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Abstract—In this paper, we investigate various methods to
combat packet loss in a residential communication system based
on the Bluetooth Low Energy (BLE) standard, focusing on
BLE’s connectionless mode (undirected advertising) in which
no retransmissions are possible. We start by introducing two
orthogonally polarised antennas at the receiver, thus improving
the probability of successful reception. This is followed by
enabling error correction using redundancy introduced by the
Cyclic Redundancy Check (CRC) code of BLE. The CRC error
correction is based on a novel approach of applying iterative
decoding algorithms. We then consider a BLE system deployed
in a residential environment and utilise the presence of multiple
receivers that are necessary to provide coverage. These three
techniques come at no cost for the transmitter, thus preserving
its energy efficiency. The final technique deals with error control
coding in the application layer, in which some redundancy is
added at the transmitter before data is sent to the physical layer.
By combining all four methods, a distributed error correction
algorithm is developed. Using real BLE packets collected in a
typical 2-storey house, it is shown that the designed system can
correct 80% of all corrupted packets.
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I. INTRODUCTION

Smart homes and wearable technologies are widely consid-
ered as a possible answer to the challenges of national health
systems. Indeed, the aging population and the rise of chronic
conditions, such as depression or diabetes, drive the cost of
healthcare to unsustainable levels. In this context, advances
in wearable computers, Wireless Sensor Networks (WSNs)
and Ambient Assisted Living (AAL), provide means that sup-
port self-management of health and well-being, and facilitate
timely interventions. A key challenge of developing long-
term services for such target groups is energy consumption.
Although acceptable in fashionable gadgets, healthcare tech-
nologies cannot depend on the user for regular maintenance,
such as battery charging.

Energy-efficient communication is generally considered a
key to a long battery lifetime. Bluetooth Low Energy (BLE)
[1] is a compelling choice for such applications, primarily
due to its very low power nature and its widespread in-
tegration. BLE defines two modes of operation. The first
is based on a connectionless unidirectional communication
scheme where the transmitter is broadcasting to a receiver.
The second implements the traditional connection-oriented

Bluetooth scheme. The simplicity of the connectionless BLE
makes it an ideal choice for long-term monitoring in a res-
idential environment. Its advantages can be summarised as
follows. Firstly, it conveys data through three advertisement
channels that are carefully designed not to interfere with the
popular IEEE 802.11 channels 1, 6 and 11 [2][3]. Secondly,
when the user is moving, the handovers to other receivers
are seamless, quick and without overhead. Lastly, its minimal
design introduces low overhead and is energy-efficient, due to
absence of connection establishment and channel listening. On
the negative side, the key weakness of connectionless BLE is
the lack of acknowledgements and retransmissions. Channel
errors are experienced as application-layer data loss.

In this paper, we investigate techniques that mitigate packet
loss in connectionless BLE. We consider a broadcasting net-
work, where an energy-constrained wearable computer streams
data to a constraint-free smart infrastructure of multiple re-
ceivers. Instead of energy-consuming retransmissions, the key
idea of the proposed system is to maintain the wearable
sensor simple and energy-efficient, by applying mechanisms
that mitigate packet loss in the infrastructure. In particular, we
investigate four different techniques, namely (i) orthogonally
polarised antennas, (ii) CRC (Cyclic Redundancy Check) error
correction, (iii) application-layer coding, and (iv) multiple
spatially-distributed receivers. The contribution of this work
lies in its unique combination of all four techniques into a
distributed system that is suitable for deployment in residential
environments. Experiments in a residential environment show
that the designed system mitigates packet loss and significantly
improves the reliability of connectionless BLE. To the extent
of our knowledge, this work documents, for the first time in the
literature, the effectiveness of the aforementioned techniques
in a practical BLE broadcasting network and their benefits in
comparison to off-the-shelf BLE.

The remainder of the paper is structured as follows. Sec-
tion II presents the four applied techniques. Section III eval-
uates each of the methods separately. Section IV combines
the techniques in a full system design and demonstrates the
full-system performance. Section V concludes the paper.

II. PACKET LOSS MITIGATING TECHNIQUES

In a normal BLE-based communication system, data bits
from the upper layers are first encapsulated into physical



(PHY) layer packets. The CRC encoder adds additional 24
redundant bits to each packet that are used to detect errors at
the receiver (CRC-24). The encoded data is then modulated
and up-converted onto a carrier frequency. At the receiver,
the arrived signal is down-converted and demodulated. For
each packet, it is then checked whether the packet contains bit
errors. If there is at least one bit error, the packet is discarded.
Otherwise, the packet is forwarded to the upper layers of
the receiver. In the connectionless mode, dropped packets are
experienced as application-layer data loss. It is clear that an
off-the-shelf connectionless BLE system performs well only
if the probability of bit error is very low.

A. Orthogonally Polarised Antennas

One of the simplest ways to improve the reliability of
a practical BLE system is to introduce two orthogonally
polarised antennas at the receiver [4]. In practice, this can
realised by incorporating two parallel receiving radios, instead
of just one, such that one antenna is polarised vertically and
another horizontally. Considering that one end of the link,
i.e. the wearable sensor, is unpredictably polarised, as it is
following the movements of the user, such antenna arrange-
ment would increase the probability of successful reception.
The input streams from the two radios are required to be
combined into one stream after the CRC check. The cost of
the solution is a minimal increase in computation complexity
at the receiver. However, there are no additional costs for the
energy-constrained transmitter.

B. CRC Error Correction

While the CRC code employed by BLE is used for error
detection only, it has an inherent error correction potential due
to redundancy it introduces to transmitted data. CRC error
correction would directly improve the packet reception rate at
the receiver, thus, for example, allowing it to be placed further
from the transmitter.

In our previous works [5][6], we introduced a novel ap-
proach to the error correction of CRC codes based on iterative
decoding techniques. In particular, it was shown how the
BLE CRC code can be converted to an equivalent Low
Density Parity Check (LDPC) code by making its parity check
matrix sparse using the algorithm proposed in [7]. The most
widely used decoding approach for LDPC codes is based
on Belief Propagation (BP) [8]. As an alternative to BP, a
linear programming approach to the decoding of LDPC codes
was proposed in [9]. The resulting algorithm known as the
Alternating Direction Method of Multipliers (ADMM) was
developed in [10] and [11]. In [5][6], we studied both BP- and
ADMM-based decoding algorithms in the context of the BLE
CRC code. The ADMM-based approach showed a superior
performance to that of BP, so it is employed in this paper.

The iterative decoding methods described above use soft
information about the bits to be decoded in the form of log-
likelihood ratios (LLRs). The LLR of a bit indicates how close
the bit value is to 1 or 0 based on channel measurements. In
a practical BLE system, the LLRs are not directly available at

the receiver, since the demodulator produces hard decisions in
the form of 1s and 0s. In [5], it is shown that the transmitter,
channel and receiver can be modelled as an equivalent binary
symmetric channel (BSC) that flips some of the bits encoded
by the CRC code with a probability p. The LLR for the i-th
received bit ri can be calculated as

γi = (2ri − 1) ln

(
1− p
p

)
. (1)

In a practical BLE system, some indication of the quality of
the received signal is usually available. For example, in our
platform [12], the Received Signal Strength Indication (RSSI)
is available for every received packet. Therefore, a statistics
on the bit flipping probability (or the bit error rate, BER) p as
a function of the RSSI level can be measured in advance by
sending some known packets. This statistics can then be used
as a loop-up table to calculate LLRs in a real scenario.

C. Application-Layer Coding

The packet loss mitigation techniques considered so far did
not change the way the information is transmitted. At the
same time, it is clear that if some error correction coding was
introduced among the data bits prior to transmission, it would
allow more packets to be corrected than by means of CRC
correction only. We will call this approach Application-Layer
Coding (ALC), since it applies to the actual application data
bits, before sending them to the PHY layer.

For a general communication system, error correction cod-
ing offers a compromise between the amount of data that can
be corrected and the level of redundancy. In one extreme case,
no redundancy offers the maximum bandwidth utilisation, but
at the same time the highest error rate. In another extreme case,
data can be transmitted repetitively (using so called repetition
coding), which provides excellent error correction capabilities,
but the bandwidth utilisation reciprocal to the repetition factor.

Compared with a traditional, non-constrained communica-
tion system, low energy systems have an additional factor
to take into account - the energy consumed to transmit
data. It is therefore natural to define the energy efficiency
of a system as a ratio between the energy available at the
transmitter and the amount of information reached the receiver.
If error correction coding is applied, the encoding process will
consume some additional energy. Let n be the total number of
bits after encoding. The number of original message bits can
be expressed as m = nr, where r ≤ 1 is the code rate. The
energy efficiency can now be defined as

η =
E + δ

m(1−MER)
=

E + δ

nr(1−MER)
, (2)

where E is the energy required to transmit an uncoded mes-
sage, δ is additional energy consumed by the encoding process
and MER is the message error rate after error correction. By
fixing E and n, (2) can be used to benchmark and compare
the performance of different coding techniques: the lower the
η, the more efficient the technique is.

In this paper, we exploit the fact that the transmitter sends
three advertisement packets on different carrier frequencies,



Fig. 1. The wearable sensor prototype (left) and the receiver that employs
two orthogonally polarised antennas (right).

which can be viewed as three independent channels. The
natural options are therefore to encapsulate unique message
bits into each packet (no ALC, r = 1), to encapsulate the same
message bits into each packet (repetition coding, r = 1/3)
or to employ some encoding between messages bits before
sending them to the PHY layer. For the latter case, we propose
a simple encoding scheme based on the XOR operation: a
message is split into two parts, A and B, with A being sent
on the first channel, B on the second, and A⊕B on the third,
where ⊕ denotes a bit-wise XOR operation. The resulting code
rate is r = 2/3. At the receiver, it is clear that to receive the
message correctly, it is sufficient to successfully receive any
two out of the three packets. Let p denote the PHY packet
error rate (PER). Assuming that each packet experiences an
independent loss, the MER for the XOR-based ALC can be
calculated as follows:

MERXOR = p3 + 3(1− p)p2 = 3p2 − 2p3. (3)

The MER for repetition coding and the uncoded systems can
be similarly obtained as follows:

MERrep = p3; (4)

MERunc = 1− (1− p)3 = 3p− 3p2 + p3. (5)

By substituting (3), (4) and (5) to (2) and using the corre-
sponding code rates, the three techniques can be compared in
terms of the energy efficiency.

D. Multiple Receivers

In this work we consider a case when a wearable broadcasts
to several receivers, which in turn forward traffic to a central
device, or a hub. Since the transmission power of BLE
radios is typically low, multiple receivers are necessary to
provide signal coverage over the area in question, for example
a residential house. Leveraging the broadcasting nature of
connectionless BLE, traffic combining can be performed in
the central hub. Indeed, not only the coverage is increased,
but also different pieces of a broken message (if ALC is
enabled) may reach different receivers. This would increase
the probability of successful reception and allow the wearable
to operate at smaller transmission power levels compared with
a single receiver scenario.

III. PERFORMANCE EVALUATION

In this section, we experimentally evaluate the considered
packet loss mitigation techniques. The experiments are con-
ducted using the prototypes of the SPHERE (a Sensor Platform
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Fig. 2. CDF of the RSSI for different antenna arrangements.

for Healthcare in a Residential Environment) infrastructure
[12] that is based on BLE for body-centric communications.
The transmitter is the prototype wearable sensor shown in
Fig. 1 (left). We refer the reader to [12] and [13] for details on
the hardware and employed patch antenna respectively. Using
connectionless BLE, the wearable sensor broadcasts data at
5 Hz in all three advertisement channels. We use the maximum
allowed packet size (39 bytes). The receiver, incorporates two
radios that employ two orthogonally polarised dipole antennas,
working in parallel, as shown in Fig. 1 (right). For details on
the receiver antennas we refer the reader to [14].

Unless otherwise noted, the presented evaluations are based
on data collected in a 2-storey house in the city of Bristol, UK.
For the remainder of this paper, we will refer to these data sets
as the SPHERE house measurements. For these measurements,
three receiver units are deployed in the house, programmed to
log the RSSI, the outcome of the CRC check, and the hex
code of corrupted received packets.

A. Orthogonally Polarised Antennas

The first set of experiments is designed to evaluate the
gain from using two antennas with orthogonal polarisations at
the receiver. The evaluation uses part of the SPHERE house
measurements, in which a user, with the wearable sensor
mounted on his wrist, performs random walks within each
of the 7 rooms of the house for 70 minutes (10 minutes in
each area). The transmission power of the wearable sensor is
set at −20 dBm.

Fig. 2 shows the Cumulative Distribution Function (CDF)
of the RSSI of the received packets that correspond to horizon-
tally and vertically polarised antenna respectively. As the user
moves randomly within house, a different receiver antenna
aligns to the polarisation of the transmitted signal. Using two
orthogonally polarised antennas, our system keeps the packet
that is received with the highest received signal on a per-packet
basis. Fig. 2 also plots the CDF of the RSSI after applying two
orthogonally polarised antennas. Without any change in the
energy-constrained wearable sensor, this technique accounts
for an approximately 3 dB median improvement in the RSSI.
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Fig. 3. Packet Error Rate (PER) for various RSSI levels before and after
CRC correction.

B. CRC Error Correction

The evaluation of the CRC Error Correction is based on
a larger set of corrupted packets that is collected in an office
environment. In this case, a receiver was fixed on a desk, while
the wearable transmitter was positioned in different locations
within the office and the surrounding areas. To minimise
interference, the data collection sessions were performed at
off-peak hours when the office was empty. In a period of
over 10 hours, we collected a total of approximately 400, 000
packets, 6, 000 of which were corrupted.

Fig. 3 shows the Packet Error Rate (PER) for each RSSI
level before any correction algorithm is applied (solid line).
We can observe that without error correction, the 1% PER
threshold is at −91 dBm. On the other hand, when ADMM is
enabled, a gain of up to 3 dB can be achieved, i.e. the 1% PER
threshold is at −94 dBm. In terms of the PER, error correction
significantly improves the reliability, correcting up to 60% of
corrupted packets at −97 dBm. Again, such improvements
come at no additional cost at the transmitter.

C. Application-Layer Coding

In contrast to the previously investigated techniques, coding
does affect the energy consumption of the transmitter. Consid-
ering the maximum permitted packet size, i.e. 39 bytes, each of
the three BLE advertisement has a payload of 24 bytes. There-
fore a triple advertisement carries 72 payload bytes (n = 576).
The current profile of a triple advertisement event is estimated
by measuring the voltage drop across a 10 Ω resistor in series
with the positive side of the supply, considering all available
transmission power settings. The energy consumption of a
triple advertisement event (E) is then derived by estimating
the integral of the current profile over time and multiplying
it by the supply voltage. For instance, at 4 dBm, the energy
consumption is estimated at 62 µJ. In the case of XOR-based
ALC, an additional 0.3 µJ was recorded to be consumed by the
encoding process. Assuming an error-free channel (p = 0) and
based on (2), Fig. 4 shows the energy consumption per bit for
the cases of no redundancy, packet repetition and XOR-based
ALC, for various transmission power settings.

Assuming the maximum available transmission power set-
ting (4 dBm), we next consider channel errors. In particular,
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Fig. 5. Energy consumption per bit for different RSSI levels, in cases of no
redundancy, repetition coding and XOR coding (4 dBm transmission power).

we use the PER measured in Section III-B (without CRC error
correction) to calculate the energy efficiency per bit (2) based
the MER of all three schemes given in (3), (4) and (5). Fig. 5
plots the results as a function of the RSSI. It can be observed
that each method performs best in a separate RSSI range. As
expected, at high signal levels, any coding is redundant, re-
sulting in some increase in the energy consumption. Repetition
coding has the highest energy efficiency only when the signal
level is extremely low, due to its superior error correction
capability. The XOR-based method provides the lowest energy
per bit between −102 and −97 dBm, while being more energy
efficient than the repetition code at high signal levels. We note
that the optimum choice and long-term energy savings in a real
scenario will depend on a distribution of the received signal
level. However, without a priori knowledge of such statistics,
coding methods similar to XOR can be a perfect solution.

D. Multiple Receivers

Finally, we quantify the benefit of multiple receivers. The
evaluation uses part of the SPHERE house measurements,
which include 12 links, classified based on the number of the
walls between the receiver unit and the user with the wearable
sensor mounted on his wrist. Fig. 6 shows the CDFs of the
RSSI of each one of these classes. The transmission power
of the wearable sensor is set at 4 dBm. Yet, the wireless
performance of lower transmission power levels can be derived
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by shifting to the left the corresponding CDF. It can be
observed that, in the median case, the RSSI of the adjacent-
room links is 15 dB lower than the same-room links. A second
wall accounts for an additional 10 dB attenuation.

The same figure also plots the PER measured in Sec-
tion III-B as a bar chart. The results quantify the fact that the
bigger a residential environment is, the more receiver units
are required for full-house coverage. Combining the results
of Fig. 4 and Fig. 6, we can also quantify the trade-off
between wireless coverage and energy-efficiency. Deploying
additional observers does not increase the energy consumption
at the wearable transmitter. Therefore, energy consumption is
minimised by setting the transmission power to the lowest
level and using multiple observers, along with the other
presented techniques, to mitigate packet loss.

IV. SYSTEM DESIGN AND PERFORMANCE

In this section, we combine all error correction techniques
considered so far and implement them in a distributed system
consisting of multiple receivers, or access points (AP), and a
central hub. To this end, we establish two performance goals.
Primarily, we aim at minimising the PER, thus maximising
the reliability of the system. Secondly, we spread the com-
putational burden across the network and reduce the traffic
between the devices.

A. System design

Combining packets from two antennas with orthogonal
polarisations, due to its simplicity, can be implemented on
each AP. The combining process can be described as follows.
If the same packet is received in both polarisation and if at
least one copy is correct (i.e. it passed the CRC check), the
other copy is discarded. In this way, the amount of forwarded
traffic is reduced. If both copies are incorrect, they are both
forwarded further, so that the CRC error correction algorithm
can combine the reliability information. Combining packets
from multiple APs in the central hub can be implemented in
the same manner.

Of all four techniques, CRC error correction is the most
computationally intensive. Since the same packet can po-
tentially be received by all APs and in both polarisations,

attempting to correct errors in each copy of the packet would
lead to unnecessary processing. On the other hand, combining
all copies of the packet and removing unnecessary duplicates
in the central device can significantly reduce the total number
of corrupted packets. Therefore, it is reasonable to perform
CRC error correction block in the central hub. By contrast with
the single receiver scenario, soft information about bits should
now be computed based on multiple copies of the same packet.
Assuming that all received copies are statistically independent,
(1) can be rewritten as

γi =
∑
j

(2ri,j − 1) ln

(
1− pj
pj

)
, (6)

where ri,j denotes the i-th bit of the j-th copy of the packet
and pj is the RSSI-based bit-flip probability. By summing
up the LLRs for statistically independent observations, the
reliability estimation is averaged out.

Application-layer (AL) decoding, by definition, is normally
applied at the end of a signal processing chain. Following the
strategy described in Section II-C, let the encoded sequence
of packets be A, B and A⊕B. It can be observed that such
decoding procedure, due to its simplicity, could be applied
not only after CRC error correction, but also after polarisation
combining, with the aim of reducing the amount of traffic sent
to the central hub: if any two out of three packets are correct,
the third packet becomes redundant. Similarly, after packets
from all receivers are combined in the central hub, it may be
possible to reconstruct both A and B without resorting to CRC
correction. In total, AL decoding can be applied after each of
the other three techniques described above.

Algorithm 1 summarises the order and brief description of
the error correction techniques.

Algorithm 1 Distributed error correction.
Input: Encoded message comprising of packets A, B and A ⊕ B fully or
partly received by multiple APs.
Output: Decoded packets A and B.
Local AP processing: on each AP do:
Step 1: Polarisation combining: for each unique received packet:

if only one copy is received, forward it;
elseif both copies are not correct, forward both;
else forward the correct copy and discard the other.

Step 2: AL decoding: attempt to decode A and B. If successful, forward
both and discard redundant copies. If not, forward all copies.
Central device:
Step 3: Combining from multiple APs: for each unique received packet:

if only only one copy is available, forward it;
elseif all copies are not correct, forward all;
else forward just one correct copy and discard others.

Step 4: AL decoding: repeat Step 2.
Step 5: CRC correction: apply Algorithm 1 from [5].
Step 6: AL decoding: repeat Step 2.

B. Performance

The performance of the designed system is evaluated next.
The evaluation is based on a set of SPHERE house measure-
ments described in Section III-A. In this case, the transmission
power of the wearable sensor is set at -4 dBm.
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Fig. 7 illustrates the performance of the system in terms of
the PER after each stage of error correction. The performance
of the system without ALC is also shown as a reference. The
initial PER prior to error correction was recorded at 7% and
is shown on the graph as a straight line. It should be noted
that the initial PER was calculated over the logged packets
only, without taking into account packets that did not reach
the APs in the first place. It can be observed that polarisation
combining reduces the PER by 10%, which suggests some
degree of correlation between the two polarisations. Indeed,
in most cases the transmitted signal’s polarisation is neither
distinctively horizontal nor distinctively vertical. At the same
time, it can be seen that combining packets from multiple APs
has a dramatic effect on the PER, reducing it further by 54%
without ALC and by 42% with ALC. CRC error correction
provides an additional reduction of 20% in the PER.

When ALC is enabled and decoding is performed after
each of the three other stages, it has a profound effect on
the performance and the amount of traffic sent from the APs
to the central device. Indeed, the final PER with ALC is only
1.4%, 40% lower than without ALC. In terms of the traffic
flow, it was recorded that the number of packets sent to the
central device was reduced by 30% when AL decoding was
enabled locally at each AP. Finally, the number of packets
processed by the CRC error correction block was reduced by
45%, which significantly decreases the computational load in
the central hub. Overall, all techniques combined achieve 80%
reduction in the PER.

V. CONCLUSION

In this work, we analysed several error correction tech-
niques for a connectionless wireless system based on BLE.
The overall aim was to provide reliable communication and
maximise the energy efficiency of the transmitter. Using real
BLE statistics collected in office and residential environments,
each technique was justified and validated on its own. We then
combined all techniques and designed a distributed system,
with the emphasis being put on maximising the reliability,
minimising the amount of traffic and spreading the compu-
tational burden. Using data collected in a typical 2-storey

house, the performance of the designed system was verified.
By introducing two orthogonally polarised antennas at the
receiver, the PER was reduced by 10%. By having three
receivers throughout the house and combining traffic from
all of them in a central hub, the packet loss was further
reduced by 54%. Error correction using the existing CRC code
corrected 20% of the remaining packets. All three techniques
do not alter the transmitter and hence do not compromise
its energy efficiency. Finally, application-layer coding, even at
its simplest form, enabled significant reduction in the overall
PER. Although this time the transmitter’s energy was spent
on encoding packets, it was shown that the resulting energy
loss is not significant. In total, based on a two-hour dataset,
the overall PER was reduced by 80%.
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