
 Tsimbalo, E., Fafoutis, X., & Piechocki, R. (2015). Fix It, Don't Bin It! -
CRC Error Correction in Bluetooth Low Energy. In Proceedings of the 2nd
IEEE World Forum on Internet of Things (WF-IoT). [15729114] Institute of
Electrical and Electronics Engineers (IEEE). DOI: 10.1109/WF-
IoT.2015.7389067

Peer reviewed version

Link to published version (if available):
10.1109/WF-IoT.2015.7389067

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via IEEE (Institution of Electrical and Electronics Engineers) at DOI: 10.1109/WF-IoT.2015.7389067. Please
refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73981494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/WF-IoT.2015.7389067
http://research-information.bristol.ac.uk/en/publications/fix-it-dont-bin-it--crc-error-correction-in-bluetooth-low-energy(e7a841ed-1c20-4a74-9f32-4a05cf97f3b8).html
http://research-information.bristol.ac.uk/en/publications/fix-it-dont-bin-it--crc-error-correction-in-bluetooth-low-energy(e7a841ed-1c20-4a74-9f32-4a05cf97f3b8).html

Fix It, Don’t Bin It! - CRC Error Correction in
Bluetooth Low Energy

Evgeny Tsimbalo, Xenofon Fafoutis and Robert Piechocki
Department of Electrical and Electronic Engineering

University of Bristol
{e.tsimbalo, xenofon.fafoutis, r.j.piechocki}@bristol.ac.uk

Abstract—In this paper, we introduce error correction to
the Bluetooth Low Energy (BLE) standard by utilising data
redundancy provided by the Cyclic Redundancy Check (CRC)
code used to detect erroneous packets. We assume a scenario
with an energy-constrained transmitter and a constraint-free
infrastructure, which allows us to introduce additional signal
processing at the receiving side while keeping the transmitter in-
tact. A novel approach of applying iterative decoding techniques
to the BLE CRC code is investigated in this work. By using
these techniques and real BLE packets collected in an office
environment, we show that by enabling CRC error correction,
the sensitivity of the BLE receiver can be improved by up to 3
dB. At the same time, up to 60% of corrupted packets can be
corrected, which directly translates to a significant reduction in
the number of retransmissions and a noticeable energy saving.

Keywords-CRC; error correction; Bluetooth Low Energy

I. INTRODUCTION

The Bluetooth Low Energy (BLE) communication protocol
is a subset of the Bluetooth 4.x standard [1] that is aimed at
very low power applications. As one of the de facto wireless
communication options in modern smart phones, BLE has
become a widely adopted choice for many manufacturers of
commercial wearable gadgets. Moreover, BLE has been used
beyond the limits of a personal area networks. In the context
of a smart space, the iBeacon technology [2], which is based
on BLE, enables proximity-based services and applications,
such as indoors positioning. In smart homes and e-Health
infrastructures, BLE has been used for the wireless links
between wearable computers and the infrastructure [3]. All
in all, BLE is considered as one of the key technologies to
power up the Internet of Things (IoT).

In line with many communication protocols, BLE uses
Cyclic Redundancy Check (CRC) codes to detect communi-
cation errors. Prior to transmission, the packet is processed by
a CRC encoder, which generates 24 redundant bits (hence the
name of the code, CRC-24) and appends them to the end of the
packet. At the receiver side, the received packet is forwarded
to the higher layers of stack only if a CRC check is successful,
otherwise the packet is considered corrupted and is dropped.

In the application layer, corrupted packets are experienced
as performance degradation, whose nature depends on which
of the two BLE modes is used. More specifically, in BLE,
a device can operate in any of four distinct roles, namely
Broadcaster, Observer, Peripheral, and Central. The first two

roles are based on a connectionless one-directional commu-
nication model where the Broadcaster is the transmitter and
the Observer is the receiver. The last two roles are based on
a connection-oriented model, where the Central is the master
and the Peripheral is the slave. In the connection-oriented case,
BLE offers link-layer acknowledgements and retransmissions.
The receiver notifies the transmitter, via an acknowledgement,
whether the packet needs to be retransmitted. Corrupted pack-
ets are experienced in the transmitter as an additional source
of energy consumption. The more retransmissions are required
for a BLE packet to pass through the link, the more energy
is consumed. In the connectionless case, instead, corrupted
packets are experienced as application-layer data loss.

While CRC codes are traditionally used for error detection
only, they have inherent error correction potential due to
redundancy they introduce to transmitted data. Regardless
of which BLE mode is used, CRC error correction would
directly improve the packet reception rate at the receiver and
decrease the amount of energy that is spent on retransmis-
sions at the transmitter. Considering that performing error
correction requires additional processing at the receiver, this
approach is essentially offering a way to decrease the number
of retransmissions and unburden the transmitter by moving
some of these costs to the receiver. Therefore, CRC error
correction is a compelling choice for applications where an
energy-constraint transmitter communicates with a constraint-
free infrastructure, such as wearable sensors streaming data to
a smart infrastructure.

In this paper, we investigate the error correction potential
of the CRC-24 code in a real environment. Following our
previous work that is based on simulation [4], we apply
modern iterative decoding techniques to correct errors, while
keeping the transmitter intact. To the best of our knowledge,
these techniques have never been investigated in the context
of BLE. The contribution of the paper can be summarised
as follows. First, we use an off-the-shelf BLE kit to collect
a dataset of real corrupted packets. We then implement and
apply two state-of-the-art iterative decoding techniques to the
dataset. For benchmarking, we also implement a simple look-
up algorithm that is able to correct corrupted packets with no
more than a single bit error. By comparing the techniques,
we identify different situations where one of the techniques is
more beneficial than the others.

The remainder of the paper is organised as follows. In

Section II we provide a brief overview of the background
and related work. In Section III, we introduce two iterative
decoding algorithms, namely Belief Propagation (BP) and
Alternating Direction Method of Multipliers (ADMM), tra-
ditionally used in the context of Low Density Parity Check
(LDPC) codes. In Section IV, we apply, evaluate and compare
the performance of the decoding algorithms using a dataset of
real corrupted BLE packets. Finally, Section V concludes the
paper.

II. BACKGROUND AND RELATED WORK

Some error correction techniques for CRC codes have
been proposed over the years. A simple look-up algorithm
correcting all single errors was described by the inventors of
CRC codes in [5]. This algorithm is based on the fact that each
possible single-error pattern gives a unique remainder after
polynomial division of a corrupted packet by the generator
polynomial, regardless of the actual bits transmitted in the
packet. As a result, a look-up table of all possible remainders
and the corresponding error bit positions can be calculated in
advance, using packets with one in error positions and zeros
elsewhere. When an erroneous packet with a single bit error
arrives, the corresponding remainder is calculated and checked
against the loop-up table, thus the error position is identified.
This method can correct 100% of all single-error packets.

More sophisticated look-up techniques correcting some of
double-error codewords were also developed [6]. However,
all these techniques aim at correcting a particular number of
errors. To the best of knowledge of the authors, no unified
approach has been proposed to correct an arbitrary number of
errors, limited only by the error-correction capabilities of the
code itself.

Many state-of-the-art error correction codes employ iterative
decoding algorithms. One of those algorithms, known as Belief
Propagation (BP), was originally developed for Low Density
Parity Check (LDPC) codes [7], a special type of linear codes
that have a sparse parity check matrix. In general, BP provides
good decoding performance when applied to any linear code,
as long as the parity check matrix of the code is sparse and
the corresponding Tanner graph contains no cycles of length
four [8]. As shown in [9], the total number of four-cycles for
an m× n parity check matrix H can be calculated as

m∑
i=1

m∑
j=i+1

((
HHT

)
ij

2

)
. (1)

Based on (1), the number of four-cycles for the BLE CRC-24
code is 813816, which makes the direct application of iterative
decoding techniques unfeasible.

In [9] and [8], the authors proposed methods to eliminate
four-cycles on the Tanner graph of any linear code, demon-
strating the results on Hamming and Reed-Solomon codes.
The same techniques can be applied to CRC codes, making
them suitable for BP-based error correction. For example,
as shown in [4], when the maximum cycle strategy (MCS)
algorithm [8] is applied to the BLE CRC-24 code, it produces
an equivalent sparse version of the parity check matrix, while

keeping all parity check equations intact. The Tanner graph
of this modified matrix does not have any cycles of length
four and therefore iterative decoding techniques can now be
applied.

As an alternative to BP, the decoding of a linear code can
be viewed as a linear program (LP), the idea that was first
introduced in [10]. This approach resulted in an algorithm
based on the Alternating Direction Method of Multipliers
(ADMM) initially proposed in [11] and applied to LDPC codes
in [12]. Practical and computationally simple modifications
were further developed in [13], [14] and [15]. While the
ADMM-based algorithm has only been investigated in the
context of LDPC codes, it can also be applied to correct errors
for any linear code, such as the BLE CRC-24.

The brief overview of both BP and the ADMM is given in
the next section.

III. ITERATIVE DECODING TECHNIQUES

A. BP

BP decoding in the form of the sum-product algorithm is
one of the standard approaches to the decoding problem. We
will use the log-likelihood version of the algorithm that is
widely presented in the literature, for example, in [16]. The
input of the algorithm are the log-likelihood ratios (LLRs)
of the bits to be decoded. For a binary symmetric channel
(BSC) with the crossover probability p, which can be viewed
as an equivalent model of a CRC-based transmission, the LLR
corresponding to the i-th received bit ri can be calculated as

γi = (2ri − 1) ln

(
1− p
p

)
. (2)

For real channel environments, the crossover, or bit flipping,
probability p can be estimated by transmitting known packets
and calculating the bit error rate (BER) for each given received
signal level. For auxiliary bits added by the sparsification
process, the LLRs are set to zeros. After each iteration, hard
decisions are made on the vector of updated LLRs and the
syndrome is calculated using the original, non-sparse parity
check matrix neglecting the auxiliary bits. If the syndrome
is a zero vector, the original packet bits are extracted and
the algorithm stops. The algorithm also stops if a maximum
number of iterations is reached.

B. ADMM

Let x ∈ {0, 1}N denote the transmitted codeword corre-
sponding to a CRC-encoded packet, and let r ∈ {0, 1}N
denote the vector of received bits before the CRC check. We
use H to denote the parity check matrix of the code, which,
depending on the context, can be either the original, non-sparse
matrix of the CRC-24 code or its sparsified version. In the case
when it is the original matrix of size M×N , the relationships
between the CRC-encoded bits can be written as

Hx = 0. (3)

The equations (3) are a set of M constraints, also called
checks, introduced by the CRC encoder between the bits. Let

ci, i = 1, .., N , be the number of times the i-th bit participates
in all checks, and let dj , j = 1, ...,M be the number of
bits participating in the j-th check. The ADMM algorithm
in its penalised form (ADMM-PD) introduced in [13] solves
the following optimisation problem equivalent to the decoding
of the received codeword:

γ̄Tx− α ‖x− 0.5‖22 , (4)
subject to∀j, Pjx = zj ,

zj ∈ PPdj . (5)

Here, γ̄ , −γ is a vector of negative LLRs; Pj is the operation
of selecting those bits of x that participate in the j-th check;
zj is a replica vector for the j-th check; PPdj is the parity
polytope of dimension dj [12]; α > 0 is a penalty coefficient.
The l2 penalty function in (4) was shown to provide the best
PER performance in [13].

In line with our previous work [4], we adopt the over-
relaxation technique advocated in [11] to improve decoding
convergence. Denoting ρ > 1 the over-relaxation parameter,
the ADMM-PD algorithm with with the l2 penalty func-
tion is summarised in Algorithm 1. In the update for zj
in Algorithm 1, ΠPPdj

(·) is the projection onto the parity
polytope PPdj [12]. In our implementation, we use the original
projection algorithm proposed by [12]. We note that more
computationally effective techniques were derived in [14] and
[15].

As discussed in [4], the selected ADMM algorithm has
several parameters: the augmented Lagrangian parameter µ,
the penalty coefficient α, the over-relaxation parameter ρ and
the maximum number of iterations Tmax. Investigation into the
selection of these parameters for some LDPC codes and the
AWGN channel was carried out in [13], where it was shown
that the algorithm is rather sensitive to parameters settings.
In [4], for the BSC channel we obtained slightly different
parameters values from the ones provided in [13] resulting
in the following recommendations:
• µ ∈ [3, 5] provide the best error correction performance;
• The optimum penalty coefficient α = 1;
• ρ = 1.8 provides the best performance and convergence;
• Increasing Tmax improves the probability of error cor-

rection, at the expense of decoding speed; up to 1000
iterations can be considered.

To be consistent with our previous work based on simulation,
we will use the values above to obtain practical performance
results too. We note, however, that the optimum values of
the ADMM parameters may be different depending on real
channel conditions.

IV. PERFORMANCE EVALUATION

Aiming to investigate the performance of the aforemen-
tioned decoding techniques for real corrupted packets, our
natural first step is to collect a dataset of packets with real
channel errors. The corrupted packets were collected using a
pair of nRF51822 kits. The transmitter is programmed as a

Algorithm 1 Iterative ADMM-PD algorithm with over-
relaxation.
Input: Vector of negative LLRs γ̄ and parity check matrix H.
Output: Decoded vector x.
1: Initialisation: Construct the selection matrix Pj for each
check node j based on H. Initialise λj as the all zeros vector
and zj as the all 0.5 vector.
2: Variable node update: For each variable node i, do:

Calculate z̄j = PT
j z

[k]
j , λ̄j = PT

j λ
[k]
j , ∀j.

Calculate ti =
∑
j

(
z̄j − λ̄j

µ

)
− γ̄i

µ .
Update

x
[k+1]
i ← 1

ci − 2α2/µ
(ti −

α2

µ
).

Project x[k+1]
i onto [0, 1]: x[k+1]

i ← Π[0,1]x
[k+1]
i .

3: Check node update: For each check node j, do:
Calculate

v
[k+1]
j ← ρPjx

[k+1] + (1− ρ)z
[k]
j +

λ
[k]
j

µ
.

.
Update z

[k+1]
j ← ΠPPdj

(v
[k+1]
j).

Update

λ
[k+1]
j ← λ

[k]
j + µ

[
ρPjx

[k+1] + (1− ρ)z
[k]
j − z

[k+1]
j

]
.

4: Make a tentative hard decision on x[k+1]: if x[k+1]
i ≥ 0.5,

x̂i = 1; otherwise x̂i = 0.
5: If Hx̂ = 0, then return x = x̂. Otherwise, if k + 1 is
smaller then the maximum number of iterations Tmax, do k ←
k + 1 and loop to Variable node update. Otherwise, declare
decoding failure and Stop.

Broadcaster, periodically transmitting advertisement packets
at the maximum allowed frequency (10 Hz). We use the
maximum allowed packet size (39 bytes), which results in the
codeword length of 336 bits. We note that this is the worst-
case scenario from the error correction point of view, due to the
fact that it yields the smallest relative redundancy. The payload
was populated with several copies of a single byte sequence
number that is incremented by the transmitter. The receiver is
programmed with the Nordic Sniffer 1.0.1, an application that
monitors the BLE channels and provides the payload of the
received packets in hex form, as well as additional information
such as the Received Signal Strength Indicator (RSSI) and the
result of the CRC check.

The dataset was collected in an office environment. The
receiver was fixed to a computer, while the transmitter was
positioned in different locations within the office and the
surrounding areas. To minimise the number of corrupted
packets due to interference, the data collection sessions were
performed at off-peak hours when the office was empty.
Furthermore, the transmitter was set to use BLE channel 39
located at the very end of the 2.4 GHz band, as opposed to
WiFi channel 1 used by the local IEEE 802.11 access point. In

of Bit Errors

10
0

10
1

10
2

C
D

F

0

0.2

0.4

0.6

0.8

1

Fig. 1. CDF of the collected dataset of 6, 000 corrupted packets with respect
to the number of bit errors per packet.

a period of over 10 hours, we collected a total of approximately
400, 000 packets, 6, 000 of which were corrupted. Fig. 1 shows
the CDF (Cumulative Distributed Function) of the corrupted
packets with respect to the number of bit errors per packet.
To better illustrate the occurrence of packets with a small
number of errors, the horizontal axis is shown in the log scale.
It can be observed that over 30% of the corrupted packets
have a single bit error. Packets with multiple bit errors are
increasingly more rare, with 80% of the erroneous packets
having 10 bit errors or less. Packets that have not more than
three errors make up the majority of all corrupted packets,
indicating good error correction potential. We did not observe
a significant difference in the bit error patterns at different
RSSI levels.

Fig. 2 shows the Packet Error Rate (PER) for each RSSI
level before any correction algorithm is applied (solid line). It
can be seen that no packets are received at the RSSI of less
than −105 dBm, which denotes the sensitivity threshold of
the nRF51822 BLE receiver. Moreover, no corrupted packets
are received at the RSSI of more than −74 dBm. We can
observe that without error correction, the 1% PER threshold
is at −91 dBm and the 0.1% PER threshold is at −78 dBm.
On the other hand, when error correction is enabled, a gain
of up to 3 dB can be achieved. In terms of the PER, it can
be seen that both methods significantly improve the reliability,
correcting up to 60% of corrupted packets at −97 dBm. While
the ADMM-based algorithm outperforms BP in the region
of low RSSI values (less than −102 dBm), both algorithms
demonstrate similar performance at medium and high signal
levels.

As mentioned in Section II, there exists a simple look-
up algorithm that is able to correct all single error packets.
To benchmark the performance of BP and ADMM to that
of the look-up method, Fig. 3 illustrates the number of
corrected packets in relation to the number of single-error
packets as a function of the RSSI for both decoders. It can
be observed that at RSSI levels of less than −100 dBm, BP

RSSI (dBm)

-105 -100 -95 -90 -85 -80 -75 -70

P
E

R

10
-4

10
-3

10
-2

10
-1

10
0

No Correction

BP

ADMM

Fig. 2. PER for various RSSI levels before and after CRC correction
techniques are applied.

RSSI (dBm)

-105 -100 -95 -90 -85 -80#
 o

f
co

rr
ec

te
d
 p

k
ts

 /
 #

 o
f

si
n
g
le

-e
rr

o
r

p
k
ts

0.4

0.6

0.8

1

1.2

BP

ADMM

Fig. 3. Number of corrected packets for BP and ADMM relative to the
number of single-error packets as a function of the RSSI.

would perform worse than the look-up method. By contrast,
the ADMM would outperform the look-up method in this
region, correcting up to 15% more packets. It can also be
seen that all algorithms converge at RSSI values greater
than −95 dBm. The reason is that when the received signal
is strong, the PER is low and, therefore, any improvement
in the number of corrected packets is relatively small. The
performance comparison indicates that different methods could
be used in different situations. Indeed, when the RSSI of
the corrupted packet is greater than −95 dBm, the look-up
method should be used, due to its simplicity and computational
efficiency. When the RSSI is less than or equal to −95 dBm,
the ADMM can correct more packets and, thus, results in
fewer retransmissions.

In the connectionless mode, the benefits of using the CRC
error correction algorithms are straightforward. As shown in
Fig. 2, error correction can decrease the PER or, alternatively,
increase the coverage. In the connection-oriented mode, on
the other hand, the benefits are more subtle. As discussed in
the introduction, CRC error correction reduces the number of

RSSI (dBm)

-105 -100 -95 -90 -85 -80

E
x
p
ec

te
d
 R

et
ra

n
sm

is
si

o
n
s

0

2

4

6

8

10

12

14

16

No Correction

BP

ADMM

Fig. 4. Expected number of retransmissions with and without CRC error
correction.

retransmissions, essentially decreasing the amount of energy
consumed by the transmitter. To visualise this improvement in
energy consumption, we model retransmissions as a sequence
of independent Bernulli trials with the same probability of
failure (i.e. PER) for each trial. The expected number of
retransmissions can therefore be calculated as

E [N] =

∞∑
n=1

n(1− p)pn−1 − 1 =
p

1− p
, (6)

where p is the PER. The expected number of retransmissions
for a given PER can be used as an approximation of the
energy consumption of the transmitter normalised to the en-
ergy required to transmit a single packet. Fig. 4 illustrates the
retransmission model given by (6) applied to the PER shown
in Fig. 2. The results verify the previous findings, indicating a
significant reduction in the number of retransmissions for RSSI
levels lower than −95 dBm. For instance, at −102 dBm, the
decoding algorithms decrease the required number of retrans-
missions from 1.5 to 0.5 with the corresponding energy saving
equal to the energy required for a single packet transmission.
In line with the previous figures, the ADMM outperforms BP
by offering 60% fewer retransmissions when at the lowest
RSSI level of −105 dBm.

V. CONCLUSIONS

In this paper, we analyse how the energy efficiency of
the Bluetooth Low Energy transmitter can be increased by
introducing error correction at the receiving side, without
changing the existing CRC coding scheme. Our research is
based on our previous work on CRC error correction, where
simulations showed that modern iterative decoding techniques
can be employed to correct errors. Using a pair of nRF51822
transceiver kits and an office environment, we first collected
real erroneous BLE packets. After the decoding methods were
applied, a gain of up to 3 dB in terms of the received signal
level and the reduction in the PER of up to 60% was achieved.
When compared with the look-up method allowing all single-
error packets to be corrected, the ADMM-based algorithm

demonstrated the best performance when the signal strength
is low, correcting up to 15% more erroneous packets than the
look-up method. Finally, error correction enabled significant
reduction in the number of retransmissions, with the equivalent
energy saving almost equal to the energy required for a single
packet transmission. This can potentially extend the battery
life of the transmitter or, alternatively, increase its range. We
note that all these results were achieved without changing the
BLE coding scheme, by just introducing additional signal pro-
cessing at the receiver. Our future work includes complexity
analysis and extension of the considered decoding methods to
different packet lengths as well as other CRC codes.

ACKNOWLEDGMENT

This work was performed under the SPHERE (Sensor
Platform for HEalthcare in a Residential Environment) IRC
(Interdisciplinary Research Collaboration) funded by the UK
Engineering and Physical Sciences Research Council (EP-
SRC), Grant EP/K031910/1.

REFERENCES

[1] Bluetooth SIG, “Specification of the Bluetooth System -
Covered Core Package version: 4.0,” [Online] Available at:
https://www.bluetooth.org/en-us/specification/adopted-specifications,
2010.

[2] N. Newman, “Apple iBeacon technology briefing,” J. Direct, Data Digit.
Mark. Pract., vol. 15, no. 3, pp. 222–225, Jan. 2014.

[3] P. Woznowski, X. Fafoutis, T. Song, S. Hannuna, M. Camplani, L. Tao,
A. Paiement, E. Mellios, M. Haghighi, N. Zhu, G. Hilton, D. Damen,
T. Burghardt, M. Mirmehdi, R. Piechocki, D. Kaleshi, and I. Craddock,
“A Multi-modal Sensor Infrastructure for Healthcare in a Residential
Environment,” in Proc. Int. Conf. Commun. (ICC) Workshops, 2015.

[4] E. Tsimbalo, X. Fafoutis, and R. Piechocki, “CRC Error Correction for
Energy-Constrained Transmission,” in 26th IEEE Int. Symp. Personal,
Indoor and Mobile Radio Commun. (PIMRC), 2015.

[5] W. Peterson and D. Brown, “Cyclic Codes for Error Detection,” Proc.
IRE, vol. 49, no. 1, pp. 228–235, Jan. 1961.

[6] S. Babaie, A. K. Zadeh, S. H. Es-hagi, and N. J. Navimipour, “Double
Bits Error Correction Using CRC Method,” in 2009 Fifth Int. Conf.
Semant. Knowl. Grid. IEEE, 2009, pp. 254–257.

[7] R. G. Gallager, “Low-Density Parity-Check Codes,” p. 112, 1963.
[8] V. Kumar and O. Milenkovic, “On graphical representations of algebraic

codes suitable for iterative decoding,” IEEE Commun. Lett., vol. 9, no. 8,
pp. 729–731, 2005.

[9] S. Sankaranarayanan and B. Vasic, “Iterative Decoding of Linear Block
Codes: A Parity-Check Orthogonalization Approach,” IEEE Trans. Inf.
Theory, vol. 51, no. 9, pp. 3347–3353, Sep. 2005.

[10] J. Feldman, M. Wainwright, and D. Karger, “Using Linear Programming
to Decode Binary Linear Codes,” IEEE Trans. Inf. Theory, vol. 51, no. 3,
pp. 954–972, Mar. 2005.

[11] S. Boyd, “Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers,” Found. Trends Mach.
Learn., vol. 3, no. 1, pp. 1–122, 2010.

[12] S. Barman, X. Liu, S. Draper, and B. Recht, “Decomposition methods
for large scale LP decoding,” 2011 49th Annu. Allert. Conf. Commun.
Control. Comput., vol. 59, no. 12, pp. 253–260, 2011.

[13] X. Liu, S. C. Draper, and B. Recht, “Suppressing pseudocodewords by
penalizing the objective of LP decoding,” in 2012 IEEE Inf. Theory
Work. IEEE, Sep. 2012, pp. 367–371.

[14] X. Zhang and P. H. Siegel, “Efficient iterative LP decoding of LDPC
codes with alternating direction method of multipliers,” in 2013 IEEE
Int. Symp. Inf. Theory. IEEE, Jul. 2013, pp. 1501–1505.

[15] G. Zhang, R. Heusdens, and W. B. Kleijn, “Large Scale LP Decoding
with Low Complexity,” IEEE Commun. Lett., vol. 17, no. 11, pp. 2152–
2155, Nov. 2013.

[16] T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. Wiley-Interscience, 2005.

