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Abstract 

A method based on Parametric Reduced Order Models to efficiently predict the transient response of aeroelastic 

systems with concentrated structural nonlinearities is presented. The approach approximates the nonlinear response 

in a piecewise-linear manner through time integration of sub-linear reduced order models; these are parameterized 

with respect to the nonlinearity and are efficiently obtained by balanced truncation and interpolation. The procedure 

is applied to the optimization of a wing tip device for passive loads alleviation which features a nonlinear stiffness, 

showing the effectiveness and efficiency of the methodology. 
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Introduction 

Aeroelastic analyses of aircraft have been traditionally performed under the assumption of linear aerodynamics and 

structure. The industrial practice still heavily relies upon the linear approach, nevertheless it is recognized that many 



aeroelastic phenomena cannot be predicted without considering nonlinear effects that can arise from the 

aerodynamic flowfield, the structure or the flight control system
1,2

.  

Structural nonlinearities can be classified as being either distributed or concentrated; the former are due to material 

or geometric nonlinearities of the structure, whereas the latter stem from freeplay, hysteresis, friction or nonlinear 

force-displacement relationships in control surfaces, linkages or connections between wing, pylons, engine or 

stores
2,3,4

. Most of the studies on concentrated structural nonlinearities have dealt with predicting Limit Cycle 

Oscillations (LCOs)
3,4,5,6,7

. On the other hand, there has been less focus on the impact of structural nonlinearities on 

aircraft loads. The certification specifications for large civil transport aircraft, EASA CS-25 AMC Subpart-C.8
8,9

,
 

explicitly require to realistically or conservatively represent in loads calculation any structural, aerodynamic or 

system characteristic which may cause the aircraft response to become nonlinear. When an explicit simulation of 

nonlinearities is required, it is suggested to calculate loads through time-domain integration of the equations of 

motion. Typically however, a linear structural model is used for loads prediction as the nonlinear characteristics of 

the airframe are minor and it is an acceptable conservative assumption
8
.  

This paper presents an efficient methodology for predicting the aeroelastic response of systems with concentrated 

structural nonlinearities, focusing on gust loads calculation. The procedure follows the time-domain integration 

approach and approximates the nonlinear response as a series of piecewise-linear subsystems, updated at each time 

step based on the current configuration of the system. In this way, a generic concentrated nonlinearity can be 

straightforwardly introduced into the classical linear models that are still routinely employed in the practice, without 

the need of resorting to full nonlinear aeroelastic solutions not readily available. Similar methods have been 

proposed in the electrical engineering field
10

 and for multibody dynamics
11

. In aeroelasticity, Chen et al.
12 

have 

presented a method based on the integration of discrete linear state-space models and applied it to study the 

aeroelastic stability of an airfoil with freeplay and of a joined wing aircraft subject to buckling 

The proposed procedure is based upon Parametric Model Order Reduction (PMOR)
13

 and it aims at reducing 

significantly the computational effort associated to the time simulations by employing reduced order piecewise-

linear models which are parameterized with respect to the nonlinear property and efficiently obtained combining 

Model Order Reduction and interpolation of the parametric models. The methodology is applied to the optimization 

of a passive wing tip device for load alleviation featuring a nonlinear stiffness, which was first presented by Ricci et 

al.
14

. 



Aeroelastic systems with concentrated structural nonlinearities 

Aeroelastic analyses are typically performed in the frequency-domain. This approach is computationally efficient 

and simplifies the analysis procedure; however, it is not suitable for the transient response of aeroelastic systems 

when nonlinearities, being structural, aerodynamic or in the flight control systems, are involved. In this latter case a 

time-domain simulation is required. The trade-off is a higher computational time and complexity, but any kind of 

nonlinearities can be included. 

The linear aeroelastic equations of motion in time-domain, assuming a FE discretization of the structure, can be 

written as 

 

����� � + ����� � + ����� = 
������ + 
��� ( 1 ) 

 

where ���, ��� and ��� are respectively the mass, damping and stiffness matrices, �� the vector of the 

displacements, �� the dynamic pressure, ��� the matrix of the unsteady aerodynamics forces due to the structural 

motion and �� the vector of the unsteady aerodynamic forces due to a gust. Typically equation (1) is expressed in 

generalized coordinates 
� to reduce the size of the problem. A common choice for the generalized basis is a set of 

the low frequency normal modes of the structure ���, leading to  

 

���
�� + ���
�� + ���
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����
� + 
���� ( 2 ) 

 

In this work the generalized unsteady aerodynamic forces (GAF) are calculated by the Doublet Lattice Method
15

 

(DLM) and thus are available in the frequency-domain as complex matrices tabulated for a set of reduced 

frequencies and a fixed Mach number. To cast the equations in time-domain, a Rational Function Approximation of 

��� and ��� is performed using Roger’s method
16

, that is 
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where ' is the Laplace variable, () a reference length and the coefficients of the matrices are calculated by a least-

square fit. The original formulation by Roger is extended considering the *) aerodynamic poles +, due to the 

structural motion and the *- gust aerodynamic poles +-,, as free design variables of an optimization process, whose 

objective function is the minimization of the squared error between the approximated and tabulated GAF, and 

subject to the constraint of asymptotic stability of the aerodynamic poles, i.e. +, < 0 and +-,, < 0. The whole RFA 

procedure consists therefore of a two-level optimization: an inner linear least-square curve fitting for the coefficients 

matrices at the numerator of equations (3) and (4) and an outer nonlinear constrained optimization, via a genetic 

algorithm, for the aerodynamic poles. Two separate RFAs are performed on ��� and on ���, imposing the 

matching of the generalized forces at 0 = 0 and assuming respectively 5 and 6 aerodynamic poles. This approach 

allows for a greater flexibility in the selection of the poles and increases the fitting accuracy of both terms. 

Eventually, the aeroelastic system in time-domain is obtained and formulated as a state-space Linear Time Invariant 

(LTI) system 

 

1� �2 = %�21�2 +3�2� ( 5 ) 

4 = ��21�2 +��2� ( 6 ) 

 

The states vector 1�2 includes the generalized coordinates, their time derivatives and the aerodynamic states of the 

structural and gust GAFs. The input � is a vertical discrete gust and the output vector 4 contains the wing internal 

loads (shear, bending moment and torque), calculated by mode displacement. 

 

Modelling of concentrated nonlinearities 

In industrial practice, aeroelastic analyses are still routinely performed using linear models and tools. Nonlinear 

aeroelastic solvers are not readily available and the alternative approach is a co-simulation between a nonlinear 

structural solver and an aerodynamic solver, which leads to a considerable increase in complexity and computational 

time.  

The method proposed in this work considers a linear piecewise discretization of the arbitrary nonlinearity based on 

the current configuration of the system throughout the transient response. In this way, a nonlinear system is 

simulated as a series of piecewise LTI systems that can be generated with standard aeroelastic tools.  



Considering, without loss of generality, a cubic nonlinear force-displacement relationship of a flexible element of 

the FE model of the structure, a linearized equivalent stiffness can be computed as 

 

�56�7�8 = �� + �#�6��7� ( 7 ) 

 

where 9: is the linear part of the stiffness and ; the Degree Of Freedom (DOF) where the nonlinearity acts. During 

the nonlinear response, changes in stiffness occur based on the actual value of ;. In a linearized fashion, these can 

be represented as an incremental stiffness matrix ∆��� to be added to the stiffness matrix of the linear model ��,�� 

at each time step based on the current deflection ;̅. The actual generalized stiffness is then given by 

 

����6>� = ���?[��,�� + ∆����6>�]��� ( 8 ) 

 

Thus the nonlinear system is approximated by a collection of linearized LTI systems parameterized by the nonlinear 

physical DOF  ; 

 

1� �2�6� = %�2�6�1�2�6� + 3�2�6�� ( 9 ) 

4�6� = ��2�6�1�2�6� + ��2�6�� ( 10 ) 

 

Generalized basis with structural nonlinearities 

An issue for aeroelastic systems with structural nonlinearities is the choice of an adequate generalized basis. A 

unique set of normal modes does not strictly exist anymore, but it changes according to the configuration of the 

structure. For this reason, it is necessary to select a unique generalized basis capable of representing the physical 

displacements in the entire domain of the nonlinear response. 

A number of methods have been proposed for this purpose: component mode synthesis
17

, fictitious mass
18

, residual 

vectors
19,20

. In this work, the residual vectors method is applied which consists of adding to the normal modes of a 

baseline configuration (for the nonlinear case assumed to be the undeformed aircraft) shape vectors corresponding to 

a unit displacement (or rotation) of the DOF where the nonlinearity is located, computed by static solution. A 



reorthogonalization of the augmented basis to the baseline mass and stiffness matrices is performed to remove 

redundant components and obtain a basis which diagonalizes the baseline mass and stiffness matrices.  

The addition of the residual vectors to the normal modes produces high frequency synthetic modes representing the 

local deformation in the proximity of the DOFs of interest. The static participation of these shapes is paramount in 

achieving accuracy whereas the dynamic response could generate spurious oscillations that do not represent the 

physical response of the structure. To overcome this pitfall, critical damping is assigned to these synthetic modes. 

 

Parametric Model Order Reduction for aeroelastic systems with concentrated structural nonlinearities 

The size of the aeroelastic system in state-space form, though being already reduced from physical to generalized 

coordinates, can still be relatively high when used for aircraft loads calculation, where thousands of load cases must 

be analysed, and even more if nonlinearities are present and a dedicated solution procedure is carried out.  

The system of equations (9) is a function of the DOF ;; besides, the equations depend also on the flight condition, 

i.e. altitude and Mach number, that has to be varied to cover the whole flight envelope as required by the 

certification authorities. Therefore the solution needs to be computed over a potentially large range of parameter 

values. 

A significant saving in computational time is possible if, instead of the original Full Order Model (FOM) of equation 

(9), a Reduced Order Model (ROM) is used which is able to retain the accuracy and preserve the parametric 

dependency over a broad range of parameters. The generation of a new ROM at each point of interest in the 

parameter space is in fact usually impractical and could even be more computationally expensive than building and 

evaluating the FOM anew. To overcome this issue, Parametric Model Order Reduction has been introduced to 

efficiently generate Parametric ROMs (PROMs), without the need of performing a new reduction at each design 

point. A survey of the state-of-the-art in PMOR is given by Benner et al.
13

. 

To present the methodology applied in this work, the LTI aeroelastic system, of order B, is considered in the form 

 

1� �2�C, 6� = %�2�C, 6�1�2�C, 6� + 3�2�C, 6�� ( 11 ) 

4�C, 6� = ��2�C, 6�1�2�C, 6� + ��2�C, 6�� ( 12 ) 

 



where  ; is the physical DOF where a concentrated structural nonlinearity acts and C ∈ ℝF is a set of parameters on 

which the state-space matrices arbitrarily depend, in this specific work altitude and Mach number. A projection-

based reduction by balanced truncation
21

 is applied to generate a ROM of order *G ≪ B 

 

 1� I�C, 6� = %I�C, 6�1I�C, 6� + 3I�C, 6�� ( 13 ) 

4I�C, 6� = �I�C, 6�1I�C, 6� + �I�C, 6�� ( 14 ) 

 

where the Reduced Order Basis (ROB) is ?3 ∈ ℝJ	L	MN and the reduced order matrices are 

 

%I = ?3%?3O� ( 15 ) 

3I = ?33 ( 16 )   

�I = �?3O� ( 17 )  

 

Balanced truncation is one of the most common order reduction techniques employed in the control system fields 

and has desirable properties such as such as stability preservation of the reduced models and an P� error bound. 

Moreover, the dimension of the ROM can be selected by checking the decay of the Hankel singular values of the 

state-space system in balanced form. 

To obtain a ROM that can retain the parametric dependency various strategies have been proposed
13

. The procedure 

applied herein is based on the construction of a database of ROMs at few selected sampling points �CQR , ;ST� in the 

parameter domain and by interpolation of the reduced state-space matrices at all the other points of interest for the 

simulation �C>G , ;̅U�. This method has been successfully applied in the past in aeroelasticity, for fast flutter clearance 

of a wing-store configuration
22

, in control system design of a flexible aircraft
23

 and unsteady CFD
24

. This paper 

presents its extension to the transient response and loads prediction of aeroelastic systems with concentrated 

structural nonlinearities and its application in an optimization framework. 

The PMOR framework proposed by Panzer et al.
25

 is followed. It consists of the following steps: 

 

1. Generation of the 0 = 1…*X × *Z local ROMs at the sampling points CQR, [ = 1…*Xand ;ST, \ = 1…*Z 

2. Congruence transformation of the locally reduced state-space matrices 



3. Elementwise interpolation of the locally reduced state-space matrices to the unsampled points of 

interest for the analyses �C>G , ;̅U� 
4. Time simulation of the resulting interpolated ROM. 

 

In the first step, the parameter space is sampled, the FOMs constructed at each of these points and then individually 

reduced through balanced truncation. All the local ROMs have the same order *G. 
As the balanced truncation is not a physics-based reduction, such as the modal condensation, but a purely 

mathematical one, the states of the ROMs at different parameter values lie in unrelated subspaces and, before the 

interpolation, must be transformed, through a similarity transformation 1I,] = ^]1QI,] , to a congruent common 

subspace. For details on this transformation refer to Panzer et al.
25

 and Castellani et al.
26

. 

The congruence transformed local ROMs are given by 

 

%_I,` = ^`??3%�CQa, 6_b�?3,`O�^` ( 18 )  

3_I,` = ^`??33�CQa, 6_b� ( 19 ) 

�_I,` = ��CQa, 6_b�?3,`O�^` ( 20 ) 

 

Once all the local reduced models are available in this form, the resulting PROM at �C>G , ;̅U� is obtained by 

elementwise linear or spline interpolation of the matrices in equations (18) to (20).  

 

Solution procedure for systems with concentrated structural nonlinearities 

The extension of the PMOR methodology, in combination with the previously introduced modelling of concentrated 

structural nonlinearities, is now presented. In the framework of the approximation of the nonlinear system as a series 

of piecewise-linear LTI system, the nonlinear property, in this specific case a cubic restoring force in the DOF ; of 

the FE model, is treated as a parameter of the equations that varies throughout the transient response, unlike the 

altitude and Mach number which are constant once a flight condition is chosen. In place of FOMs, ROMs generated 

as previously presented are employed.  

The matrices of the linear ROMs are not constant anymore throughout the response, but dependant on the actual 

configuration of the system via the nonlinear property 95;�c�8. At each time step cR of the integration, an updated 



ROM is built by interpolation according to the current value of ;�cR� and used for the next time step. The response 

of ; is calculated from the states of the system and monitored during the simulation. 

Thus a nonlinear system is simulated by switching between sub-linear ones. Compared to a fully nonlinear analysis 

this piecewise-linear approach is, on one hand, an approximation, and on the other, a more computationally efficient 

way and relies on the standard linear aeroelastic tools. 

The workflow of the procedure is depicted in Figure 1 and follows as: 

 

1. A database of linear ROMs is generated in an off-line phase for a discrete set of values of the linearized 

equivalent stiffness 9d_  and a fixed flight condition 

2. The time integration starts from the initial conditions using a state-transition matrix integration 

3. The value of the linearized equivalent stiffness at the current time step cR is calculated based on the actual 

deflection  ;�cR�, recovered from the states 1I�cR� 
4. The updated ROM matrices %I5;�cR�8, 3I5;�cR�8, �I5;�cR�8, �I5;�cR�8 are calculated by interpolation 

from the database generated off-line at step 1 

5. The updated ROM is used for the next integration step cRef. 

 

 

Figure 1. Flowchart of the PROM procedure for systems with concentrated structural nonlinearities. 

 



The selection of the sampling points for the linearized equivalent stiffness is critical for the accuracy of the 

procedure. These must cover the entire expected range of variations during the nonlinear response and must be fine 

enough to limit the interpolation error. 

Since the matrices interpolation and switching is performed at each time step, the number of interpolations can be 

significantly high. Thus the benefit of using a ROM instead of a FOM is clear, especially when several flight 

conditions must be analysed for loads prediction or if the nonlinear transient response is used in an optimization. 

 

Optimization of a nonlinear wing tip device 

The PROM approach is applied to the optimization of a nonlinear wing tip device for load alleviation. A preceding 

publication by one of the authors
14

 proposed a wing tip device, shown in Figure 2, with a passive load alleviation 

capability. The main purpose of this device, attached to the outboard wing, is to extend the wingspan in order to 

achieve a reduction in induced drag and, eventually, in fuel consumption. This goal conflicts with the increase in 

loads and, as a result, in structural weight caused by a span extension. A system is devised to embed in the wing tip 

a passive load alleviation function by connecting it to the outboard wing through a flexible element, located ahead of 

the wing tip’s centre of pressure, whose torsional stiffness is tuned to provide alignment of the wing tip and the main 

wing in cruise flight and to allow the pitching motion of the wing tip surface, in the direction of a load reduction, at 

increasing load levels. 

 

 

Figure 2. Design concept of the wing tip device14.  

 

The original design of the wing tip
14

 featured a flexible attachment element with a linear stiffness, which was 

selected to maximize the wing bending moment alleviation, with respect to a rigid wing span extension, via a 



constrained gradient-based optimization. In this paper the effect of a nonlinear stiffness of the attachment element on 

the wing bending moment alleviation is studied applying the PROM procedure proposed. A cubic restoring force of 

the attachment element in the torsional DOF ; is assumed, which leads to the linearized equivalent stiffness of 

equation (7) such that 

 

95;�c�8 = 9: + 9M,;g�c�  
 

where the two coefficients 9: and 9M, define respectively the linear and the nonlinear (cubic) contribution to the 

restoring force.  

As shown by Ricci et al.
14

 for the linear design, the more flexible is the attachment element the greater is the 

bending moment alleviation achieved. This however would results in an excessive misalignment of the wing tip in 

cruise, which could increase the interference drag and drag due to flow separation and offset the reduction in 

induced drag. A similar study
29

 showed that increasing the flexibility of such an attachment also increased the 

likelihood of flutter occurring. 

A multi-objective optimization of the nonlinear stiffness is therefore carried out, assuming as design variables 9: 

and 9M,, and two conflicting objective functions are identified: 

 

1. Minimization of worst-case Max/Min wing bending moment along the wingspan with respect to the linear 

design 

h� = � ij! ∑ kl3�m�1,b
no

3�m�1,boin l + l3�ma#,b
no

3�ma#,boin lp#�2qbr�   ( 21 ) 

2. Minimization of the wing tip misalignment ;f-,] in cruise condition. 

h� = � �! ∑ kl6��,`6>�� lp
�̀r�  ( 22 ) 

 

where stu)L,TJv , stuRM,TJv  and stu)L,TvwJ , stuRM,TvwJ  are the maximum and minimum total bending moment of the 

aircraft respectively with the nonlinear and linear device, due to the gust and the initial 1g trim condition, at the 

wing section \ among all the flight conditions. xy and ;̅f- are a normalization factors. 



A set of t flight conditions covering the whole flight envelope and one mass configuration (MZFW) are 

considered. Trim analyses in cruise condition at 1g, including static aeroelastic effects, and gust responses are 

performed at all the selected flight conditions. As required by the certification specifications, vertical gusts, both 

upward and downward, with a “1-cosine” velocity profile and ten evenly spaced gust gradients between 30ft and 

350ft are analysed. Gust response has often been chosen as the objective function of aeroelastic optimization
30

 since 

it is usually the critical load case for a modern airliner. 

Because the system under consideration is nonlinear, the gust response depends on the initial trim condition and 

loads due to the gust and to cruise flight cannot be calculated independently and superimposed as done in linear 

analysis. Therefore, in the optimization process for each flight condition a nonlinear trim analysis is first performed 

to calculate the initial wing tip relative deflection and wing loads and then this solution is used as the initial 

condition for the time integration procedure of the nonlinear gust response. 

The entire procedure for the optimization using the PROM is shown in Figure 3. 

 

 

Figure 3. Flowchart of the wing tip optimization procedure. 

 

The advantage of using the PROM methodology is twofold: a complete sweep of the flight envelope and the 

identification of the worst-case gust for each wing section can be rapidly performed without the need of generating 



and using a new FOM at each flight condition, but simply interpolating the database of ROMs generated off-line, 

and the same reduction and interpolation procedure is used to sample the linearized equivalent stiffness, generate a 

database of sub-linear ROMs and carry out the nonlinear trim and gust response in a piecewise-linear manner. For 

the present case, the ROMs database has been created taking 16 points in the flight envelope and 8 points to 

discretize the stiffness curve. As an example of the substantial saving in computational time, a single nonlinear trim 

and gust response to ten gust lengths using the ROM requires just 9.5% of the FOM time. The estimated speed-up 

factor for the complete optimization run exceeds 30. 

  

Results 

The reference aircraft for the wing tip device application is the same used by Ricci et al.
14

, representing a modern 

narrow-body airliner. The structural model is a FE stick beam model with lumped masses whereas for the 

aerodynamics the DLM is used. Both the structural and aerodynamic models, shown in Figure 4, are created in 

Nastran with the publicly available software NeoCASS
27

. The wing tip device increases the wing span by 10% and 

the attachment element is located at 24% of the root chord with its axis perpendicular to the airstream. 

 

 

Figure 4. Structural and aerodynamic mesh of the reference aircraft and definition of wing tip rotation 6. 

 

The optimization is performed via a Multi-Objective Genetic Algorithm
28

. Lower and upper bounds are imposed on 

the stiffness coefficients (Table 1), as well as a lower bound on the linearized equivalent stiffness. Because the 

system is nonlinear, a classical p-k flutter analysis cannot be performed, therefore freedom from flutter is ensured by 



checking if any of the model coordinates, monitored in the output vector 4, tends to diverge during the gust 

response.  

The results of the optimizer are presented in Figure 5, which reports the Pareto front and the individuals’ 

distribution. The Pareto-optimal solutions show a greater variability in the misalignment objective function whereas 

the load alleviation is less sensitive to the stiffness coefficients. The point chosen on the Pareto front is highlighted 

in Figure 5 and reported in Table 1, compared to the optimized linear design (coefficients normalized to the linear 

stiffness equal to 33000 Nm/rad
14

). The linear stiffness is increased almost to its upper bound, basically to limit the 

cruise misalignment. This finding is expected as in cruise, due to the lower lift acting on the wing, the wing tip 

operates around ; = 0 deg where the stiffness curve is dominated by the linear term. As the aerodynamic load 

increases due to a gust encounter, the wing tip deflects and operates in the nonlinear region. Since a more flexible 

device is more effective in alleviating the loads, the optimal solution features a negative nonlinear stiffness 

coefficient, i.e. a softening effect. From a practical point of view, a softening effect can occur in a structural element 

undergoing buckling
3
. 

 

 

Figure 5. Optimization results, Pareto front (left) and score histogram (right). 

 

 



Table 1. Optimized stiffness coefficients, linear vs. nonlinear, and lower and upper bounds. 

Stiffness coefficients Linear Nonlinear LB UB 

9:  1 1.1935 0.8 1.2 

9M, -- -0.6399 -3 1 

 

To illustrate the approach, the time history of the incremental bending moment due to the worst-case positive gust at 

two wing sections is shown in Figure 6, for the aircraft equipped with the nonlinear and linear wing tip. The 

additional flexibility introduced by a nonlinear stiffness achieves a reduction of the maximum and minimum peak 

loads. This is caused by the increased nose-down deflection of the wing tip with nonlinear stiffness under loads with 

respect to the linear design (+31% deflection), as shown in Figure 7, which also demonstrates how the linearized 

equivalent stiffness decreases throughout the gust response thanks to the softening effect. 

 

 

Figure 6. Bending moment for worst-case positive gust (shown) at the root and at 53% wingspan, linear vs. nonlinear. 

 



 

Figure 7. Wing tip deflection linear vs. nonlinear and linearized equivalent stiffness for worst-case positive gust (shown). 

 

To assess the behavior of the device in the flight envelope, the ratio of the maximum bending moment of the 

nonlinear and linear design is presented in Figure 8 at four wing sections. For all flight conditions, the optimized 

nonlinear device is capable of reducing the loads; the alleviation, though limited at the root, increases towards the 

outboard wing, an important consideration because this is the area that typically requires structural modification due 

to a span extension. 



 

Figure 8. Maximum bending moment alleviation (ratio nonlinear/linear) in the flight envelope at four wing sections. 

 

The improvement of the load alleviation capability of the nonlinear design is obtained at the expense of a greater 

misalignment in cruise, as shown by Figure 9. A detailed aerodynamic assessment is therefore necessary to establish 

if this offset the reduction of induced drag obtained by the span extension. 

Finally the alleviation along the wingspan of the maximum and minimum bending moment for the worst-case gust 

of each section, i.e. the 1D envelope of the maximum and minimum wing bending moment, is presented in Figure 

10 and the critical conditions (Mach, altitude and gust gradient) are summarized in Table 2. The graph reports both 

the load reduction with respect to the linear wing tip and to a rigid wingspan extension. The device appears to be 

more effective in reducing the downward bending; nevertheless a good alleviation is obtained, particularly at the 

outboard wing. 

 



 

Figure 9. Wing tip misalignment at 1g in the flight envelope, linear (left) vs. nonlinear (right). 

 

Table 2. Worst-case gust conditions envelope for the wing. 

 Mach Altitude (ft) Gust gradient (ft) 

Max BM 0.37 0 172 

 0.37 0 208 

 0.43 0 172 

 0.46 0 172 

 0.49 0 208 

Min BM 0.49 0 208 

 0.55 2048 208 

 0.55 2048 244 

 0.55 2048 279 

 



 

Figure 10. Worst gust max/min bending moment alleviation along the wingspan with respect to linear and rigid wing tip. 

 

Conclusions 

In this paper, an efficient methodology for the simulation of aeroelastic systems with concentrated structural 

nonlinearities has been proposed. The technique relies on the standard linear aeroelastic tools still commonly 

employed in the industry and performs the simulation in time-domain of a nonlinear aeroelastic system in a 

piecewise-linear fashion, switching between sub-linear systems according to the current configuration of the states. 

The efficiency of the procedure is greatly improved by applying a PMOR framework: a database of small yet 

accurate ROMs is generated in an off-line phase by balanced truncation for few selected flight conditions and few 

values of the nonlinear property linearized around a specific operating point. During the integration the sub-linear 

systems are created simply by interpolating the state-space matrices from this database. 

The methodology is applied to study the behaviour of a passive wing tip device for load alleviation with a nonlinear 

stiffness, compared to a previous work where a linear design of the same device was introduced. A multi-objective 

optimization is carried out to tune the nonlinear stiffness subject to load alleviation and aerodynamic objectives in 

the whole flight envelope, showing the efficiency of the proposed method which achieves an estimated speed-up 

factor of 30 compared to a FOM optimization approach.   
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Appendix 

Notation 

() aerodynamic reference length 

C vector of parameters of the aeroelastic state-space system 

�� dynamic pressure 


� generalized coordinates 

' Laplace variable 

c time 

�� FEM displacements 

z aeroelastic state-space system input vector 

{)|  aeroelastic state-space system states vector 

1I ROM states vector 

} aeroelastic state-space system output vector 

st bending moment 

~)) FEM damping matrix 

~�� generalized damping matrix 

ℱ objective function 

�� vector of FEM unsteady aerodynamic forces due to gust 

�)) FEM stiffness matrix 

��� generalized stiffness matrix 

9: linear coefficient of linearized equivalent stiffness 

9M, nonlinear coefficient of linearized equivalent stiffness 



 

�)) FEM mass matrix 

��� generalized mass matrix 

MZFW Maximum Zero Fuel Weight 

^] congruence transformation matrix 

��� matrix of FEM unsteady aerodynamic forces due to structural motion 

��� matrix of generalized aerodynamic forces due to structural motion 

��� vector of generalized aerodynamic forces due to gust 

?3 balanced truncation reduced order basis 

�� airspeed 

+ aerodynamic poles of Rational Function Approximation 

; wing tip deflection 

;f- wing tip misalignment at 1g 

∆c integration time step 

∆��� incremental FEM stiffness matrix 

Φ)� generalized basis 


