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Abstract
GenomeWide Association Studies suggest that Wnt16 is an important contributor to the

mechanisms controlling bone mineral density, cortical thickness, bone strength and ulti-

mately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is pre-

dominantly derived from osteoblasts. This led us to hypothesize that low bone mass would

be associated with low levels of Wnt16 expression and that Wnt16 expression would be

increased by anabolic factors, including mechanical loading. We therefore investigated

Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen

deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real

time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of

aged compared to young female mice. Neither increased nor decreased (by disuse)

mechanical loading altered Wnt16 expression in young female mice, althoughWnt16

expression was decreased following ovariectomy. Both 17β-estradiol and the Selective

Estrogen Receptor Modulator Tamoxifen increasedWnt16 expression relative to ovariec-

tomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to

Wild Type. We also addressed potential effects of gender on Wnt16 expression and while

the expression was lower in the cortical bone of aged males as in females, it was higher in

male bone marrow of aged mice compared to young. In the kidney, which we used as a

non-bone reference tissue, Wnt16 expression was unaffected by age in either males or

females. In summary, age, and its associated bone loss, is associated with low levels of

Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16

expression. In the artificially loaded mouse tibia we observed no loading-related up-regula-

tion of Wnt16 expression but provide evidence that its expression is influenced by estrogen

receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor

to regulation of bone mass per se, it potentially plays a role in influencing pathways associ-

ated with regulation of bone mass during ageing and estrogen withdrawal.
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Introduction
Wnt16 has emerged as a promising potential therapeutic target for osteoporosis as it is known
to be associated with bone mineral density, cortical thickness, bone strength, and fracture risk
[1–7]. It is one of a family of 19 secreted cysteine-rich glycoproteins that signal through the
Wnt/Lrp5/Frizzled signaling system (extensively reviewed in [1]), and several human bone dis-
orders have been connected to this pathway. Recently, Movérare-Skrtic et al reported that
Wnt16 expression is higher in cortical bone than in other organs and that it is mainly expressed
in osteoblasts in cortical bone but is not detectable in osteoclasts [8]. However, osteoblast-
derived Wnt16 inhibits osteoclastogenesis indirectly by increasing osteoprotegrin and directly
by acting on osteoclast progenitors [8]. As a consequence, targeted deletion of Wnt16 in osteo-
blasts, as well as global deletion of Wnt16, has been shown to lead to an increased number of
osteoclasts, cortical thinning, and to a significant increase in the incidence of fractures both in
male and female mice [8, 9].

Because Wnt16 clearly plays a role in regulating cortical bone mass this suggests that its
expression may be regulated by mechanical loading. Bones are active organs continuously
adapting their mass and architecture to the habitual loading to which they are exposed. Highly
strenuous activities lead to increased bone mass; conversely, unloading, such as that induced
by bed rest, leads to a rapid loss of bone. Ageing is also associated with a steady decline in bone
mass and subsequently bone strength. This decline has been suggested to be attributed to,
among others, reduced physical activity/loading of the skeleton as well as a reduced ability to
respond to the loading placed upon it. The fact that many of the changes that occur in bone
with advancing age are inducible by disuse has led our group, and others, to suggest that disuse
may be a model for ageing [10, 11]. Interestingly Shen et al showed that Wnt16 expression in
bone marrow does not appear to be regulated by ageing in humans [12].

In humans, ageing is associated with a reduction of several hormones including estrogen.
Estrogen withdrawal is associated with an imbalance in bone remodeling in favor of bone
resorption, leading to the accelerated bone loss observed at the menopause. However, the
notion that the decrease in estrogen levels during ageing is associated with the more gradual
loss of cortical bone observed with ageing has recently been challenged ([13] and references
therein). Estrogen acts through its receptors (ERα and ERβ) to preserve bone. Several studies
using ER deficient in vivomodels have shown that ERα is the most important ER in bone of
both genders and ERβmodifies ERα activity only in females [14–23]. We and others have dem-
onstrated that ERα is necessary for, and ER β also affects, loading-induced cortical expansion
in female, and possibly in male, mice [16, 21, 24–27].

Because loading and ER signaling play important roles in regulating cortical bone mass, this
led us to explore the hypothesis that the low bone mass observed with ageing and disuse would
be associated with low levels of Wnt16 expression and that its expression would be increased
by mechanical loading and/or increased ER signaling. We thus investigated Wnt16 expression
in the cortical bones of aged and young male and female mice, and in the context of mechanical
loading and unloading, estrogen deficiency and replacement and estrogen receptor α (ERα)
depletion.

Material and Methods

Animals
Female and male, young (16-week-old) and aged (19-month-old female and 22-month-old
male) C57BL/6 mice (n = 6–10 per group) were obtained from Charles River Inc. (Margate,
UK). All mice were allowed free access to water and a maintenance diet containing 0.75%
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calcium (EURodent Diet 22%; PMI Nutrition International, LLC, Brentwood, MO, USA) in a
12-hour light/dark cycle, with room temperature at 21 ± 2°C. Animals in the estradiol-ovariec-
tomy (OVX) studies were kept on a phytoestrogen-free diet for two weeks before and during
the entire experiment (R70, Lantmännen, Sweden). Peri-operative analgesia was provided by
buprenorphine (Vetergesic, Alstoe, UK, 0.08mg/kg subcutaneously). The ERα depleted and
Tamoxifen-treated mice were from previous studies from our laboratory [24, 28]. The mice
were housed in groups of up to 5 animals and all cages contained wood shavings, bedding, and
a cardboard tube for environmental enrichment. At the end of the experiments, the mice were
sacrificed by anesthesia with ketamine (Vetalar, Zoetis, London, UK) and dexmedetomidine
(Dexdomitor, Elanco, Basingstoke, UK), followed by exsanguination via cardiac puncture. Dis-
location of the neck was performed to ensure death prior to dissection. All procedures com-
plied with the UK Animals (Scientific Procedures) Act 1986 under a UK Government Home
Office project license (PPL30/2829) and were reviewed and approved by the University of Bris-
tol ethics committee (Bristol, UK).

The Effect of Age onWnt16 Expression
To determine Wnt16 expression in tissues of young and aged mice, male and female mice were
sacrificed. Cortical bone, bone marrow and left kidneys were collected and immediately snap
frozen in liquid nitrogen and later used for qRT-PCR.

The effects of Mechanical Loading: Reduced Loading of the Tibia
Induced by Sciatic Neurectomy
Reduction in habitual loading of the tibia on one side was achieved by unilateral sciatic neur-
ectomy (SN). This was performed by resecting a 3- to 4-mm segment of the right sciatic nerve,
posterior to the hip joint, under isoflurane-induced anesthesia. Mice underwent unilateral SN
on day 1, and were sacrificed 3, 6, 12 or 24 hours, or two weeks later (day 15). Bilaterally tibial
cortical bone and marrow were separated and immediately snap frozen in liquid nitrogen and
later used for quantitative RT-PCR.

The effects of Mechanical Loading: Increased Loading of the Tibia by
External Mechanical Loading
The right tibias were subjected to a single period of external mechanical loading, under isoflur-
ane-induced anesthesia, to investigate the effect of loading onWnt16 expression. Left limbs
were used as internal controls as previously validated [29, 30]. The protocol for non-invasively
loading the mouse tibia has been reported previously [28, 30]. In brief, the flexed knee and
ankle joints are positioned in concave cups; the upper cup, containing the knee, is attached to
an actuator arm of a loading device and the lower cup to a dynamic load cell. The tibia is held
in place by a 0.5N continuous static preload. Forty cycles of dynamic load are superimposed
with 10-second rest intervals between each cycle. The protocol for one cycle consists of loading
to the target peak load, hold for 0.05 seconds at the peak load, and unloading back to the 0.5N
preload. All mice were allowed normal cage activity in between loading sessions. Following
loading, mice were sacrificed after 1, 6, 12 or 24 hours and bilaterally, tibial cortical bone and
marrow were separated and immediately snap frozen and later used for quantitative RT-PCR
analyses.
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The Effects of Estradiol Treatment in Young Female Mice
Virgin female C57Bl/6 mice were sham-OVX (n = 10) or OVX (n = 20) at 16 weeks of age (day
1). Five days after the surgery (day 6) the OVX mice were randomly subdivided into two
groups (n = 10). The sham-OVX and one OVX group were treated with 17β-estradiol-3-benzo-
ate (E2, Sigma, Poole, UK) at either 0.5 or 10μg/mouse/day, with the remaining OVX group
receiving vehicle (10% Molecular grade ethanol (Fisher, Loughborough, UK), 90% Miglyol 812
(Cremer Oleo, Witten, Germany)) by s.c. injection on days 6, 7, 8 and 9. Mice were sacrificed
on day 10. Femurs were immediately snap frozen in liquid nitrogen and later used for quantita-
tive RT-PCR.

The Effects of Tamoxifen Treatment in Young Female Mice
Mice were treated with Tamoxifen (2 mg/kg/day) using a regimen that we have previously
shown synergistically enhanced loading-related bone gain [28]. At 16 weeks of age (day 1), 16
virgin female C57BL/6 mice were OVX. Ten days after surgery (day 11), the OVX mice were
randomly subdivided into two groups (n = 8) and received either vehicle (peanut oil, 5 ml/kg;
Sigma) or tamoxifen citrate (Tocris Cookson Inc., Ellisville, MO) by s.c. injection on days 11,
13, 15, 18, and 21 and were then sacrificed on day 25. Tibias were immediately snap frozen in
liquid nitrogen and later used for qRT-PCR.

Quantitative Real-time PCR Analysis
For RNA extraction from bone, the surrounding muscle was dissected, the epiphyses were
removed, and the marrow was removed by centrifugation in custom made bone holders. Bones
were pulverized in QIAzolTM using a TissueLyser LTTM (Qiagen, Sussex, UK). RNA was
extracted, and genomic DNA was eliminated using RNeasyTM Plus Universal kits (Qiagen, Sus-
sex, UK). First strand cDNA synthesis was performed using SuperScriptIITM (Invitrogen, Pais-
ley, UK). Quantitative real-time PCR was performed using the standard curve method with
QuantiTect SYBR

1

Green (Qiagen, Germany) and a 7900HT Fast Real Time PCR system
(Applied Biosystems). Samples were run in duplicates and the expression levels for all the
genes analyzed were normalized relative to β2-microglobulin (β2-microglobulin). Average val-
ues were used for subsequent statistical analysis. PCR primers were retrieved from the Harvard
Primer Bank as previously reported [31]. Primers were as follows: mouse β2-microglobulin
sense ATGGCTCGCTCGGTGACCCT and anti-sense TTCTCCGGTGGGTG-CGTGA [32]; mouse
Wnt16 sense AGTGCAGGCAACATGACCG and anti-sense CCACATGCCGTACTGGAC ATC,
mouse Sost sense GCCGCGAGCTGCACTACAC and anti-sense CACCACTTCACGCG CCCGAT
[32]; mouse ERβ (Esr2) sense ACGGCTCTCT-ACATAGGAGGA and anti-sense GAGCTTCC
CCGGGTGTCC; EGR-2 sense GGCCAG-ACCAAGATCCAC and anti-sense AGCCCCCAGGAC
CAGAGG [33]; OPG sense TGTGTGTCCCTTGCCCTGACCA and anti-sense ACACTCGGTTGT
GGGTGCGG; Axin2 sense ATGAGTAGCGCCGTGTTAGTG and anti-sense GGGCATAGGTTTG
GTGGACT; and Rankl sense CAGCATCGCTCTGTTCCT GTA and anti-sense CTGCGTTTTCA
TGGAGTCTCA.

Statistical analysis
Comparisons between two groups were by t-test following Levene’s test for homogeneity of
variance. Comparisons between more than two groups were by analysis of variance with post-
hoc Bonferroni correction in SPSS Statistics (v.17). Data is presented as the mean ± standard
error and p< 0.05 was considered statistically significant.
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Results

Wnt16 Expression in Bone is Reduced with Age in Female and Male
mice
We assessed Wnt16 expression in tissues from young and aged female femoral cortex, marrow
and kidney (Fig 1A–1C). Wnt16 expression was significantly lower in cortical bone (-78%,
p<0.001) and bone marrow (-45%, p<0.01) in aged compared to young mice. However, there
was no difference in Wnt16 expression when comparing young and aged kidney. In order to
investigate if the changes in Wnt16 expression during ageing are gender dependent, we also
assessed Wnt16 expression in femoral cortex, marrow and kidney from young and aged male
mice (Fig 1D–1F). In cortical bone Wnt16 expression was lower in aged than young males
(-54%, p<0.05), but enhanced in male bone marrow (+282%, p<0.05). Wnt16 expression was
not significantly different in young or old male compared to female cortical bone, although
there was a non-significant trend towards a lower expression of Wnt16 in young male com-
pared with young female cortical bone (-36%, p = 0.09). Although Wnt16 was expressed at a
significantly lower level in both young and old male compared to female kidneys (-78% and
-67%, respectively p<0.001), there was no difference in Wnt16 expression between kidneys
from young and aged males (Fig 1F).

In females, the ageing-related reduction in Wnt16 expression was not associated with signif-
icant changes in the expression of the canonical Wnt targets Axin2 or osteoprotegerin (OPG)
in cortical bone, nor of the OPG-binding regulator of osteoclast differentiation, receptor activa-
tor of nuclear factor κB ligand (Rankl) or the OPG:Rankl ratio (Fig 2A–2D). In male cortical
bone, ageing was not associated with changes in Axin2 or OPG expression (Fig 2E and 2F), but
aged male mice had lower Rankl expression resulting in a higher OPG:Rankl ratio than in
young male mice (Fig 2G and 2H).

Wnt16 Expression is Unaffected by Increased or Decreased Mechanical
Loading
We analyzed the expression of Wnt16 in female mice subjected to disuse for 3, 6, 12 and 24
hours (Fig 3A) or 2 weeks (Fig 3B) in female mice. Disuse did not result in any significant
changes in Wnt16 expression (Fig 3A and 3B). However, the expression of Sost, another regu-
lator of the Wnt-pathway, was significantly increased (+118.6%, p = 0.004) after two weeks of
disuse (Fig 3C). Sost expression was not significantly altered by disuse within the first 24 hours
following neurectomy (data not shown).

We then investigated if Wnt16 could be involved in the anabolic effects of loading on corti-
cal bone in vivo. Wnt16 expression was not altered after 1, 6, 12 or 24 hours of loading (Fig
4A). In contrast, the early growth response protein 2 (Egr2) was significantly up-regulated
(+224%, p<0.001) 1 hour following a single period of loading (Fig 4B).

Wnt16 Expression in Bones is Reduced by Ovariectomy and Enhanced
by Estrogen Treatment
We investigated Wnt16 expression in mice subjected to estrogen withdrawal following OVX or
OVX with simultaneous treatment with the selective estrogen receptor modulator (SERM)
Tamoxifen, or two doses of the endogenous estrogen 17β-estradiol (E2). Tamoxifen signifi-
cantly increased Wnt16 expression by 70% (p<0.05) (Fig 5A), but was not associated with
changes in Axin2 expression (Fig 5B). Tamoxifen significantly increased both OPG and Rankl
(Fig 5C and 5D), such that the OPG:Rankl ratio was not significantly different between vehicle
and tamoxifen-treated mice (p = 0.23, data not shown).
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Uterine weight decreased significantly in response to OVX (-75.4%, p<0.001 vs. sham) and
was fully restored following E2 treatment (Fig 6A). Wnt16 expression was decreased by OVX
(-51.9%; p<0.001 vs. sham), and was dose-dependently enhanced by 17β-estradiol in cortical
bone (Fig 6B). These differences in Wnt16 expression were not associated with significant dif-
ferences in Axin2 expression (Fig 6C). 17β-estradiol tended to down-regulate OPG expression
(Fig 6D) without significantly changing Rankl (Fig 6E), resulting in a significant reduction in
the OPG:Rankl ratio (Fig 6F) as has previously been reported [34].

We then analyzed Wnt16 and ERβ expression in ERα depleted female mice to study the
involvement of the estrogen receptors in the regulation of Wnt16 expression. Both Wnt16 and
ERβ expression were significantly increased in ERα depleted female mice (+952% and +616%
respectively, p<0.001) (Fig 7A and 7B). In contrast to the females, neither Wnt16 nor ERβ
expression were altered in male ERα depleted mice (data not shown). ERα depleted mice also
had reduced expression of Axin2 (Fig 7C), increased OPG (Fig 7D, as previously reported in
male ERα-/- mice [34]), and increased Rankl (Fig 7E). The OPG:Rankl ratio was significantly
higher in ERα-/- than wild-type mice (Fig 7F).

Discussion
Wnt16 has emerged as a promising therapeutic target, since it appears to be related to changes
in bone mineral density, cortical thickness, bone strength and fracture risk. However, little is

Fig 1. Wnt16 expression is decreased in femoral cortex of agedmice.Wnt16 expression was
significantly lower in aged compared to young female (A) cortical bone and (B) bone marrow but unaffected
by age in (C) kidney. Wnt16 expression was significantly lower in aged compared to young male (D) cortical
bone and (E) bone marrow but unaffected by age in (F) kidney. Wnt16 expression was determined by
quantitative RT-PCR and normalized relative to β2-microglobulin. Bars represent the mean ± SEM, * =
p<0.05, ** = p<0.01 *** = p<0.001 vs. young females, N = 6–8.

doi:10.1371/journal.pone.0140260.g001
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known about regulation of the Wnt16 gene itself. We hypothesized that since the effects of
Wnt16 are primarily anabolic it would be down-regulated in conditions known to be associated
with low bone mass and up-regulated in situations of increased bone mass. We therefore inves-
tigated the regulation of Wnt16 expression in the context of ageing, disuse, mechanical loading,

Fig 2. Ageing does not significantly alter expression of Axin2, OPG, or Rankl, in female mice but cortical bone Rankl expression is lower in aged
than youngmale mice. (A,E) Axin2, (B,F) OPG, (C,G) Rankl and (D,H) the OPG:Rankl ratio were quantified in cortical bone from young and aged (A-D)
female and (F-H) male mice by quantitative RT-PCR and normalized relative to β2-microglobulin. Bars represent the mean ± SEM, * = p<0.05, N = 8.

doi:10.1371/journal.pone.0140260.g002

Fig 3. Wnt16 mRNA expression is not affected by unloading in young female mice.Wnt16 expression
was unaffected by unloading for (A) 3, 6, 12 and 24 hours, and after (B) two weeks of unloading in young
female mice. However, (C) Sost gene expression was significantly increased after two weeks of unloading.
Gene expression was determined by quantitative RT-PCR and normalized relative to β2-microglobulin. Bars
represent the mean ± SEM, ** = p<0.01 vs. sham operated control, N = 6. SN = sciatic neurectomy.

doi:10.1371/journal.pone.0140260.g003
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estrogen deficiency and ER depletion in murine cortical bone. Our findings suggest that
Wnt16 expression in bone and bone marrow, but not kidney, is gender-specifically altered with
age and estrogen status. It is unaffected, however, by either increases or decreases in mechani-
cal loading. This suggests that Wnt16 is not an obligatory contributor to increases in bone
mass per se but is involved in some of the pathways, particularly those involving estrogen and
age, which in turn result in alterations in bone mass.

It has recently been shown that cortical bone is the major source of Wnt16 in mice [8],
although other Wnt ligands also play major roles in bone. Wnt1 mutations cause osteogenesis
imperfecta in humans [35, 36], osteoblastic Wnt5a regulates osteoclastogenesis [37] at least in
part through interaction with Wnt16 [38], overexpression of Wnt7b in osteoblasts dramatically
increases bone mass [39], and Wnt4 overexpression in osteoblasts prevents bone loss associ-
ated with ovariectomy or ageing [40]. Here we report that differences in Wnt16 expression
under different (re)modelling conditions are not directly linked to cortical bone expression of
the canonical Wnt targets Axin2 and OPG, nor of the OPG interaction partner Rankl. Axin2
was not affected by any of the interventions tested except ERα deletion, which decreased Axin2
despite increasing Wnt16 expression. OPG was significantly increased by ERα deletion as have
been previously described [34]and by treatment with the mixed ER agonist/antagonist tamoxi-
fen, paralleling changes in Wnt16 expression in both situations, however short term estradiol
treatment tended to down-regulate OPG resulting in a reduced OPG:Rankl ratio despite
increasing Wnt16 expression. Rankl was up-regulated by ERα deletion as well as tamoxifen
treatment, and was down-regulated by ageing in male but not female mice, again producing a
pattern of differences in expression which does not directly mirror the differences observed in
Wnt16. Further in vitro studies would be required to dissect out these potential interactions
between Wnt16, estrogen receptor and downstream canonical Wnt/β-catenin signaling.

It has recently been shown that cortical bone is the major source of Wnt16 in mice, that it is
essential for normal cortical bone thickness without altering trabecular bone mass [8,9] and
that deletion of Wnt16 from osteoblasts, but not osteocytes, results in a dramatic increase in
fracture risk [8]. As in humans, both male and female aged (19 month old) mice have reduced
cortical thickness and reduced cortical as well as trabecular bone mass [11]. Our finding that

Fig 4. Wnt16 expression is not acutely affected by axial mechanical loading. (A) Wnt16 expression was
unaffected 1, 6, 12 and 24 hours after a single episode of axial mechanical loading. However, (B) Egr2
expression was significantly up-regulated in young female mouse tibias after 1 hour. Gene expression were
determined by quantitative RT-PCR and normalized relative to β2-microglobulin. Statistical analysis was by
paired t-test. Bars represent the mean ± SEM. *** = p<0.001 vs. non-loaded control, N = 6–10.

doi:10.1371/journal.pone.0140260.g004
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Wnt16 is expressed at a lower level in cortical bone of aged compared to young mice of both
genders could therefore be of significance, and provides a possible explanation to the cortical
thinning and weakening of bones seen during ageing [41].”In a previous study, when a pool of
male and female-derived human bone marrow from old individuals was compared with young
[12], Wnt16 was not altered with age. In contrast here we show that Wnt16 expression in bone
marrow is down-regulated in female but up-regulated in male bone marrow with age. This
apparent discrepancy could be explained by the differences in species used (human vs. murine).
Another explanation could be that the opposite responses onWnt16-expression in male and
female marrow were hidden when samples from the two genders were pooled in the previous
study, but became apparent in our study where male and female marrow was compared sepa-
rately between young and old groups.

The fact that many of the changes that occur in bone with advancing age are inducible by
disuse has led our group, and others, to suggest that disuse may be a model for ageing [10, 11].
Two weeks of disuse, associated with increased Sost expression in the present study, reduces
cortical bone mass and results in cortical thinning due to expansion of the medullary cavity in
adult mice [42]. However, although Wnt16 was lower in aged bone compared to young bone,

Fig 5. Tamoxifen treatment enhancesWnt16, Opg and Rankl expression in cortical bone of young
female mice. (A) Wnt16, (B) Axin2, (C) OPG and (D) RANKL expression was quantified by qRT-PCR in
ovariectomized young female mice treated with vehicle or tamoxifen. Bars represent the mean ± SEM. * =
p<0.05, ** = p<0.01 vs. vehicle, N = 8.

doi:10.1371/journal.pone.0140260.g005
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we did not observe any changes in Wnt16 expression either early (3–24 hours) or late (2
weeks) after the start of sciatic neurectomy-induced disuse. In contrast, we confirm previous
results showing an increase in the Wnt inhibitor Sost two weeks after sciatic neurectomy [43].
This indicates that sciatic neurectomy induced a response in expression of other responsive
genes in the Wnt-pathway. It is possible that in response to disuse, up-regulation of inhibitory
proteins like Sclerostin is more important, whereas in ageing the regulation of the Wnt

Fig 6. Estrogen treatment enhancesWnt16 expression in cortical bone of young female mice. (A) Both
a low (gray bars) and a 20 times higher (black bars) dose of 17β-estradiol (E2) restored the uterus weight. (B)
Wnt16, (C) Axin2, (D) OPG, (E) Rankl and (F) the OPG:Rankl ratio were determined by qRT-PCR in cortical
bone from young female mice subjected to sham surgery or ovariectomized and then treated with vehicle, low
dose or high dose of E2. Following qRT-PCR analysis, the sham-operated group was normalized to 100%, as
indicated by the horizontal dashed line. Bars represent the mean ± SEM. ** = p<0.01,*** = p<0.001 vs.
vehicle, N = 10.

doi:10.1371/journal.pone.0140260.g006
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signaling molecules themselves appears affected. This suggests that ageing and disuse could be
associated with bone loss through its effects on different targets within the same pathway.

Physical activity is the primary functional determinant of bone mass and architecture. It
was recently shown using Wnt16 knockout mice that the anabolic effects of loading by 4-point
bending is dependent onWnt16 and that both axial loading and loading by four-point bending

Fig 7. Wnt16 and ERβ expression are increased in cortical bone of ERα depleted female mice. (A)
Wnt16, (B) ERβ, (C) Axin2, (D) OPG, (E) Rankl and (F) the OPG:Rankl ratio were quantified in young ERα
depleted female mice and compared to WTmice. Gene expression was determined by quantitative RT-PCR
and normalized relative to β2-microglobulin. Bars represent the mean ± SEM. * = p<0.05, ** = p<0.01,*** =
p<0.001 vs. WTmice, N = 6.

doi:10.1371/journal.pone.0140260.g007
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increase Wnt16 expression after two weeks of loading (at which point considerable new bone
formation has occurred) [9]. The axial tibial loading protocol used in the present study when
continued for two weeks, is potently osteogenic primarily due to periosteal modelling [44]. The
initial cellular responses observed within the first 24 hours following loading include increased
osteocyte and osteoblast metabolic activity [45], up-regulation of early response genes includ-
ing Egr2, down-regulation of Sost/sclerostin [11, 33] and an increase in periosteal cell number
[11] preceding new bone formation. However, we could not detect any alterations in Wnt16
expression during the first 24 hours after axial loading, although we could reproduce previous
results showing an increase in EGR2 expression 1 hour after loading indicating that the strain
applied was sufficient to engender a biological response [25, 33]. One possible explanation for
the apparent contradictory results is that Wnt16 is not a primary target during mechanotrans-
duction that leads to the acute increase in osteoblast number and/or activity. We have shown
that the greatest number of adaptive transcriptomic changes in response to loading occur
within the first 3 hours [33] and increases in periosteal osteoblast number are evident within
24 hours [11]. These responses occur before changes in Wnt16 expression are detected. How-
ever, Wnt16 may act later in the process of mechanotransduction, either through its upregula-
tion or through down-regulation of its antagonists including sclerostin, thereby influencing the
osteogenic context in which subsequent (re)modelling stimuli act.

We have previously reported that the ERs influence both the acute responses of bone to
mechanical strain and the cellular context in which these stimuli act. There are several putative
estrogen response elements half-sites in the Wnt16 promoter and recently it was reported that
the Wnt16-promoter also contains a functional c-Jun binding site [46], indicating that estrogen
and/or ERs could directly and/or indirectly regulate the Wnt16 promoter. Indeed, Wnt16
expression was reduced in response to ovariectomy-induced estrogen withdrawal, which if
maintained for several weeks reduces cortical bone mass in mice as in humans [10, 28]. Wnt16
expression was normalized by E2-treatment, supporting a direct regulation of the Wnt16 gene
by estrogens. Furthermore, Wnt16 expression was increased by tamoxifen which acts as a
mixed ER agonist/antagonist. We have previously reported that tamoxifen administered to
ovariectomised mice following the same protocol used in this study down-regulates Sost
expression [47], increases cortical and trabecular bone mass and synergistically enhances the
osteogenic response to loading.

Wnt16 expression was normalized by E2-treatment and enhanced by tamoxifen treatment,
supporting a direct regulation of the Wnt16 gene by estrogens. In addition, Wnt16 expression
was significantly higher in cortical bone of ERα-depleted female mice that have 10-fold higher
levels of estrogen than WTmice [15, 18]. Adult female ERα-depleted mice have increased tra-
becular bone but reduced cortical area and a diminished cortical osteogenic response to
mechanical loading [25, 48]. Our finding, that ERβ expression is also high in cortical bone of
these mice, indicates that ERβ activated by high estrogen-levels could act on the Wnt16 pro-
moter in cortical bone to compensate for the loss of ERα in female mice. These findings could
also, at least in part, explain the difference in bone mass between estrogen-depleted mice
(where no ligand-dependent ER activity is present) that have very low bone mass, and ERα
depleted mice (where ERβ is activated) that have only slightly reduced bone mass. Because
estrogen is one of the hormones that is reduced with age, and the ERs themselves are regulated
by estrogens in bone [26], it is possible that the down-regulation of Wnt16 with age could be
due to decreased estrogen signaling.

In summary, we have shown that in bone and bone marrow, but not kidney, Wnt16 expres-
sion is regulated in a gender-specific manner with age. It is down-regulated in female cortical
bone and bone marrow, while it is down-regulated in male cortical bone and up-regulated in
male bone marrow. Wnt16 expression is up-regulated in cortical bone by estrogen and the
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SERM Tamoxifen, but not by disuse or increased mechanical loading. This suggests involve-
ment of Wnt16 in some but not all of the pathways participating in the regulation of bone
mass.
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