
                          Tseng, J. (2016). Simultaneous dense and non-dense orbits for toral
diffeomorphisms. Ergodic Theory and Dynamical Systems. DOI:
10.1017/etds.2015.80

Peer reviewed version

Link to published version (if available):
10.1017/etds.2015.80

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Cambridge University Press at
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10144231&fileId=S01433857150008
02. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73981472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1017/etds.2015.80
http://research-information.bristol.ac.uk/en/publications/simultaneous-dense-and-nondense-orbits-for-toral-diffeomorphisms(49a29c31-987d-4489-ad3c-c7166a7b028e).html
http://research-information.bristol.ac.uk/en/publications/simultaneous-dense-and-nondense-orbits-for-toral-diffeomorphisms(49a29c31-987d-4489-ad3c-c7166a7b028e).html


SIMULTANEOUS DENSE AND NONDENSE ORBITS FOR TORAL
DIFFEOMORPHISMS

JIMMY TSENG

Abstract. We show that, for pairs of hyperbolic toral automorphisms on the 2-torus, the points
with dense forward orbits under one map and nondense forward orbits under the other is a dense,
uncountable set. The pair of maps can be noncommuting. We also show the same for pairs of C2-
Anosov di↵eomorphisms on the 2-torus. (The pairs must satisfy slight constraints.) Our main tools
are the Baire Category theorem and a geometric construction that allows us to give a geometric
characterization of the fractal that is the set of points with forward orbits that miss a certain open
set.

1. Introduction

Given a dynamical system f : X ! X on a set X with a topology, we say that a point has dense
forward orbit if its forward orbit closure equals X and nondense forward orbit otherwise. Let the
set of points with dense forward orbits be called the dense set for f and denoted by D(f) and with
nondense forward orbits be called the nondense set for f and denoted by ND(f). Let f̃ : X ! X

be another dynamical system on the same phase space. How large is the set D(f) \ ND(f̃) is a
natural question to ask. It was first asked by V. Bergelson, M. Einsiedler, and the author in [1],
in which complete orbits (as well as forward orbits) were considered for commuting pairs of maps
on the torus and on certain compact homogeneous spaces. The technique in the present paper is
completely di↵erent, but applies to pairs of noncommuting maps as well. The results in this paper
were proven before the results in [1] and complement them.1 The technique in this paper, which
involves the construction of a certain fractal with the help of periodic points, could be useful for
other considerations.

1.1. Statement of results. Let g : T2 ! T2 be a C

2-Anosov di↵eomorphism. For a point x 2 T2,
let E+

g

(x) denote the unstable manifold for g through x and E

�
g

(x), the stable manifold for g through

x. The collection of stable manifolds {E�
g

(x)}
x2T2 form the stable foliation and an element in this

collection is referred to as a leaf. Likewise, for unstable manifolds. (See Section 4.2 for more
details.) Let E+

g

:= E

+
g

(0) and E

�
g

:= E

�
g

(0).
Let T : T2 ! T2 be a hyperbolic toral automorphism. Our first main result is the following

theorem and corollary.

Theorem 1.1. Let T, S : T2 ! T2
be hyperbolic toral automorphisms. If dim(E�

T

\ E

�
S

) = 0, then
ND(T ) \D(S) is a dense, uncountable set.

Corollary 1.2. Let T be a hyperbolic toral automorphism of T2
and {S

k

} be the family of all

hyperbolic toral automorphisms of T2
such that dim(E�

T

\ E

�
Sk
) = 0. Then ND(T ) \

T
k

D(S
k

) is

a dense, uncountable set.

The author acknowledges the research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.
291147.

1After the preprint version of this paper, which was entitled Simultaneous dense and nondense orbits for toral
automorphisms, appeared on arXiv, the paper [5] appeared on arXiv showing the case for noncommuting linear maps
on the d-torus using completely di↵erent methods from that in this paper. Also since the preprint version of this
paper appeared, R. Shi and the author have proved in [6] results for dense and nondense orbits on noncompact spaces.
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2 JIMMY TSENG

For C

2-Anosov di↵eomorphisms of the 2-torus, it is well-known that the stable foliations are
C

1 (see [3, Corollary 4] or [4, Corollary 19.1.11 and its remark]) and the notion of transverse
intersections is well-defined. Our second main result is the following theorem and corollary and is
the first time nonlinear maps are considered for simultaneous dense and nondense orbits.

Theorem 1.3. Let

e
T ,

e
S : T2 ! T2

be C

2
-Anosov di↵eomorphisms. If the intersection points of

every leaf in the stable foliation for

e
T with every leaf in the stable foliation for

e
S are transverse

intersections, then ND( eT ) \D(eS) is a dense, uncountable set.

Corollary 1.4. Let

e
T be a C

2
-Anosov di↵eomorphism of T2

and {eS
k

} be a countably infinite (or

finite) family of C

2
-Anosov di↵eomorphisms of T2

such that the intersection points of every leaf in

the stable foliation for

e
T with every leaf in the stable foliation for

e
S

k

are transverse intersections.

Then ND( eT ) \
T

k

D(eS
k

) is a dense, uncountable set.

Note that the nondense sets for these maps are known to be Lebesgue null sets of full Hausdor↵
dimension [2, 8, 9].

Finally, Lemma 3.2, which gives a geometric characterization of the fractal that is the set of points
with forward orbits that miss the open set constructed in Section 2, may be of independent interest.
This geometric characterization also holds in (and is very important for) the case of C2-Anosov
di↵eomorphisms of the torus (see Lemma 4.7 and the proof of Theorem 1.3 in Section 4.2).

1.2. Idea of proof and outline of paper. The idea of the proof of Theorem 1.1 is as follows.
Using periodic points, we construct an open parallelogram B and its iterates under T . The dynamics
gives us a type of geometric rigidity (Proposition 2.5) for these iterates and, in particular, preclude
proper overlaps (Section 2.3). This geometric rigidity allows us to give a geometric characterization
(Lemma 3.2) of the fractal that encodes missing B for the mapping T , a characterization that
is strong enough to allow us to consider incidence geometry and robust enough to work under
topological conjugacy. Applying the Baire category theorem and recursively repeating this for a
shrinking family of open parallelograms yields the desired result. Sections 2 and 3 are devoted to
Theorem 1.1 and its corollary. The proof of Theorem 1.1 is in Section 4.1.

The proof Theorem 1.3, which is found in Section 4.2, is a corollary of the proof of Theorem 1.1
and the global classification of Anosov di↵eomorphisms on tori. The key ingredient of the proof of
Theorem 1.3 is the robustness of our geometric technique.

Acknowledgements. I thank V. Bergelson for suggesting the problem and discussions and the referee
for useful comments on the exposition.

2. Constructing the fractal for T

Recall that T : T2 ! T2 is a hyperbolic toral automorphism. Let

E

+ := E

+
T

E

+(z) := E

+
T

(z) E

� := E

�
T

E

�(z) := E

�
T

(z),

where z 2 T2. Given a set B 2 T2, define the fractal

F := F

T

(B) := T2\ [1
n=0 T

�n(B).

We refer to the elements of the collection {T�n(B)}1
n=0 as tubes (or, more precisely, T�1

-tubes for

B). For two tubes T�m(B) and T

�n(B) where m < n, we call T�m(B) the old tube and T

�n(B)
the new tube.

We will construct a small open parallelogram B with one vertex at the origin 0 of T2. Our
construction takes place inside a small-enough neighborhood of 0 so that locally we are on R2. Pick
a small open parallelogram B

0 with one vertex at 0 whose two edges B0� and B

0+ are small closed
segments of E� and E

+, respectively. Pick a rational point y0 2 B

0 and let {y0, · · · , yN�1} ⇢ T2

be the orbit of y0 under T .
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To construct the parallelogram B, we must correctly choose an iterate. Let z 2 T2 and ↵ > 0.
Let

P (↵, z) ⇢ E

�(z)

denote the closed ball of E�(z) around z of radius ↵ and, similarly,

Q(↵, z) ⇢ E

+(z)

denote the closed ball of E+(z). For each y

p

, there exists a unique smallest ↵

p

> 0 such that
P (↵

p

, y

p

) meets B0+. Let

P(↵) :=

⇢
P (↵, y

p

)

�
N�1

p=0

.

Let 0  q < N be an index such that ↵
q

is minimal in the set {↵0, · · · ,↵N�1}. Note that since
y0 is chosen in the small enough open parallelogram B

0 and ↵

q

 ↵0, each element of P(↵
q

) can
only intersect B0+ at exactly one point, namely one of its endpoints. Consider the following cases.

2.1. The index q is unique. Thus P (↵
q

, y

q

) meets B

0+ and is the only element of P(↵
q

) to do
so. Call this intersection point x.

2.1.1. The segment P (↵
q

, y

q

) meets B

0
. Recall that B0 is open and thus does not contain B

0+. We
claim that x 6= 0. If not, then P (↵

q

, y

q

) ⇢ E

�, which implies that the periodic point T `(y0) ! 0
as ` ! 1. Thus, the periodic point y0 must be 0. This contradicts the fact that y0 is chosen in
the open set B0 and shows our claim. Let E ⇢ B

0+ denote the closed segment between 0 and x.
For every p 6= q, there is a positive minimum distance between P (↵

q

, y

p

) and B

0+. Consequently,
there exists an open parallelogram B ⇢ B

0 with E as an edge such that B does not meet any
P (↵

q

, y

p

) (including p = q since B is open). Finally, let

B0 := B \B

0�
B

x

:= B \ P (↵
q

, y

q

).

2.1.2. The segment P (↵
q

, y

q

) does not meet B

0
. Picking an ↵ slightly bigger than ↵

q

will result in
P (↵, y

q

) meeting B

0, but P (↵, y
p

) not meeting B

0+ for any p 6= q. Choose B and denote B0 and
B

x

as in Section 2.1.1.

2.2. The index q is not unique. Let 0  q0, · · · , q
k

< N be all the indices such that ↵
q

:= ↵

q0 =
· · · = ↵

qk . Thus every element of P0(↵q

) := {P (↵
q

, y

qi)}k
i=0 meets B

0+ and are the only elements
of P(↵

q

) to do so.

2.2.1. At least one element of P0(↵q

) meets B

0
. For each element of P0(↵q

) that meets B

0, there
exists a unique intersection point with B

0+, and, since B0 is chosen small enough, there exists exactly
one such intersection point x that is nearest to 0. For exactly the same reason as in Section 2.1.1,
we have that x 6= 0. To this x corresponds a unique element of P0(↵q

). Let E ⇢ B

0+ denote the
closed segment between 0 and x.

Now consider each remaining element P of P0(↵q

). Recall that ↵

q

is so small that each P can
only intersect B0+ in exactly one point. Hence the other endpoint of P does not intersect B0+.

For each element of P(↵
q

)\P0(↵q

), no points intersect B0+. Consequently, there exists an open
parallelogram B ⇢ B

0 with E as an edge such that B does not meet any element of P(↵
q

). Finally,
let

B0 := B \B

0�
B

x

:= the edge of B parallel to B0.

2.2.2. No element of P0(↵q

)meet B

0
. Picking an ↵ slightly bigger than ↵

q

will result in every element
of {P (↵, y

qi)}k
i=0 meeting B

0, but P (↵, y
p

) not meeting B

0+ for any p /2 {q0, · · · , q
k

}. Choose B and
denote B0 and B

x

as in Section 2.2.1. This concludes the construction of the open parallelogram
B. Note that, in the construction of B, a unique element of P(↵

q

) is chosen.



4 JIMMY TSENG

2.3. Proper overlaps. The notion of proper overlaps, to be defined towards the end of this section,
is local. However, we show below that proper overlaps cannot occur anywhere; thus a global
condition on the family of tubes is obtained.

Recall the definitions of B0, Bx

, E, and Q(↵, z). Let

C := B0 C0 := B

x

E0 := the edge of B parallel to E

and
C
m

:= T

�m(C) C0
m

:= T

�m(C0) E
m

:= T

�m(E) E0
m

:= T

�m(E0).

The edges denoted by C are referred to as contracting and by E as expanding.
Consider an old tube T

�m(B) and a new tube T

�n(B). Let y 2 T

�m(B) \ T

�n(B). Since the
intersection of the two tubes is an open set, there exists an ↵ > 0 such that Q(↵, y) is contained
in this intersection. Thus, there exists unique minimal ↵̃ := ↵

m

,↵

0
m

,↵

n

,↵

0
n

> 0 such that Q(↵̃, y)
meets C

m

, C0
m

, C
n

, C0
n

in the unique points x
m

, x0
m

, x
n

, x0
n

, respectively. These intersection points
will only coincide when they lie on the same edge. (As an aside, note that the primed contracting
edges cannot coincide with the non-primed contracting edges; see Lemma 3.1 for a proof.) The
slice S

m

of the tube T

�m(B) through y is the open segment between x

m

and x

0
m

and the closed

slice S
m

is the closed segment. These segments are contained in E

+(y) = E

+(x
m

) = E

+(x0
m

). The
points x

m

and x

0
m

are called the vertices of the slice S
m

.

Lemma 2.1. The slice S
m

is the translation of E
m

by x

m

.

Proof. Lift, via the natural projection R2 ! T2, the closed tube T := T

�m(B) to R2. We obtain

an infinite family of disjoint parallelograms. Exactly one of these eT has the origin of R2 as vertex.
Let fE

m

denote the unique lift of E
m

, ex
m

denote the unique lift of x
m

, and eS
m

denote the unique
lift of S

m

to eT. It follows that eS
m

is the translation of fE
m

by ex
m

(i.e. eS
m

= {z + ex
m

: z 2 fE
m

}).
Since translation on T2 is the mapping that makes translation on R2 commute with the natural
projection map, the result follows. ⇤

The proof is simplified if we assume that the eigenvalues of T are positive real numbers. The
general case will follow easily from this (see the proof of Theorem 1.1 in Section 4). Recall that the
old and new tubes intersect at a point y and that S

m

is the slice of the old tube through y. Let S
n

be the slice of the new tube through y.

Lemma 2.2. Let the eigenvalues of T be positive real numbers. For any closed slice S
m

of a tube

T

�m(B), T j(S
m

) is the closed slice S
j�m

of the tube T

j�m(B) with vertices x

j�m

= T

j(x
m

) and

x

0
j�m

= T

j(x0
m

).

Proof. Since T

j

E

+(x
m

) = E

+(T j

x

m

) and S
m

⇢ E

+(x
m

), the conclusion follows by the definition
of closed slice. ⇤
Lemma 2.3. Let the eigenvalues of T be positive real numbers. If both x

n

and x

0
n

are in S
m

, then

S
n

⇢ S
m

.

Proof. The segments S
m

and S
n

are convex. ⇤
Lemma 2.4. Let the eigenvalues of T be positive real numbers. At least one vertex of S

m

is not

contained in S
n

.

Proof. By Lemma 2.2, T�(n�m)(S
m

) is a closed slice through the new tube. By Lemma 2.1, S
n

is a translate of T�(n�m)(S
m

). Since translation on T2 is an isometry, S
n

has the same length as
T

�(n�m)(S
m

). But, the length of S
m

is strictly greater than that of T�(n�m)(S
m

) because n�m > 0
and S

m

⇢ E

+(x
m

). The result is now immediate. ⇤
We now define the notion of a proper overlap for the old and new tubes. We say that the two

tubes overlap properly at y if S
n

\ {x
m

, x

0
m

} 6= ;. Since the tubes are open sets, once the overlap
property holds (or, respectively, does not hold) at y, then there is a small neighborhood of y in the
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intersection of the two tubes for which the overlap property holds (or, respectively, does not hold).
By convexity, if S

n

contains both x

m

and x

0
m

, then S
m

⇢ S
n

, a contradiction of Lemma 2.4. Thus,
when the tubes overlap properly, S

n

contains either x
m

or x0
m

, but not both.
The following proposition provides a geometric understanding of how (open) tubes behave.

Proposition 2.5. Let the eigenvalues of T be positive real numbers. For the constructed parallel-

ogram B, two distinct tubes do not properly overlap anywhere.

Proof. Let the old tube be T

�m(B) and the new tube be T

�n(B). Let y 2 T2. If y is not in the
intersection of the two tubes, then the two tubes do not properly overlap at y.

Thus we need only consider when y is in the intersection of the two tubes. Assume that the two
tubes overlap properly at y. Let S

m

be the slice of the old tube through y and S
n

be the slice of
the new tube through y. Since the overlap is proper, S

n

contains either x
m

or x0
m

, but not both.
Case: x

m

2 S
n

. Applying T

m to the old tube will map it into the original parallelogram B.
Also, the point x

m

will return to the contracting edge of B, namely the set B0. For all k � m,
T

k(x
m

) 2 B0 because B0 ⇢ E

�. Applying T

n to the new tube will map it into the original
parallelogram B. Since B is open, it does not contain any point in any of its edges and therefore
T

n(x
m

) /2 B0, a contradiction.
Case: x

0
m

2 S
n

. Similar to the previous case, Tm(x0
m

) 2 B

x

. As before, applying T

n to the new
tube will map it into B. Therefore T

n(x0
m

) 2 B. Let P (↵
q

, y

q

) be the unique element of P(↵
q

)
chosen in the construction of B.

Now, by construction, P (↵
q

, y

q

) contains B
x

and no element of P(↵
q

) meets B. Since T permutes
the periodic points {y

`

}N�1
`=0 and is contracting on any P (↵

q

, y

`

), we have that for each P (↵
q

, y

`

)
there exists a P (↵

q

, y

j

) such that T (P (↵
q

, y

`

)) ⇢ P (↵
q

, y

j

). Thus, T i(x0
m

) /2 B for every i � m,
which is a contradiction. ⇤

3. The geometry of the fractal for T

Recall that the fractal is the set F := F

T

:= F

T

(B) := T2\
S1

n=0 T
�n

B where B is the parallel-
ogram constructed in Section 2. Recall that B is an open set and therefore its tubes are also open
sets.

Lemma 3.1. Let the eigenvalues of T be positive real numbers. The sets C
M

,C0
M

and

S1
n=M+1 T

�n

B

are pairwise disjoint.

Proof. Let P (↵
q

, y

q

) be the unique element of P(↵
q

) chosen in the construction of B. The stable
manifolds E

� and E

�(y
q

) are leaves in the stable foliation for T . As distinct leaves of the same
foliation are disjoint, the only way for them to intersect is if they coincide. Recall that C

M

⇢ E

�

and C0
M

⇢ E

�(y
q

). Thus, if we assume that C
M

,C0
M

are not disjoint, then y

q

2 E

�, but the proof
of the claim in Section 2.1.1 gives a contradiction.

Assume that C
M

meets
S1

n=M+1 T
�n

B. Then there exists y 2 C
M

\ T

�n

B for some n > M .
Call the tube corresponding to M the old tube and n, the new tube. Taking slices through the
two tubes at y shows that they overlap properly at a point y0 in the intersection of the two tubes.
(Recall that the both tubes are open, so y

0 lies on the slice through y but cannot be y, as y lies on
the edge of the old tube and not in the open intersection.) This contradicts Proposition 2.5. The
same proof su�ces for C0

M

. ⇤
The fractal F is the set of points with forward orbits that miss B. The following key lemma

geometrically characterizes F and is of independent interest. First, it would be convenient to
define a few terms. We define a piece of space parallel to the stable manifold to be a translate
in T2 of an (small) open segment contained in E

�. Furthermore, we define a T -parallelogram to
be a parallelogram in T2 with one pair of parallel edges parallel to E

� (called the contracting

edges) and the other pair of parallel edges parallel to E

+ (called the expanding edges). An open

T -parallelogram is, in addition, an open set. A slice of a T -parallelogram is defined in the analogous
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way as the slice of a tube. Also, we must now distinguish two types of slices for tubes: interior
and boundary. Given a tube T

�k

B, the two distinct boundary slices are E
k

and E0
k

. No iterate of
the primed boundary slice can intersect an iterate of the unprimed boundary slice (follows by the
analog of the proof of Lemma 3.1). All other slices of the tube are interior slices.

We also define directions for the parallelogram B and its tubes as follows. Recall the two edges
B0 and E of B from Section 2. Regarding these edges as vectors pointing away from 0 yields
the positive contracting direction which points in the direction of B0 and the positive expanding

direction which points in the direction of E. The negative directions point in the respective opposite
directions. Since T has positive eigenvalues, T preserves these directions and hence these directions
are defined in the same way for the tubes. Thus, at any point z in a T

�k-tube near the interior
of E0

k

, we may move along E

�(z) in the negative contracting direction and still remain inside the
tube. Likewise, at any point z0 in a T

�k-tube near the interior of E
k

, we may move along E

�(z0)
in the positive contracting direction and still remain inside the tube. In both cases, we may move
almost as far as the length of C

k

.
Finally, we remark that, in the proof of the following lemma, it is important to note that the

contracting edges of the oldest tube to meet an open set is guaranteed to become part of the fractal
F because there are no proper overlaps. However, complete overlaps can occur, so even if the
contracting edges of newer tubes meet this open set, they are not guaranteed to become part of
the fractal, as they could lie in an older tube. Consequently, the proof must proceed, as it does, by
recursion on each iteration of a tube that meets the (relevant) open set.

Lemma 3.2. Let the eigenvalues of T be positive real numbers. Any open subset of F contains a

piece of space parallel to the stable manifold.

Proof. Let U be an open T -parallelogram of small diameter containing a point y 2 F . In particular,
we assume that diam(U) is much smaller than the length of C0. By ergodicity, the orbit of a point
in B meets U . Therefore, some tube meets U . Since y 2 F , no tube can completely contain U .
Let M � 0 correspond to the first tube that meets U . Since U is not completely contained in this
tube, U meets the boundary of the tube. There are two main cases.

Case 1: U meets C
M

[ C0
M

.

Let z be a point in this intersection and assume that it is in C
M

. Since U is open, U meets
the interior of C

M

. The intersection of U and this interior is a piece of space parallel to the stable
manifold. By Lemma 3.1, this interior will be in F . The same proof su�ces for C0

M

. This concludes
Case 1.

Case 2: U does not meet C
M

[ C0
M

.

Since U does not meet C
M

[ C0
M

and it cannot be contained inside the tube, it must meet the
interior of E

M

or the interior of E0
M

. Since T is an automorphism, E
M

and E0
M

cannot intersect.
Thus, if U meets both the interior of E

M

and the interior of E0
M

, then, by shrinking U only along
the contracting edges, we can have U contain y and the interior of either E

M

or E0
M

, but not both.
Since y does not meet the tube, since the tubes and U are open T -parallelograms, and since U does
not meet C

M

[ C0
M

, the slice S
U

of U through y is does not meet the tube. Moreover, since U only
meets the interior of E

M

or E0
M

, the slice S
U

divides the parallelogram U into two open halves: one
half W intersecting the tube and the other V not intersecting the tube.

Case 2A: U meets E
M

. First note that V is in the negative contracting direction with respect
to W . Let n > M correspond to the tube that next intersects the open T -parallelogram V . If V
meets C

n

[ C0
n

, then we are in Case 1 and thus finished.
Otherwise, V must meet the new tube in the interior of E

n

or the interior of E0
n

or V is completely
contained in the new tube. Now note that E

n

⇢ E
M

and thus E
n

\U ⇢ W [ S
U

(of course, E
n

\U

may be empty), and, thus, E
n

cannot meet V . Since V does not meet C
n

[C0
n

, then either V meets
the interior of E0

n

or V is completely contained in the new tube. If the latter, we claim that the
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interior of E0
n

also meets U . If not, then starting at E
n

we may move in the positive contracting
direction and stay in the new tube until we meet E0

n

. As we move along, we meet V because the
new tube meets V . Since U does not meet E0

n

we move across U . Thus the new tube completely
contains U , a contradiction. Therefore, we have proven our claim: U must meet the interior of E0

n

.
We note that the slice U \E0

n

must not lie in the positive contracting direction with respect to S

U

because, otherwise, U contains y. Thus, either the boundary slices E
M

and E0
n

intersect in U and
therefore both contain the slice S

U

or they are distinct slices and therefore contain distinct slices
of U with only one of these slices allowed to possibly be S

U

. But since, as noted above, iterates of
primed and unprimed boundary slices cannot intersect, the latter must hold. Consequently, there
exists an open parallelogram e

U contained in U and containing S
U

and meeting either E
M

or E0
n

,

but not both. The slice S
U

divides e
U into two halves: one half fW intersecting one of the tubes and

the other e
V not intersecting either tube.

Note that if there exists M < j < n such that the T

�j-tube meets U , then the T

�j-tube must
only meet W [ S

U

, which implies that T

�j(B) \ U ⇢ T

�M (B) \ U and our setup is unchanged.
This concludes Case 2A.

Case 2B: U meets E0
M

. First note that V is in the positive contracting direction with respect to
W . Let n > M correspond to the tube that next intersects the open parallelogram V . If V meets
C
n

[ C0
n

, then we are in Case 1 and thus finished.
Otherwise, V must meet the new tube in the interior of E

n

or the interior of E0
n

or V is completely
contained in the new tube. Now E

n

⇢ E
M

. Consider the case V (and thus U) meets the interior
of E

n

, then U also meets the interior of E
M

, a contradiction. Now consider the case that V meets
the interior of E0

n

. Since we are allowed to move in the negative contracting direction from E0
n

and
remain in the new tube (and the new tube is much longer in this direction than U), the new tube
meets W [ S

U

and thus meets y, a contradiction. Finally, consider the case that V is completely
contained in the new tube. As in the previous case, we are allowed to move in the negative
contracting direction from E0

n

and remain in the new tube. We meet V and may move beyond
V . We may not, however, move beyond S

U

because, otherwise, U would meet y, a contradiction.
Hence, the only possibility is that U \ E

n

= S

U

, which implies that U meets the interior of E
M

,
also a contradiction. Consequently, for Case 2B, V must meet C

n

[ C0
n

, and we are in Case 1 and
thus finished. This concludes Case 2B.

Cases 2A and 2B now provide a recursive algorithm, which must terminate in a finite number
of steps by entering Case 1. If not, then the only way for the algorithm to continue is for Case
2A to be repeatedly used. Let `

U

denote the length of the expanding edges of U . Now at each
step, the constructed e

U and e
V are open T -parallelograms both having expanding edges of length

`

U

. Consequently, there exist an increasing sequence of times corresponding to tubes which are
the first to intersect the sequence of e

V and the intersection will not contain the parts of the tubes
that are the iterates of C or C0. Therefore, a slice from any tube in this sequence will have length
larger than or equal to `

U

. But since this sequence is comprised of inverse iterates of B under T ,
the expanding direction is contracting, and thus the length of the slices must become smaller than
`

U

, a contradiction. This concludes Case 2 and proves the lemma. ⇤

4. A Baire category argument

In this section, we prove Theorems 1.1 and 1.3 and their corollaries. First, we require two lemmas
(which, as an aside, also hold for complete orbits). These will be widely useful in studying nondense
orbits and will be of independent interest.

Lemma 4.1. Let (X,B, µ) be a Borel probability space and f : X ! X be an ergodic homeomor-

phism. Then a nondense orbit is a nowhere dense orbit.
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Proof. Assume not. Let x 2 X have a nondense orbit that is not nowhere dense. Thus O+
f

(x)
contains a nonempty open set U . By ergodicity, there is some point y 2 U with dense orbit. Thus,

X = [1
n=0f

n(U) ⇢ O+
f

(x),

a contradiction. ⇤
Lemma 4.2. Let (X,B, µ) be a Borel probability space and f : X ! X be an ergodic homeomor-

phism. Let n 2 N. The point x 2 X has nondense orbit under f () the point x 2 X has

nondense orbit under f

n

.

Proof. The forward implication is obvious. We prove the reverse implication. Assume it is false.
Note that

O+
f

(x) = [n�1
i=0 f

i(O+
f

n(x)).

By Lemma 4.1, the right-hand side is a finite union of closed sets with empty interior and hence
has an empty interior itself, a contradiction. ⇤

4.1. Proofs for toral automorphisms. Let S : T2 ! T2 be a hyperbolic toral automorphism.
Let B

S

(z, ⇢) denote the open S-parallelogram of diameter ⇢ with equal length sides and with z at
the barycenter of the parallelogram. For S, we define, as we did for T , the analogous notions of
tubes and slices. Since a hyperbolic toral automorphism has a local product structure, in any small
enough open ball on T2, line segments parallel to E

�
S

and E

+
S

are well-defined.

Proof of Theorem 1.1. Since the dimension of the torus is 2, the eigenvalues of T are real. There are
two cases. The first is that all the eigenvalues are positive. By Lemma 3.2, we have that an open
T -parallelogram U containing a point y 2 F

T

also contains an open interval I completely contained
in F

T

and parallel to E

�
T

. Thicken this interval slightly to obtain an open T -parallelogram V ⇢ U .
Let r 2 Q2 \ T2 and ` be a natural number. Consider the open parallelogram

P := B
S

(r, `�1).

Since r is rational, it is periodic under S. Let N be its period. Let C
P

denote the line segment
through r in P contained in E

�
S

(r). Since S�N fixes r, it fixes the leaf of the stable foliation through
r, namely E

�
S

(r). Moreover, an interval D ⇢ E

�
S

(r)will be expanded by S

�N and also contain D.
In particular, C

P

⇢ S

�NC
P

. Since S

�N is ergodic, there exists m � 0 such that the S

�mN -tube
for P will meet V , and V completely contains a closed slice of this tube (because slices under S�1

contract). Therefore, S�mNC
P

meets V . Now this iterate of C
P

is, locally in V , a line segment
parallel to E

�
S

, which by supposition is not parallel to E

�
T

.
Applying S

�N more times will expand C
P

(which stays on the same leaf) so that it meets all of
the points of V that are contained in a line segment parallel to E

�
S

. In particular, this iterate of
C
P

will intersect I by incidence geometry at, say, a point z0 and this line segment is contained in
E

�
S

(z0). And this intersection point z0, which belongs to F

T

, will return to P under enough iterates
of S.

Thus, for all r and `, the sets
1[

n=0

S

�nB
S

(r, `�1) \ F

T

are open dense subsets of the Baire space F

T

. Consequently, the Baire Category Theorem implies
that the set

A :=
\

r2Q2\T2

1\

`=1

1[

n=0

S

�nB
S

(r, `�1)

restricted to F

T

is a dense G

�

subset of F
T

.
Now consider the parallelogram B used in the construction of F

T

. Take a shrinking sequence of
such parallelograms {B

j

}1
j=0 (0 is a vertex in all of the parallelograms) and form the corresponding
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fractals F
j

:= F

T

(B
j

). Let F := [1
j=0Fj

; we note that F is a subset of the set ND(T ) of points in
the torus which have nondense forward orbits under T . The set F is also winning and hence dense.
(The set F is a superset of the winning set [2, Theorem 1.2] of points whose forward orbits miss a
neighborhood of 0). The set A is dense in all F

j

.
We now show that A \ F is dense. Let W be an open set of T2. Since F is dense, W contains

a point z 2 F . But, z 2 F

j

for some j. Since A restricted to F

j

is dense in F

j

, there exists some
a 2 A \ F

j

such that a 2 W . Consequently, A \ F is a dense uncountable subset of the torus.
Finally, it is clear that A is a subset of the set of points in the torus which have dense forward

orbits under S. This proves the theorem for T with only positive eigenvalues.
For the general case of T with real eigenvalues, we have that T

2 has positive eigenvalues. By
Lemma 4.2, the sets ND(T ) and ND(T 2) are the same. Consequently, A \ ND(T ) is dense and
uncountable. This proves the theorem. ⇤
Proof of Corollary 1.2. The proof is immediate from the proof of the theorem. ⇤
Remark 4.3. We may assert a little more (still assuming that dim(E�

T

\E�
Sn
) = 0 and also adding in

the additional assumption that all eigenvalues of T are positive) than the conclusion of Theorem 1.1
or Corollary 1.2. Fix some open parallelogram B as in the construction of the fractal F

T

. Then the
set of points that miss B under forward iterates of T and that have dense forward orbits under all
the S

n

is a dense G

�

subset of F
T

⇢ T2. Also, note that we may replace the role of 0 in the proof
of the theorem with any rational point on the torus. This is done by replacing T with the power
of T that fixes the rational point and using Lemma 4.2.

4.2. Proofs for toral di↵eomorphisms. The global classification theorem for Anosov di↵eomor-
phisms on tori (see [4, Theorem 18.6.1] for example) is the following:

Theorem 4.4. Let d � 2. Every Anosov di↵eomorphism of Td

is topologically conjugate to a linear

hyperbolic toral automorphism.

Let e
T : T2 ! T2 be a C

2-Anosov di↵eomorphism. The theorem implies that there exists the
following commutative diagram:

T2
e
T����! T2

??yh

??yh

T2 T����! T2

Here T is a (linear) hyperbolic toral automorphism and h is a homeomorphism.
Let B

n ⇢ Rn denote the unit ball. Suppose E is a partition of a d-dimensional C1-manifold
M into injectively immersed n-dimensional C1-submanifolds and, for any x 2 M , let E(x) denote
the submanifold containing x. Recall that a foliation (or, more precisely, C1

-foliation) E of M
is such a partition for which every x 2 M has an open neighborhood U and a homeomorphism
' : Bn ⇥B

d�n ! U such that2

• for each z 2 B

d�n, the set '(Bn ⇥ {z}) is the connected component of E('(0, z)) \ U

containing '(0, z) and
• '(·, z) is C1 and depends continuously on z in the C

1-topology.

The sets E
U

(x) := '(Bn ⇥ {z}) are called plaques (or local leaves) and the submanifolds E(x) are
called leaves.

A classical result is the following [3, Corollary 4]:

Theorem 4.5. Let f be a C

2
-Anosov di↵eomorphism of a compact manifold M. If the stable man-

ifolds have codimension 1, they form a C

1
-foliation of M.

2One can weaken the regularity condition to define other notions of foliation, but we have no need to do this as
all the foliations we consider are C1 by Theorem 4.5 and its remark.
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Remark 4.6. As the roles of the stable and unstable manifolds switch when f is replaced by f

�1,
the theorem also applies to unstable manifolds.

Note that Theorem 4.5 and its remark apply to e
T because both the stable and unstable manifolds

are codimension 1. Therefore, we refer to the collection of stable manifolds as the stable foliation

and the collection of unstable manifolds as the unstable foliation. Under topological conjugacy,
the leaves of the stable foliation are mapped bijectively into the leaves of the stable foliation and
the leaves of the unstable foliation are mapped bijectively into the leaves of the unstable foliation,
which, for our case on T2, is the following:

E

�
e
T

(h�1
x) = h

�1
E

�
T

(x) and E

+
e
T

(h�1
x) = h

�1
E

+
T

(x). (4.1)

We define a piece of space through a stable manifold to be an intersection of a plaque of the
stable foliation with an open neighborhood of T2. Since plaques of the stable foliation for an
linear hyperbolic toral automorphism are line segments parallel to the stable manifold, this notion
generalizes the notion, defined in Section 3, of a piece of space parallel to the stable manifold.
Moreover, since a tube for a T -parallelogram (see Section 3) is partitioned by line segments parallel
to the stable manifold for T , its image under h

�1 is partitioned by plaques of the stable foliation
for e

T (and also partitioned by plaques for the unstable foliation for e
T ); we refer to these images as

tubes for e
T . Slices, which are plaques in the unstable foliation, are defined analogously.

Let B and F

T

(B) be defined as in Section 3 for the linear hyperbolic toral automorphism T . Let

F (B) := F

T

(B) and e
F (h�1

B) := Fe
T

(h�1
B) = T2\

1[

n=0

e
T

�n

h

�1
B

and note that

e
F (h�1

B) = h

�1
F (B). (4.2)

We now have

Lemma 4.7. Let the eigenvalues of T be positive real numbers. Any open subset of

e
F (h�1

B) contains
a piece of space through a stable manifold for

e
T .

Proof. Apply (4.1, 4.2) to Lemma 3.2. ⇤

Let e
S : T2 ! T2 be a C

2-Anosov di↵eomorphism. Theorem 4.4 also implies that there exists the
following commutative diagram:

T2
e
S����! T2

??yg

??yg

T2 S����! T2

Here S is a (linear) hyperbolic toral automorphism and g is a homeomorphism. Let B
S

(z, ⇢) be
the open S-parallelogram defined in Section 4.1.

Recall that, for a C

1-manifold M , two C

1-submanifolds N1 and N2 of complementary dimensions
intersect transversely at a point x 2 M if T

x

N1 � T

x

N2 = T

x

M . For a transverse intersection, we
have adapted coordinates (see [4, Lemma A.3.17] for example):

Lemma 4.8. There exists a neighborhood U ⇢ M of x and coordinates (x1, · · · , x
d

) on U such that

in these coordinates

N1 \ U = {(x1, · · · , x
d

) : x
n+1 = · · · = x

d

= 0}
and

N2 \ U = {(x1, · · · , x
d

) : x1 = · · · = x

n

= 0}.
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A plaque of the stable foliation of eT and a plaque of the stable foliation of eS are both one-dimensional
and, hence, should they intersect, then, by Theorem 4.5, they intersect transversely at a point in
T2 if and only if their tangent lines at that point do not coincide.

Proof of Theorem 1.3. Using Lemma 4.2, we may assume, without loss of generality, that T has
positive eigenvalues. By Lemma 4.7, we have that an open e

T -tube U containing a point y 2
e
F (h�1

B) also contains a piece of space I through a stable manifold for e
T . The set I is a plaque

and, using Theorem 4.5, is a path-connected piece of a C

1-curve. Let e
I ⇢ I be a path-connected

subset containing both of its endpoints. Since the leaves of the stable foliation partition T2, we
may thicken this closed piece of plaque e

I into a closed e
T -tube W ⇢ U . Let V be the interior of W .

It is an open e
T -tube. Note that V \ e

I is a plaque and a subset of I.
Let r 2 Q2 \ T2 and ` � 4 be a natural number. Consider the open e

S-tube

P := g

�1B
S

(r, `�1),

which is partitioned by plaques of the stable foliation for e
S. In particular, it contains the plaque

C
P

:= E

�
e
S

(g�1
r) \ P.

Since r is rational, g�1
r is periodic under e

S. Let N be its period. Since e
S

�N fixes g

�1
r, it fixes

E

�
e
S

(g�1
r) and, moreover, C

P

⇢ e
S

�NC
P

, as the inverse is expanding on the leaves of the stable

foliation. Since e
S

�N is topologically mixing ([4, Proposition 18.6.5]), there exists m � 0 such that
the e

S

�mN -tube for P will meet V , and V completely contains a closed slice of this tube (because
slices under e

S

�1 contract). Therefore, e
S

�mNC
P

meets V and J := e
S

�mNC
P

\ V is (part of) a
plaque of stable foliation for e

S.
We claim that the leaf E�

e
S

(g�1
r) intersects e

I. Assume the claim is false. We know that the

plaque in U of the leaf E�
e
S

(g�1
r) through the closed tube W is a path-connected piece of a C

1-

curve containing both of its endpoints, which we denote by e
J and which is nonempty (because

it contains J). Since W is a closed e
T -tube, it is partitioned by pieces of plaque from the stable

foliation for e
T and each piece of plaque I

↵

is a path-connected piece of a C

1-curve containing both
of its endpoints. By assumption, eI does not meet e

J . Therefore, we have two nonempty equivalence
classes on the collection of pieces of plaques {I

↵

} that forms the partition for W : those that meet
e
J and those that do not. The same is true for a slightly smaller closed e

T -tube f
W ⇢ W .

By the continuity of the foliation on the compact setW , we can pick a plaque from one equivalence
class and another plaque from the other equivalence class that are arbitrarily close (for, otherwise,
the two classes form a separation, contradicting the fact that W is connected). For each piece I

↵

that does not meet e
J , find a point x

↵

2 I

↵

closest to e
J . Such a point exists because I

↵

and e
J

are both compact. We observe that there exists a sequence of these points {x
j

} ⇢ {x
↵

} such that

dist(x
j

,

e
J) ! 0 as j ! 1. If this were false, then every point in every I

↵

not meeting e
J would be

a positive distance ` > 0 from e
J . Pick a plaque I

�

meeting e
J , which is arbitrarily close to a plaque

I

�

not meeting e
J . This includes an intersection point of I

�

and e
J , which is a contradiction. Note

that our observation also holds for f
W .

Consider such a sequence of x
j

on f
W for which dist(x

j

,

e
J) ! 0 as j ! 1. As f

W is compact,

a subsequence converges and, thus, there exists a limit point x1 for which dist(x1,

e
J) = 0 and

x1 2 f
W ⇢ V . The point x1 must lie on some I



which meets V and, since e
J is compact, also

on e
J . By assumption, the intersection of I



with e
J is transverse. Using Lemma 4.8, there exists a

small open e
T -tube e

V ⇢ W containing x1 for which

e
J = {(x1, x2) : x1 = 0} and I



= {(x1, x2) : x2 = 0}.
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Any plaque I
↵

\ e
V (but the plaque I



\ e
V ) from the stable foliation for e

T does not meet I


and hence

has nonzero x2-coordinate, but remains a C

1-curve. Since e
V is compact and the stable foliation

for e
T is C1, the derivative of each I

↵

over all points in e
V is close to each other and, in particular,

in adapted coordinates, this implies that the derivative of I
↵

at each point in e
V is close to the

derivative of I


at x1, which is zero. Consequently, the tangent line at x1 of I


is horizontal and
the tangent lines of any point in e

V through its I

↵

has absolute value of their slope bounded by
some small 1/4 > � > 0 (perhaps after choosing e

V to be smaller).
Let B

R

denote a closed k ·k1-ball B
R

of radius R around x1 (which is the origin in the adapted
coordinates). In the adapted coordinates, pick a B

R

contained in e
V . By construction, there exists

a plaque I

!

\ V of the stable foliation for e
T arbitrarily close to I



such that I
!

\ V \ e
J = ;. Pick

a point y of I
!

\ V within B

R/4. Now y lies in a proper quadrant of B
R

because it cannot meet
e
J , which in adapted coordinates is the vertical axis, and it cannot meet I



because y does not lie
on the plaque I



. For exactly the same reason, every point in I

!

\ V \B

R

lies in the same proper
quadrant.

Now I

!

\eV is two connected components. Picking a point on each component and considering
the arc of I

!

between that point and y implies that the plaque I

!

must intersect the boundary
square of B

R

in at least 2 points. We assert that one of these intersection points must lie on the
line segment parallel to I



in the adapted coordinates. Assume that the assertion were false. Then
there are at least two intersection points with the line segment of the boundary of B

R

perpendicular
to I



in the adapted coordinates. The mean value theorem implies that I
!

has a vertical tangent
line at a point in e

V , namely the absolute value of the slope is unbounded, which is a contradiction
that proves our assertion.

Let z be the intersection point with the line segment parallel to I



. Then the absolute value
of the slope of the line through y and z is greater than or equal to 3R/4

R

. Since both y and z lie

on I

!

, the mean value theorem implies that there exists a point p 2 I

!

\ e
V whose tangent line

has absolute value of slope greater than or equal to 3/4, a contradiction. This shows that the leaf
E

�
e
S

(g�1
r) intersects e

I as claimed. Call this intersection point z

0. And, this intersection point z

0,

which belongs to e
F (h�1

B), will return to P under enough iterates of e
S.

The remainder of the proof is the same as that of Proof of Theorem 1.1. We note that the
set of points that miss a family of shrinking neighborhoods is uncountable and dense because its
image under the conjugacy is winning (as this image is the analogous set for a linear hyperbolic
toral automorphism) and homeomorphisms preserve cardinality and density. (For certain Anosov
di↵eomorphisms, it is also known that their nondense sets are winning [7], but this fact is not
necessary for our proof.) This proves the theorem. ⇤

Proof of Corollary 1.4. The proof is immediate from the proof of the theorem. ⇤
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