region occupies all but a small region of the

flow close to the origin, and this region adopts a rounded

‘blunt-nosed’ shape (figure 3c). The flow is then controlled

by a balance between Coriolis accelerations and horizontal

pressure gradients due to variations in the intrusion thick-

ness. Although slowly-decaying inertial oscillations persist

in the intrusion, resulting in alternate phases of advance

and retreat of the current nose (figure 3d), at late times

the flow approaches a self-similar rounded lens-like shape,

and the current grows both in radius and in thickness (fig-

ure 3c). We now examine how this late-time similarity

behaviour becomes established.

2.3. The Coriolis lens

Instantaneous releases of dense fluid within a rotating

environment of uniform density adopt a convex lens shape

in which the radial velocity vanishes [6]. A similar shape

arises in intrusions through a stratified ambient [8], and

also when the flow is due to a sustained flux of fluid [11, 16],

though in this latter case the dimensions of this shape

grow with time. Previous studies have not shown how

the motion transitions from its inertially-dominated state

at relatively early times to the Coriolis-dominated states

at relatively late times, although it is evident from our

numerical computations that there is a progressive evo-

lution from one state to another. Here we demonstrate

analytically how the Coriolis lens emerges from the govern-

ing equations as the inertial effects become progressively

weaker.

First we note from (8) that when r � 1, the angular

velocity ω = −1 + . . . and so, far from the source, the

current is counter-rotating to leading order in the rotating

frame of reference. To analyse the ensuing motion it is

convenient to write the independent variable as y = r/rN

and to write the dependent variables as

h = LrNH(y, t) and u = ṙNU(y, t), (23)

where a dot denotes differentiation with respect to time.

In terms of these variables the governing equations become

H +
rN
ṙN

∂H

∂t
− y ∂H

∂y
+

1

y

∂

∂y
(yUH) = 0,

(24)

1

L2

(
r̈N
rN

U +
ṙ2N
r2N

U +
rN
ṙN

∂U

∂t
+
ṙ2N
r2N

(U − y)
∂U

∂y

)
+

1

2

∂

∂y

(
H2 + y2

)
= 0.

(25)

The kinematic and dynamic conditions at the front of the

current become

U(1) = 1 and ṙN = rNL
F√

2
H(1). (26a,b)

Additionally, the requirement for a sustained volume flux

at the source demands Lr2N ṙNyUH → 1 as y → 0, where

we have assumed that the radial position of the front far

exceeds the radius of the source (ri/rN � 1).

We construct an asymptotic solution for the flow in

regime Lt � 1, where Coriolis effects dominate. On the

assumption that ṙN t/rN = O(1) and r̈N t
2/rN = O(1), we

deduce from (25) that

∂

∂y

(
H2 + y2

)
= 0, (27)

i.e. that the depth-integrated pressure field, corrected for

rotational (centrifugal) effects, is constant to leading order.

From (27) we find that

H =
(
A2 − y2

)1/2
+O((Lt)−2), (28)

where A(t) is to be determined. On substitution of (28) in

the equation for mass conservation (24) and integrating,

we find that

U =
AȦrN/ṙN +A2

y
+

A1

(A2 − y2)1/2y
, (29)
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Figure 3: A numerical solution of the shallow layer model at L = 0.05, F = 1.19, ri = hi = ui = 1, ωi = 0. In panels (a)–(c) the flow

half-thickness h (left panels) and the radial velocity u (right panels) are plotted as functions of the radial distance at various times. The

cross indicates the values at the current nose. In panel (d), the radial position of the current nose rN and radial position of the shock r1 are

plotted as functions of time.
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where A1 is another constant of integration, to be deter-

mined. At the front of the current (y = 1), the dynamic

boundary condition (26b) becomes

(
A2 − 1

)1/2
=

1

Lt
ṙN t

rN

√
2

F
. (30)

Thus A = 1 to leading order and, from (28), the leading-

order shape of the current is an oblate spheroid. However,

this condition implies that the flow thickness vanishes to

leading order at the front, from which (26b) implies that

the propagation velocity of the front ṙN is zero. This is

inconsistent with a propagating current, and with the lead-

ing order solution for the velocity given by (29). We must

therefore adopt a different asymptotic formulation to cap-

ture the evolution; while it is possible for the leading order

expressions for the height and velocity fields, given by (28)

and (29), to represent the flow dynamics within the bulk

of current, they are inappropriate in a small region near

the front.

We thus write a different asymptotic description of the

velocity and thickness in the frontal region, and match this

to the bulk flow. Denoting δ = (Lt)−2 � 1, we deduce

from (26a,b) that close to the front U = O(1) and H =

O(δ1/2), and then from (25), the distinguished scaling for

the width of the frontal boundary layer is (1− y) = O(δ).

In terms of rescaled variables,

y = 1− δY, H = δ1/2H and U = U, (31)

we find that to leading order in δ, mass conservation is

given by
∂H

∂Y
− ∂

∂Y

(
H U

)
= 0, (32)

while the balance of momentum is

− t
2ṙ2N
r2N

(
U − 1

) ∂U
∂Y
− 1

2

∂

∂Y

(
H

2 − 2Y
)

= 0. (33)

These are subject to boundary conditions at the front (Y =

0), U = 1 and H = (tṙN/rN )(
√

2/F ). The leading order

solution within the frontal boundary layer is then given by

U = 1 and H =

2Y +

(
tṙN
rN

√
2

F

)2
1/2

. (34)

h

r

t = 100
200

500

0 5 10 15 20 25 30 35
0

0.5

1

1.5

Figure 4: The composite solution (37) (solid curve), compared to

shallow water model results (dashed curves). Model parameters are

as for figure 3, namely L = 0.05, F = 1.19, ri = hi = ui = 1, ωi = 0.

Matching these expressions to the flow fields within the

bulk (Y � 1), we find that A = 1 and A1 = 0. Finally

we impose the flux conservation at the source and this

demands

Lr2N ṙN = 1 and so rN = (3t/L)1/3. (35)

In terms of the original variables, the composite solution

(obtained by summing the outer and inner solutions, (28)

and (34), and subtracting the form in the matching region

H̄ = (2Y )1/2) is

h(r, t) = LrN (t)

[(
1− r2

r2N

)1/2

+
1

Lt

√
2

3F

1√
G+

√
G+ 1

]
,

(37)

u =
ṙNrN
r

, (38)

where

G = (3FLt)2
(

1− r

rN

)
. (39)

This solution is illustrated in figure 4.

We comment that the leading order term of this solution,

given by

h(r, t) = LrN (t)

(
1− r2

r2N

)1/2

(40)

is identical to that written down by [16], but this can not

be viewed as the complete solution to the shallow layer

model because it does not satisfy the dynamic condition

at the front (9). Our insight is to show how this leading-

order solution emerges as the long time solution of shallow
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layer model. At large times, the second term in the com-

posite solution for h is O((Lt)−1) close to the current front,

consistent with (9), but makes a negligible contribution (of

order (Lt)−2) to the leading-order lens solution elsewhere.

Numerical integration of the shallow layer equations con-

firms that the composite solution is obtained after the flow

has evolved for a sufficient time (figure 4); in terms of the

dimensionless variables used here, this requires formally

that Lt� 1. Importantly, this lens solution is rarely fully

established for volcanic intrusions in the atmosphere be-

cause they are not often sustained for a sufficient duration;

this would require a sustained source for a dimensional du-

ration in excess of 1/Ω ≈ 12 hours. This implies that, for

the purpose of predicting the spread of volcanic ash clouds,

it is important to compute the time-dependent behaviour

prior to the establishment of the lens, and a simple way

of doing so is presented in the following section.

3. The Coriolis Hybrid model

Although the Coriolis lens solution (40) is established as

a solution to the shallow-layer equations when Lt� 1, our

numerical solutions show that the flow at earlier times is

quite different (figure 3a, b). The flow at earlier times ex-

hibits a steady tail from the source to some position r1(t)

(§2.1), at which point it expands through a shock into a

thicker annular ‘head’ with a convex profile (figure 5). The

structure of flows with this character was investigated by

[14] for non-rotating systems, where it was demonstrated

that the flow of sustained radial gravity currents and intru-

sions may be accurately described by a simplified hybrid

model that couples the steady tail with the time evolv-

ing head. Here we extend the idea of a hybrid model to

the rotating case, in which Coriolis accelerations first in-

fluence, and subsequently dominate, the flow behaviour.

The extension is not a trivial one because, in the rotating

system, the centrifugal and Coriolis accelerations become

dominant at sufficiently large radius, producing physical

and mathematical complications not present in the non-

rotating case.

In particular, it is necessary to consider the azimuthal

momentum balance, the fact that the pressure distribu-

tion within the head leads to a non-uniform height profile,

and the possibility that the propagation will stop (or even

change direction) for a while. These features are evident

in the numerical solutions of the shallow water equations

presented above (§2.2) and guide the development of the

hybrid model. We shall demonstrate that the simple hy-

brid model suggested in this work reproduces these fea-

tures with reasonable accuracy.

In the hybrid model we assume that, in the domain

from the source to some r1(t), the flow is given by the

steady-state solution of the shallow water equations (§2.1),

whereas in the domain r1(t) ≤ r ≤ rN (t), the intrusion is

modelled by a truncated lens, as sketched in figure 5. In

this latter domain the upper boundary is curved due to

Coriolis effects, and the height decreases from hJ(t) to

hN (t). At r = r1 the intrusion expands by a jump from h1

to hJ . The idea of this model is that the solutions of the

shallow-layer equations that are realised are in fact steady

in the r ≤ r1(t) domain, and an exact solution here is

readily available (§2.1). Hence, simplifications are needed

only in the r1(t) < r ≤ rN (t) domain. We thus expect that

the overall resulting prediction will contain a more reliable

physical balance, and be more accurate, than simply using

the lens-like solution throughout.

The steady solution analysed in §2.1 (figure 2) provides

the form of the hybrid model for ri < r1(t). The volume

of the steady-state domain is given by

V1(t) =

∫ r1

ri

h(r)r dr, (41)

using (19), and this is evaluated numerically.

3.1. The head ‘box’

We consider now the region r1(t) < r < rN (t), where

the flow depends on both radius r, and time t, and approx-

imations are needed to obtain a simple model. In the spirit
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Figure 5: Schematic description of the hybrid model with Coriolis effects.

of box-model approximations, we first define the shape of

the control volume under consideration. The inner and

outer boundaries are the cylinders r1 and rN . The upper

interface of our ‘box’ must be curved, from height hJ to

a smaller height hN , due to the influence of the Coriolis

terms; in fact we argue that this domain is dominated by

Coriolis. The justification is as follows.

First, we note that the typical radius in this domain

is relatively large (even r > 2 is sufficient for our argu-

ments). From (14), the angular velocity in the tail for

large r is ω = −1 + O(r−2). At the jump, r1, and in-

side the head, there are no sources of angular momentum,

and hence the angular velocity of a fluid particle also ap-

proaches −1. Consequently, the centrifugal-Coriolis term

on the right hand side of (3) is, in dimensionless form,

−L2r with a relative error O(r−4), which is considered

negligible. Second, we observe that the inertial terms in

the head are small, and decaying with time. In the tail the

inertial term u∂u/∂r is comparable with the −L2r Cori-

olis term. At the r1 jump the intrusion thickens and u

is bound to decrease. The speed of the nose, uN , is also

a decaying quantity. While the inertial terms decay, the

burden of balancing the centrifugal-Coriolis acceleration in

the radial direction over large r is sustained by the pres-

sure gradient h∂h/∂r. Thus, for calculating the shape of

the head domain we use these approximations to simplify

the radial momentum balance (3) to

1

2

∂

∂r
(h2) = −L2r, (42)

which by integration yields the shape

h(r, t) = L

[(
hJ(t)

L

)2

+ r21(t)− r2
]1/2

(r1 ≤ r ≤ rN )

(43)

We note that this simplification in the balance of radial

momentum is exactly equivalent to that which is embed-

ded in the asymptotic analysis of §2.3, and thus is the

dominant balance in the ‘Coriolis lens’ solution. This sim-

plification that the depth-integrated pressure (here with a

centrifugal correction) has no radial gradient is equivalent

to the principle underlying the non-rotating hybrid model

of [14]. Given the shape (43), the volume of the head is

therefore

Vh(t) =

∫ rN

r1

hr dr

=
1

3
L

[(
hJ
L

)3

−
(
hJ
L

+ r21 − r2N
)3/2

]
. (44)

The first balance equation for the ‘box’ model is volume

continuity:

Vh(t) + V1(r1(t)) = t, (45)

where the right hand side is the volume influxed by the

source. The combination of (44) and (45) provides an

implicit non-linear equation for the height immediately

downstream of the jump, hJ(t), as a function of the front
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and jump positions, rN (t) and r1(t), respectively. We eval-

uate hJ from this equation with a Newton-Raphson tech-

nique, and then use (43) to calculate the height of the nose

at r = rN (t),

hN (t) = L

[(
hJ(t)

L

)2

+ r21(t)− r2N (t)

]1/2
. (46)

The time-evolution of the head is thus reduced to the

task of calculating the evolution of r1(t) and rN (t). We

recall that r1 is the position of the jump from the ‘tail’

to the ‘head’, and that the conditions u1 and h1 at r1−

are provided by the steady-state solution (18) and (19) at

r = r1. In a frame moving with the speed of the jump, U1,

we write the volume and momentum balances and, after

some algebra, obtain

dr1
dt

= U1 = u1−
[

1

3

h3J
h1

(1 + (h1/hJ)2 + h1/hJ)

]1/2
. (47)

The jump conditions at r1 are not directly affected by

the Coriolis accelerations, and we use here exactly the

same balances as in the non-rotating hybrid model [see

14, Appendix A]. Indirectly, the Coriolis accelerations sig-

nificantly influence the motion of the jump via the be-

haviour of hJ in (47). In the non-rotating case U1 even-

tually becomes small, but remains positive, and r1 ∼ t3/4

for sufficiently large t. In the rotating case the ratio hJ/h1

becomes, eventually, so large that U1 changes sign and r1

shrinks back to the source radius ri at a finite time t3, as

shown later.

3.2. First stage

For the model to remain physical, the expression inside

the square root in (46) must remain positive. In all tested

cases this expression is initially positive, but decreases as

rN increases and hN decreases, and for sufficiently large

rN , hN reaches zero. We define the ‘first stage’ as this

initial propagation during which hN (t) > 0 and, in this

stage, the equation of motion for rN is provided by the

dynamic boundary condition at the front,

drN
dt

=
F√

2
hN (t). (48)

This closes our formulation (for the first stage) and so,

given initial conditions r1 and rN at some initial time t0,

we can calculate the subsequent propagation by simple

numerical integration of the ODEs (47) and (48) (here we

use a 4th order Runge-Kutta method). As by-products of

this calculation we obtain the volume of the tail, V1, and

the heights hJ , hN as functions of t.

The input parameters of the model are L, F and, at

the source, ri, ωi and either a Froude number or energy

condition (12) which together with the mass flux condition

hiuiri = 1 specifies both hi and ui. In the calculations

shown here we use ri = hi = ui = 1, ωi = 0, F = 1.19,

and study the effect of varying the ratio of rotation rate

to stratification L.

It is convenient to start the calculation with rN = r1 =

ri, and hN = hi at t = 0. (To achieve a smooth initial

adjustment, we add the artificial conditions: if (47) gives

a negative value, we change it to U1 = 0; if U1 > uN , we

change it to 0.9uN . We emphasise that this condition is

applied only in the very initial phase, say t < 1, until a

physically-valid motion is established. We keep in mind

that the details of the matching between the source and

the intrusion are not known, and therefore some iterations

are necessary to determine the feasible initial conditions

for the model. The radius rN and volume acquired in this

initial adjustment have negligible influence on the larger-

time flow fields which are our objective.)

The boundary conditions used for our model are com-

patible with the expected physical behaviour. We obtain

that c− > 0 in the steady-state domain ri < r < r1, which

is a necessary condition: this region is dominated by the

source, and there is no ‘backward’ propagation of informa-

tion from the head. On the other hand, at the nose, and

in the head domain, c− < 0; this region is dominated by

the front condition. The transition between these two dif-

ferent regions requires the jump at r1(t). After attaining

this qualitative physically-acceptable behaviour, we must

consider the quantitative accuracy of the results. This is
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assessed by comparisons with solutions of the governing

shallow-layer equations, which will be discussed later.

3.3. Second stage

The second stage begins when the height of the front

first vanishes (hN = 0), which is accompanied by the arrest

of the radial propagation. In the hybrid model we make the

approximation that, after this occurs, hN � hJ is main-

tained thereafter. This approximation is justified by nu-

merical solutions of the full shallow layer model (figure 3),

in which the nose height hN (t) (indicated by crosses) re-

mains very small after the flow front has first stopped, at

t ≈ 60. Substitution of this condition into (46) yields

r2N (t) = r21(t) +

(
hJ(t)

L

)2

, (49)

and combining this result with (44) produces

Vh(t) =
L
3

(
hJ(t)

L

)3

. (50)

Now (45) provides explicitly

hJ(t) = L [3(t− V1(r1))/L]
1/3

. (51)

So we observe that the time-dependent solution is deter-

mined by the behaviour of r1(t). The equation of motion

for this variable is available: we can use the same govern-

ing equation as in the first stage, (47). This is because the

jump condition at r1 reproduces a local balance, which is

not affected by the details at the nose rN which is far away.

This closes our formulation: the second stage begins at

t = t2, the end of the first stage, with a known value of r1.

The governing equations are (47), (51), and (49), which

replaces the dynamic boundary condition (48). Numerical

integration (by the same Runge-Kutta method used for

the previous stage) then provides r1(t), from which the

radius rN , the volume of the nose V1, and the height hJ

can be calculated.

An interesting characteristic of the second stage is that

U1 < 0, i.e., the jump moves backwards to the centre.

For interpretation we look at (47) and figure 5. When the

second stage starts, r1 has some large value, i.e., u1 is of

order unity and h1 is small. Since in the second stage rN

expands slowly (or even shrinks), the accumulation of in-

fluxed volume increases hJ (see (51)) and applies increas-

ingly backward pressure on the inner side of the head.

The ratio h3J/h1 is large, and the second term in the RHS

of (47) exceeds the first one. In other words, during the

second stage the head recovers the inner annulus which

became occupied by the tail in the earlier motion. (We

note in passing that the negative U1 may appear even be-

fore the end of the first stage.) This process, however,

finishes when r1 approaches the source radius. To be spe-

cific, we define the end of the second phase at t = t3, when

r1 = 1.1ri. This choice for the transition between phases

is of course arbitrary, but with negligible influence on the

overall description of motion in the next stage.

3.4. Third stage: the Coriolis lens

At t = t3 the entire influxed volume is in the lens-shaped

head, i.e. r1 ≈ 0 and V1 = 0. Substituting these values

into (49)–(51) and (43) we obtain exactly the Coriolis lens

solution (equations (35) and (40); see also [8] §13.1.1). Be-

cause there is no mechanism for changing the underlying

Coriolis-pressure balance (we neglect viscous, wind, and

instability effects), we argue that this shape will prevail

for t > t3.

Thus solutions to our hybrid model approach the Corio-

lis lens similarity solution at late times, but unlike previous

studies that have obtained the Coriolis lens [e.g. 16], we

are able to exploit the existence of a steady tail region

within the flow at early times to provide an accurate ap-

proximation to the flow before the late-time lens solution

becomes established.

A peculiarity of the second and third stages of the hy-

brid model is that rN varies with t, without apparently

being subjected to a boundary condition. The reason for

this is that a simplified balance of radial momentum (3)

holds in the ‘box’ region of the second and third stages of
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the hybrid model. As we demonstrated in §2.3, when this

radial momentum balance holds, the dynamic boundary

condition (48) is satisfied by the introduction of a bound-

ary layer is at the front of the flow, causing only a negligi-

ble perturbation to the leading-order solution in the bulk

of the flow. In the second and third stages of motion,

the leading-order location and speed of the flow front can

therefore be determined with only a kinematic boundary

condition at the front.

4. Results and comparisons

To validate the hybrid model, we compare its predictions

to those of the shallow-layer model (details of the shallow-

layer computations are given in §2.2). The salient details

of propagation, namely the predicted current radius rN (t)

and radial location of the shock r1(t), are shown in figure

6, for ri = hi = ui = 1, ωi = 0, F = 1.19 and L = 0.01,

0.05 and 0.1. In general, the qualitative agreement is good,

which indicates that the simple model captures well and

elucidates the governing physical mechanisms of this com-

plex flow. In particular, we clearly see in the current radius

rN the three stages of motion: expansion of rN , stopping

of the propagation of the flow front, and, after a while,

the resumption of growth at a slower rate (figure 6, panels

(a) and (c)). The radius r1 of the tail reaches a maximum

towards the end of the first phase, then contracts to the

centre (figure 6, panels (b) and (d)).

Solutions of the shallow-layer model exhibit some oscil-

lation in the second stage, while the hybrid model predicts

a somewhat smoother behaviour. We note, however, that

the amplitude of the oscillations decays with time, and

the oscillations are about the line predicted by the hybrid

model. At large times both models tend to the Coriolis

lens solution.

Figure 7 compares the time t2 and current radius rN (t2)

at which the nose of the current first stops (the end of first

stage). The hybrid model over-predicts these variables by

about 10%, but the dependency of t2 and rN (t2) on L is

L

rN

t2

Hybrid model

Shallow-water

0.001 0.01 0.1
10

100

1000

Figure 7: Comparisons of time and current radius at the end of first

stage rN (t2) and t2, as functions of L.

in excellent agreement. Roughly, t2 = 3/L which is about

half-rotation of the system. The corresponding radius is,

roughly, 1/L (in dimensional form, [N 2Q/2]1/3/Ω). This

can be considered the adjustment radius of the intrusion

from the initial inertial influx to the situation which is

dominated by Coriolis. This can also be regarded as the

‘Rossby radius’ of the present problem.

The ratio of the current radius rN (t) predicted by the

hybrid model to the prediction (3t/L)1/3 of the Coriolis

lens is illustrated in figure 8 for various values of L. The

time span shown in this figure corresponds to the end of

the second stage. The ratio is initially smaller than 1,

but attains 1 in a relatively short time interval. There is

a significant overshoot at the end of the first stage. The

magnitude of the overshoot increases as L decreases. Then

the ratio approaches 1 asymptotically. The occurrence of

the peak of the overshot is well correlated with the time

3/Ω (figure 8b), i.e. about one-half revolution of the sys-

tem; after about 1.5 additional revolutions of the system,

the asymptotic value 1 is well approached.

Evidently, the classical rN = (3t/L)1/3 model repro-

duces the long-time asymptotic behaviour of the system.

14



L = 0.01

0.05

0.1

(c)

rN

t

L = 0.01

0.05

0.1

(a)

rN

Hybrid model

Shallow-water

t

L = 0.01

0.05

0.1

r1

(d)

Hybrid model

Shallow-water

t

L = 0.01

0.05

r1

(b)

t
0 200 400 600 800 1000

0 50 100 150 200

0 200 400 600 800 1000

0 50 100 150 200

0

20

40

60

80

0

10

20

30

Figure 6: Comparison of current radius rN (panel (a)), and shock radius r1 (panel (b)) as predicted by the hybrid model (solid line) and

shallow water model (dashed line). Panels (c) and (d) are zooms into the shaded regions of panels (a) and (b), respectively.
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Figure 8: Panel (a): the ratio of the intrusion radius rN (t) (predicted

by the hybrid model) to the radius of the Coriolis lens (3t/L)1/3, for

L = 0.004, 0.01 and 0.05. Panel (b): the same ratio as in panel

(a), plotted against Lt, (equivalent to time nondimensionalised with

respect to the angular velocity Ω). Dots at t = t2 indicate the end

of the first stage of motion.

However, this asymptote is inadequate for the first two

stages of propagation of the intrusion (say about two rev-

olutions of the system), and the error is large for small

values of L.

5. Conclusions

We have investigated the influence of rotation on the

propagation of an axisymmetric intrusion through a strat-

ified ambient created by a constant influx, using a novel

hybrid model and accurate numerical solutions of the

shallow-layer equations.

The hybrid model reproduces well the propagation of

the intrusion both during the initial, inertially-dominated

phase, and at later times when Coriolis accelerations influ-

ence and subsequently dominate the motion. The model is

self-contained, uses no adjustable constants, and requires

insignificant computational resources.

We elucidated the following features. The main govern-

ing parameter is L, in accord with previously-published

investigations, which measures the magnitude of the ro-

tation to the magnitude of the density stratification. We

focused attention on cases with small L, relevant to vol-

canic and other geophysical applications. The propaga-

tion has three main stages. In the first stage the inertial

forces are important, the steady-state tail expands, but

the Coriolis effects achieve dominance in the head, and re-

duce the speed of propagation to zero. The time at which

this occurs is about half a revolution of the system, and

the radius of propagation is, roughly, 1/L (in dimensional

form, [N 2Q/2]1/3/Ω). In the second stage, which extends

about one further revolution of the system, the Coriolis-

dominated head expands backwards to eliminate the tail;

the forward propagation recovers (after possibly a short

period in which the front moves inwards).

In the third stage the propagation is rN (t) ∼ t1/3, as

predicted by the ‘naive’ inflated-lens model. However, in

the first two stages there is significant deviation from this

model, in particular a large overshoot at the end of the
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first stage (beginning of second stage). This demonstrates

the need for, and the advantage of, the more sophisticated

hybrid model.

Intuition might suggest that when L is small, a non-

rotating model would suffice for the description of the mo-

tion. However, a non-rotating model reproduces the flow

with fair accuracy only for the time interval Lt < 1, i.e.,

for about 0.1 revolutions of the system.

The results of our Coriolis hybrid model are supported

by the more rigorous predictions of the shallow-layer equa-

tions. Needless to say, the shallow-layer model results are

more accurate, but the numerical solution of the shallow-

layer equations is more computationally expensive than

the hybrid model by at least three orders of magnitude,

and requires more significant programming effort than the

implementation of the hybrid model. A notable difference

between the shallow-layer and hybrid model predictions is

the more pronounced oscillations of rN and r1 predicted by

the shallow-layer model. Confirmation of these predictions

requires Navier-Stokes simulations and/or laboratory ex-

periments, and this is left for future work, which, we hope,

will be motivated and guided by the present paper.
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