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Abstract

We present a derivation of the Kullback Leibler (KL)-Divergence (also
known as Relative Entropy) for the von Mises Fisher (VMF) Distribution
in d−dimensions.

1 Introduction

The von Mises Fisher (VMF) Distribution (also known as the Langevin Distri-
bution [8]) is a probability distribution on the (d− 1)-dimensional hypersphere
Sd−1 in Rd [3]. If d = 2 the distribution reduces to the von Mises distribution
on the circle, and if d = 3 it reduces to the Fisher distribution on a sphere.
It was introduced by [3] and has been studied extensively by [6, 7]. The first
Bayesian analysis was in [5] and recently it has been used for clustering on a
hypersphere by [2].

Figure 1: Three sets of 1000 points sampled from three VMF distributions on
the 3D sphere with κ = 1 (blue), κ = 10 (green) and κ = 100 (red), respectively.
The mean directions are indicated with arrows.
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2 Preliminaries

2.1 Definitions

We will use log(z) to denote the natural logarithm of z throughout this article.
Before continuing it will be useful to define the Gamma function Γ(z),

Γ(z) =

∫ ∞
0

tz−1e−tdt, z ∈ C, Re(z) > 0 (1)

Γ(z) = (z − 1)!, z ∈ Z+ (2)

and its relation, the incomplete Gamma function Γ(z, s),

Γ(z, s) = (s− 1)!e−x
s−1∑
m=0

zm

m!
, z ∈ Z+ (3)

and the Modified Bessel Function of the First Kind Iα(z),

Iα(z) =

∞∑
m=0

(z/2)2m+α

m!Γ(m+ α+ 1)
, (4)

which also has the following integral representations [1],

Iα(z) =
(z/2)α√

πΓ(α+ 1/2)

∫ π

0

e±z cos θ sin2d θ dθ, (α ∈ R) (5)

=
(z/2)α√

πΓ(α+ 1/2)

∫ 1

−1
(1− t2)(α−1/2)e±zt dt. (α ∈ R, α > −0.5) (6)

Also of interest is the logarithm of this quantity (using the second integral
definition (6)),

log (Iα(z)) = log

[
( z2 )α

√
πΓ(α+ 1/2)

∫ 1

−1
(1− t2)(α−1/2)e±zt dt

]
= log

( z2 )α
√
πΓ(α+ 1/2)

+ log

[∫ 1

−1
(1− t2)(α−1/2)e±zt dt

]
= log

(z
2

)α
− log

√
πΓ(α+ 1/2) + log

[∫ 1

−1
(1− t2)(α−1/2)e±zt dt

]
.

(7)

Note that the second term does not depend on z.
The Exponential Integral function En(z) is given by,

Eα(z) =

∫ ∞
1

e−zt

tα
dt,

= zα−1Γ(1− α, z). (8)

An identity that will be useful is,∫ 1

−1
(1− t)detκ = −2d−1E−d(2κ)eκ. d > 0 (9)
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2.2 The von Mises Fisher (VMF) distribution

The probability density function (PDF) of the VMF distribution for a random
d-dimensional unit vector x(‖x‖2 = 1) is given by:

Md(µ, κ) = cd(κ)eκµ
′x, x ∈ Sd−1, (10)

where the normalisation constant cd(κ) is given by,

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
. (11)

The (non-symmetric) Kullback Leibler (KL)-Divergence from one probability
distributions q(x) to another probability distribution p(x) is defined as,

KL(q(x)||p(x)) =

∫
x

q(x) log
q(x)

p(x)
dx, (12)

= Ex
[
log

q(x)

p(x)

]
. (13)

Although this is general to any two distributions, we will assume that p(x) is
the “prior” distribution and q(x) is the “posterior” distribution as commonly
used in Bayesian analysis.

3 KL-Divergence for the VMF Distribution

3.1 General Case

We will assume that we have prior and posterior distributions defined over
vectors x ∈ Rd, ‖x‖2 = 1 as follows,

p(x) ∼Md(µp, κp),

q(x) ∼Md(µq, κq). (14)

We will now derive the KL-Divergence for two VMF distributions. The main
problem in doing so will be the the normalisation constants cd(κp) and cd(κq).

Theorem 3.1 For prior and posterior distributions as defined above over vec-
tors x ∈ Rd, ‖x‖2 = 1, d <∞, d odd1, we have

KL(q(x)||p(x)) ≤ κq − κpµ′pµq + d• log(κq) +

d�∑
m=1

κmq
m!

−
(
d2 − 2d+ 1

4

)
log(κp) + d�(d� + 1) log d� − d�2 + 1

(15)

Proof From (12), letting d? = d
2 − 1, d� = d−3

2 , and d• = d−1
2 , we have,

KL(q(x)||p(x)) =

∫
x

q(x) log
q(x)

p(x)
dx,

1For even d we can simply add a “null” dimension

3



=

∫
x

q(x)
[
log cd(κq)e

κqµ
′
qx − log cd(κp)e

κpµ
′
px
]
dx,

=

∫
x

q(x)
[
log cd(κq)− log cd(κp) + κqµ

′
qx− κpµ′px

]
dx,

=

∫
x

q(x) [d? log(κq)− (d/2) log(2π)− log Id?(κq)

−d? log(κp) + (d/2) log(2π) + log Id?(κp) + κqµ
′
qx− κpµ′px

]
dx,

=

∫
x

q(x)

[
d? log

(
κq
κp

)
− log Id?(κq) + log Id?(κp) + κqµ

′
qx− κpµ′px

]
dx

=

∫
x

q(x)

[
d? log

(
κq
κp

)
+ κqµ

′
qx− κpµ′px

− log
(κq

2

)d?
+ log

√
πΓ

(
d? +

1

2

)
− log

∫ 1

−1
(1− t2)(d

?−1/2)e±κqt dt

+ log
(κp

2

)d?
− log

√
πΓ

(
d? +

1

2

)
+ log

∫ 1

−1
(1− t2)(d

?−1/2)e±κpt dt

]
dx

(Using (7)) (16)

=

∫
x

q(x)

[
d? log

(
κq
κp

)
+ κqµ

′
qx− κpµ′px− d? log

(κq
2

)
+ d? log

(κp
2

)
− log

∫ 1

−1
(1− t2)d

�
e±κqt dt+ log

∫ 1

−1
(1− t2)d

�
e±κpt dt

]
dx

=

∫
x

q(x)
[
κqµ

′
qx− κpµ′px

− log

∫ 1

−1
(1− t2)d

�
e±κqt dt+ log

∫ 1

−1
(1− t2)d

�
e±κpt dt

]
dx

=

∫
x

q(x)
[
κqµ

′
qx− κpµ′px

− log
[
−2

d−3
2 E−d�(2κq)e

κq

]
+ log

[
−2

d−3
2 E−d�(2κp)e

κp

]]
dx

(Using (9)) (17)

=

∫
x

q(x)
[
κqµ

′
qx− κpµ′px− κq + κp − log [E−d�(2κq)] + log [E−d�(2κp)]

]
dx

=

∫
x

q(x)
[
κq(µ

′
qx− 1)− κp(µ′px− 1)

− log
(

2κ−d
•

q Γ (d•, 2κq)
)

+ log
(

2κ−d
•

p Γ (d•, 2κp)
)]
dx

(Using the definition of the Exponential Integral function (8)) (18)

=

∫
x

q(x)
[
κq(µ

′
qx− 1)− κp(µ′px− 1) + d• log(2κq)− d• log(2κq)

− log (Γ (d•, 2κq)) + log (Γ (d•, 2κp))] dx

=

∫
x

q(x)
[
κq(µ

′
qx− 1)− κp(µ′px− 1) + d• log(2κq)− d• log(2κq)

− log

(
d�!e−κq

d�∑
m=0

κmq
m!

)
+ log

(
d�!e−κp

d�∑
m=0

κmp
m!

)]
dx
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(Using (3) and that d• − 1 = d�) (19)

=

∫
x

q(x)
[
κq(µ

′
qx− 1)− κp(µ′px− 1) + d• log(κq)− d• log(κp) + κq − κp

− log

(
d�∑
m=0

κmq
m!

)
+ log

(
d�∑
m=0

κmp
m!

)]
dx

=

∫
x

q(x)
[
κqµ

′
qx− κpµ′px + d• log(κq)− d• log(κp)

− log

(
d�∑
m=0

κmq
m!

)
+ log

(
d�∑
m=0

κmp
m!

)]
dx

Further simplifications: (20)

≤
∫
x

q(x)
[
κqµ

′
qx− κpµ′px + d• log(κq)− d• log(κp)

− log

(
d�∑
m=0

κmq
m!

)
+

(
d�∑
m=0

log
κmp
m!

)]
dx

(by Jensen’s inequality) (21)

=

∫
x

q(x)
[
κqµ

′
qx− κpµ′px + d• log(κq)− d• log(κp)

+ log

(
d�∑
m=0

κmq
m!

)
−

d�∑
m=0

(m log(κp)− logm!)

]
dx

≤
∫
x

q(x)
[
κqµ

′
qx− κpµ′px + d• log(κq)− d• log(κp)

+ log

(
d�∑
m=0

κmq
m!

)
−

d�∑
m=1

(m log(κp)−m logm+m− 1)

]
dx

(using n log n
e + 1 ≤ log n! ≤ (n+ 1) log n+1

e + 1) (22)

=

∫
x

q(x)

[
κqµ

′
qx− κpµ′px + d• log(κq)− d• log(κp) + log

(
d�∑
m=0

κmq
m!

)

−
d�∑
m=1

(m log(κp)−m logm)− d�(d� + 1) + (d� + 1)

]
dx

=

∫
x

q(x)

[
κqµ

′
qx− κpµ′px + d• log(κq)− d• log(κp) + log

(
d�∑
m=0

κmq
m!

)

−
d�∑
m=1

(m log(κp)−m logm)− d�2 + 1

]
dx

=

∫
x

q(x)

[
κqµ

′
qx− κpµ′px + d• log(κq)− d• log(κp) + log

(
d�∑
m=0

κmq
m!

)

−
d�∑
m=1

(m log(κp)) + d�(d� + 1) log d� − d�2 + 1

]
dx
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=

∫
x

q(x)

[
κqµ

′
qx− κpµ′px + d• log(κq)− d• log(κp) + log

(
d�∑
m=0

κmq
m!

)
−d�(d� + 1) log(κp) + d�(d� + 1) log d� − d�2 + 1

]
dx

=

∫
x

q(x)

[
κqµ

′
qx− κpµ′px + d• log(κq)− d• log(κp) + log

(
d�∑
m=0

κmq
m!

)

−

(
(d− 3)

2

4
+
d− 3

2

)
log(κp) + d�(d� + 1) log d� − d�2 + 1

]
dx

=

∫
x

q(x)

[
κqµ

′
qx− κpµ′px + d• log(κq) + log

(
d�∑
m=0

κmq
m!

)

−
(
d2 − 2d+ 1

4

)
log(κp) + d�(d� + 1) log d� − d�2 + 1

]
dx

=

∫
x

q(x)

[
κqµ

′
qx− κpµ′px + d• log(κq) + log

(
1 +

d�∑
m=1

κmq
m!

)

−
(
d2 − 2d+ 1

4

)
log(κp) + d�(d� + 1) log d� − d�2 + 1

]
dx

≤
∫
x

q(x)

[
κqµ

′
qx− κpµ′px + d• log(κq) +

d�∑
m=1

κmq
m!

−
(
d2 − 2d+ 1

4

)
log(κp) + d�(d� + 1) log d� − d�2 + 1

]
dx

(using n ≥ log(1 + n) ≥ n
1+n , (n > −1)) (23)

=

∫
x

q(x)

[
κqµ

′
qx− κpµ′px + d• log(κq) +

d�∑
m=1

κmq
m!

−
(
d2 − 2d+ 1

4

)
log(κp) + d�(d� + 1) log d� − d�2 + 1

]
dx

= κq − κpµ′pµq + d• log(κq) +

d�∑
m=1

κmq
m!

−
(
d2 − 2d+ 1

4

)
log(κp) + d�(d� + 1) log d� − d�2 + 1

(as
∫
x
q(x) = 1, and E[x] = µq, and µ′qµq = 1) (24)

The term µ′qµp can be seen as the cosine distance between the prior and

postieror mean vectors. For 0 < κq < 1, the term
∑d�

m=1

κm
q

m! ≥ κq. However for
large κq and large d this term can grow very large.

Special case: uniform prior

Since the VMF distribution is defined on the Sd−1, hypersphere, which is actu-
ally a specific case of a Stiefel manifold where r = 1 is the radius. The Stiefel
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manifold has finite area,

τ(d, r) =
2rπ

pr
2

π
r(r−1)

4

∏r
j=1 Γ

(
p−j+1

2

) , (25)

and so,

τ(d, 1) =
2π

p
2

Γ
(
p
2

) , (26)

For the special case of the uniform prior (more precisely limκp→0), the prior
PDF reduces to,

Md(µ, κ) = cd(0)e0

=
Γ
(
d
2

)
2π

d
2

, (27)

which is simply one over the area on the manifold. This leads to a simpler form
for the KL-divergence.

Corollary 3.2 For prior and posterior distributions as defined above over vec-
tors x ∈ Rd, ‖x‖2 = 1, d <∞, we have

KL(q(x)||p(x)) = κq − d? log 2

(28)

Proof

KL(q(x)||p(x)) =

∫
x

q(x) log
q(x)

p(x)
dx,

=

∫
x

q(x)
[
log cd(κq)e

κqµ
′
qx − log cd(0)

]
dx,

=

∫
x

q(x)

[
κqµ

′
qx + log cd(κq)− log Γ

(
d

2

)
+ log

(
2π

d
2

)]
dx,

=

∫
x

q(x)
[
κqµ

′
qx + log cd(κq)− log(d?)! + (d/2) log (2π)

]
dx,

=

∫
x

q(x)
[
κqµ

′
qx + d? log(κq)− (d/2) log(2π)

− log Id?(κq)− log(d?)! + (d/2) log (2π)] dx,

=

∫
x

q(x)
[
κqµ

′
qx + d? log(κq)− log Id?(κq)− log(d?)!

]
dx,

=

∫
x

q(x)

[
κqµ

′
qx + d? log(κq)− log

(κq
2

)d?
+ log Γ

(
d

2

)
− log(d?)!

]
dx,

=

∫
x

q(x)
[
κqµ

′
qx + d? log(κq)− d? log

(κq
2

)]
dx,

=

∫
x

q(x)
[
κqµ

′
qx− d? log 2

]
dx,

= κq − d? log 2,

(29)
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For this special case, it can be seen that the dependence on the dimension
is much more benign. This could prove useful for further computation (e.g. if
the KL-divergence were to be used in a probably approximately correct (PAC)-
Bayes bound [4]).

4 Conclusions

We have presented a derivation of the Kullback Leibler (KL)-divergence for the
von Mises Fisher (VMF)-distribution, including the special case of a uniform
prior over the hypersphere.
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