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Abstract
Out of the web of linked open data, comes a sense of networked “Big Data.” This large scale
interconnected data is hierarchical, and often messy and full of subjective bias particularly
when mass collaboration is concerned (e.g. wikipedia). In this paper we apply fuzzy set
theory, specifically the X-μ approach which is shown to be more efficient than a standard fuzzy
approach, to attributes within linked data. We look at hierarchical structures, using an example
from the films subset of the DBpedia data repository. The hierarchical nature of film categories
lends itself well to our application, and we apply fuzzy models to handle the vagueness in
attributes such as film length, film budget, and box office takings.
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1 Introduction: Why we need fuzzy

Berners-Lee discussed the vision of what became the Semantic Web and Linked Data in 1999
[1]. In this talk he mentioned that humans not only often communicate in a “fuzzy way,” but
also solve seemingly unrelated problems in an intuitive fashion. In this paper we outline our
approach to providing a fuzzy layer on top of Linked Open Data (a form of “Big Data” available
openly, often via the world-wide-web).

Data mining over distributed data has been a challenge [2, 3], and the web of linked open data
is most likely the largest network of distributed data objects[4]. Due to the “big data” nature of
the web of linked open data, we can get insight into interesting relationships between attributes
of the objects. The hierarchical, or object-orientated, nature of linked open data, can add value
to the insight we can glean. However, such large amounts of interconnected data, made by com-
munities of different humans and/or generated by machines, may create instances where there
are mismatches in data structure, conflicts in values and even subjective bias. These inaccura-
cies may be intentional and purposeful, or they may be unintentional and accidental. As noted
by Boyd and Crawford[5] even within the context of big data, subjectivity is common. Fuzzy has
proven itself to be useful for handling these vaguenesses and subjective uncertainties, whether
that is in systems control, data mining, linguistic summaries or “computing with words”.
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Figure 1: Map showing the location of London
and Gatwick airport, in comparison to the rest
of the United Kingdom.

An example of using fuzzy to handle vague-
ness can be found in systems which handle
geographic/spatial data. In Figure 1, for ex-
ample, “London” and “London Gatwick” are
shown. Although there are roughly 28 miles
between them, a fuzzy approximation might
regard them as “close enough” to be treated
as the same location. For example, a predic-
tion of weather at “London Gatwick” will be
almost identical to a prediction for in “Lon-
don”. Examples of practical fuzzy usage in
temporal and/or geographical systems can be
seen in McBratney and Odeh[6], Hansen and
Riordan[7], Chen and Hwang[8]. Based on
previous experience and the examples pro-
vided above, we find that fuzziness can handle
some of these inaccuracies. By embracing the
vagueness and uncertainties which permeate the linked data web through the use of fuzzy mod-
elling we aim to by-pass the irregularities of data types, and handle the generalisation of certain
forms of distributed information.

We have already seen in the introduction how big data is prone to vagueness and uncer-
tainties. The first part of this paper argues that approaching vagueness on big linked data is a
human-orientated perspective, it describes the two ways fuzzy can be applied to traditionally
crisp data sets, introduces examples of vague and conflicting data within the movie data on
DBpedia, and proposes that fuzzy can be used within big data to simplify analysis and data
mining. The second part of the paper is example-centric, and asks a question of the data,
describes how fuzzy solves this problem, briefly describes the X-μ approach as it is directly
mappable on to data queries, and then finally discusses the efficiency of such an approach.

2 Related Work: Two approaches to applying fuzzy to
Semantic Web / Linked Data

There are two approaches to adding or modelling fuzziness on the Semantic Web and in Linked
Data. The different approaches appertain to differing scenarios, and each has its own benefits
and disadvantages.

In the first approach we can accept fuzziness, and build it into ontologies. In this case one
could take the approach that fuzzy values should be added into the semantic web data types,
and therefore a fuzzy ontology language or a fuzzy resource description framework (“RDF”)
would be required. An example of this approach is summarised by Straccia[9], who extends
the web ontology language (“OWL”), the data framework RDF, as well as semantic web rule
and query languages using a generalisation from crisp into fuzzy. It builds on and relates to
existing work defined regarding Fuzzy Description Logics by Straccia[10], by Dubois, Mengin
and Prade[11] and by Sánchez and Tettamanzi[12][13]. The benefit of this particular approach
is that the fuzzy memberships are defined by the person, organisation or system which defines
the data type and/or generates the data. The downside is that the definition is either not
fully objective, or subjective from the definers perspective therefore indicating bias. As fuzzy
membership functions are application and domain specific, i.e. they are problem-specific, this
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may not necessarily fit with the broadness of the vision of linked data.
Alternatively, we acknowledge that data is forced into crisp, but subjective, categories, and

we are required to build a fuzzy layer after the release of data. In this case one takes the
approach that the data on the semantic web, or in the web of linked data, is already full of
imprecision, vagueness or uncertain levels of subjectivity. A fuzzy layer can then be applied
on top of the existing seemingly crisp web of data through the use of interpretation. Instead
of modifying the data types, we add an interpretive layer which is fuzzy. An example of this
can be found in the work of Vojtáš[14], who applies fuzziness to a rule engine for search. The
benefit of this particular approach is that the fuzzy memberships are defined by the application
designer/developer, and are therefore problem-specific. This approach could be seen as similar
to that taken in fuzzy control systems[15], where inputs and outputs of the system are crisp,
but the internal reasoning engine is fuzzy, through techniques such as Mamdani [16] or Sugeno
[17] inference. The downside to this approach is that the membership function might not be
defined by an expert in the particular data and data types, and consultancy may need to be
sought in production-ready systems. It is worth noting that some work has been done relating
Concept Lattices (found in Formal Concept Analysis) with Semantic Web Ontologies[18, 19]
and Description Logic. It is clear that the extent of a concept lattice can be related to a class
instance, and the intent is the attribute definition. With this in mind, there has also been
much work on Fuzzy Concept Lattices, for example[20, 21, 22], and the handling thereof[23].
Although much of this work regards morphing traditional concept lattices into generalised
concept lattices, rather than the application-centric approach of applying an additional layer
on top of data sets, we can glean important insight into the fuzzification and fuzzy handling of
these systems.

3 Preliminaries: Introducing the example

In standard set theory, it is understood that the cardinality of a subset B of a set A, is less
than or equal to the cardinality of the set A. The converse could be defined as: if B ⊂
A then |A| > |B|

This is particularly useful when considering categories, and is of interest because the idea
of class and category hierarchy appears in the Semantic Web, through the use of classes in
ontologies or through the “broader” propositions of the Simple Knowledge Organisation System
(SKOS)[24]1.

The “broader” relation defined in SKOS is used within DBpedia[25]2. The DBpedia system
is a service on the web which has crawled the wikipedia website and others, it transformes
the data into a structured form using semantic web technologies, and provides it as linked
open data with HTML web page views for human agents, and RDF views for machine agents.
The SKOS ontology is used in DBpedia to define categories as instances of SKOS : Concept,
and categories in DBpedia relate to their child categories using the SKOS : broader relation,
allowing a hierarchy of categories. The DBpedia system has its own class hierarchy defined
in the Web Ontology Language (OWL). An example can be seen in the definition of films
on DBpedia. There is a hierarchy of film categories, and Figure 2 shows part of the graph
describing genres. The system allows more than one parent category, and could therefore be
seen as a multiple inheritance system. From above, the number of films with membership in

1 SKOS is an ontology which allows us to define “Concepts”, which may be “broader”, “narrower” than
other “Concepts”. The SKOS Ontology is a W3C standard, see www.w3.org/2004/02/skos/

2 More information about the DBpedia system can be found via the DBpedia website: http://dbpedia.org/
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Figure 2: A subset of the film types found in DBpedia using the SKOS ontology. Exemplifying
the broader relationship.

one SKOS : Concept A is greater than or equal to the number of films with membership of
another SKOS : Concept B providing that A is SKOS : broader than B.

However, there is vagueness, uncertainty, subjectivity and even missing values within the
DBpedia film data set, due mainly to the nature of collaborative editing within the wikipedia
source. Fuzzy sets can model vagueness and uncertainties[26] in a way that is understand-
able to a human[27]. Fuzzy attributes in the films example include duration, budget, takings
(gross) and even viewer ratings (from an external source). Fuzzy set theory is an extension, or
generalisation, to classical set theory where each element within a set (finite or infinite) has a
membership value μ within the real number interval [0, 1]. Fuzzy memberships are either stored
in a lookup table, or have some algebraic membership function for use in symbolic/analytic op-
erations. A fuzzy membership function is defined as: μ : U → [0, 1] where μ is the membership
function of a fuzzy set, and U is the domain universe. The membership function of a fuzzy
set A is often written A(x) where x ∈ U . The standard definition of fuzzy set theory uses the
following operations:

• Fuzzy Negation or Set Complement: ¬A(x) = 1−A(x) for each item x in set A

• Fuzzy Union: (A ∪B)(x) = max(A(x), B(x)) for each item in both A and B

• Fuzzy Intersection: (A ∩B)(x) = min(A(x), B(x)) for each common item in A and B

The X-μ approach (see below) is an alternative to the traditional fuzzy set theory, and offers
useful methods for efficient modelling and analysis of fuzzy data. The remainder of this paper
describes the approach using the DBpedia and SKOS ontology as examples, and the results of
cardinality and attribute association for each level in the category hierarchy.

4 Vague and conflicting data in the example

An early step in any knowledge engineering or data mining project is that of data cleaning,
to handle any inaccuracies, errors and formatting issues. This step is usually partnered with
conversion of the data into a usable format, for example the transfer of data in comma-separated-
value format into a relational database. This step is often done automatically, and there is
potential that not all of these issues are handled. The philosophy of “fuzzy” lends itself well
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(a) Traditional fuzzy representation of film duration (b) The X-μ representation of film duration

Figure 3: Traditional and X-μ representations of fuzzy film duration categories: short, medium
and long

to some of these issues, as a precise value is of less interest than the more general category to
which it belongs. In the DBpedia film example, there are instances of messy and missing data,
due to the fact that DBpedia retrieves much of its data by mining the massively collaborative
encyclopedia Wikipedia. We can see, for example, conflicting values for attributes, such as:
Film URI Runtime 1 Runtime 2
<http://dbpedia.org/resource/A Knight’s Tale> 7920.0 8280.0

In this case, we might take the average of all conflicting runtimes and apply the fuzzy model -
so that the data is stored as a fuzzy category such as a medium duration with a certain degree
of membership. Formatting issues can arise in film takings, for example:
URI Gross
<http://dbpedia.org/resource/BloodRayne (film)> ”3650275.0” ˆˆ< usDollar >
<http://dbpedia.org/resource/Iron Man (2008 film)> ”5.85174222E8” ˆˆ< usDollar >
<http://dbpedia.org/resource/V2: Dead Angel> ”1541266.0” ˆˆ< euro >

Questions of formatting, or precision (for example some films are specific about their takings,
some others simply say 1 million, for example), and questions of translating currencies can be
resolved by standard approaches. The use of data stored as fuzzy categories of low, medium
and high can also be used.

5 A note on the X-μ Approach

The X-μ approach [28, 29, 30] uses the inverse of a membership function. μ−1 : [0, 1] → P (U)
where P (U) is the powerset of the universe. Whenever possible the symbolic representation of
the function is used. An X-μ function on a continuous domain in symbolic form, for instance,
is a function returning an interval. In general, the output is a set, which represents the value at
any point along the μ domain; this set can be processed by any standard set-theoretic operator.
The effect is a result which adheres to the classical set theory laws at any specified membership
[30]. As an example, we could use a collection of fuzzy membership functions representing
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“short”, “medium” and “long” films. According to the Academy of Motion Picture Arts and
Sciences [31] a feature length film is any duration from 40 minutes, and we can use this to
derive fuzzy definitions for film duration. The standard fuzzy membership functions and the
X-μ forms for duration can be seen in Figures 3a and 3b. The comparison between traditional
fuzzy methods and the X-μ method shows the retention of the semantics of the original sets.
It is also closer to classical set theory, as for whatever value of μ the result is a classical set,
and treated with traditional classical set operations. This has efficiency benefits, as classical
set operations are less complex than traditional fuzzy set operations, plus when combined
with symbolic formulations is simply a case of symbolic manipulation rather than requiring a
sampling (or granular) approach. The primary benefit of using the X-μ approach is that it is
directly mappable on to data query languages, such as SPARQL, the query language for the
Semantic Web and Linked Data.

6 Querying with fuzziness

SPARQL[32], is the query language for Semantic Web and Linked Data, and is similar to SQL
(found in relational database management systems). As the X-μ approachreturns a set of values
based on some μ value, this can be directly mapped on to a SPARQL query (or any other data
query language). For example, if the result of an X-μ function is an interval, the lower and
upper bounds can be used as a lower and upper bounds of a query.

6.1 Discovering cardinality on crisp categories with SPARQL Queries

It is understood within both knowledge engineering and software engineering that the number
of instances in a class will be greater than or equal to the number of instances within one of
its subclasses. This can be seen in the following results generated via a SPARQL query on the
DBpedia data set of films. The following listing is a SPARQL query that counts the number of
unique films in DBpedia which are an instance of all subcategories of “2000s Films” which we
shall label F1.

SELECT count (DISTINCT ? f i lm ) WHERE {
? subcategory skos : broader <http :// dbpedia . org / r e sou r c e /Category :2000 s f i lm s> .
? f i lm dcterms : sub j e c t ? subcategory }

The result, which we will label R1, of the above as executed at the beginning of the year 2015
is 9638 values. To compare we can run the following listing, which is a SPARQL query that
counts the number of unique films in DBpedia which are an instance of ”2000s Action Films”
which we shall label F2, a subcategory of ”2000s Films” F1:

SELECT count (DISTINCT ? f i lm ) WHERE {
? f i lm dcterms : sub j e c t <http :// dbpedia . org / r e sou r c e /Category :2000 s a c t i o n f i lm s > }

The result, which we will label R2, of the above as executed at the beginning of the year 2015
is 575 values. It is clear that: R1 = |F1| and R2 = |F2| and F1 � F2 therefore R2 < R1

6.2 Discovering cardinality on fuzzy categories with SPARQL Queries

We take the short duration X-μ function: Xduration
short = [0.0,−35.0α+ 50.0], and build a

SPARQL query based on the interval:

SELECT COUNT(DISTINCT ? f u r i ) WHERE {
? f u r i dcterms : sub j e c t <http :// dbpedia . org / r e sou r c e /Category :2000 s a c t i o n f i lm s > ;

dbpedia−owl : runtime ? runtime .
FILTER (? runtime >= 0 . 0 ) .
FILTER (? runtime <= {(−35.0 α + 50 .0)∗60} ) }
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Here, we find the count of all distinct URIs of action films released between 2000 and 2009
(inclusive) as indicated by the 2000s action film category, we retrieve the runtime, filtering
between our lower bound and upper bound of our X-μ interval. Note that the upper bound is
multiplied by 60 as our interval is in minutes, whereas the data is in seconds. More importantly,
our interval has the symbol α. These symbols will need to be discretised. This is unfortunate
as it increases execution time in correlation with the granularisation. In the next section we
discuss scalability from an efficiency perspective, in particular a report is given on SPARQL
queries from a crisp and from an X-μ perspective.

7 Big Data Scalability

Drilling-down, from a data science perspective, involves a query that includes one or many
set operations. We argue that the X-μ approach is more processor efficient, and is therefore
more useful for applications that require scalability. In this section we firstly compare practical
efficiency between the set operations of traditional fuzzy set theory and the set operations of
X-μ. We then deliver an efficiency report on X-μ over SPARQL queries.

7.1 Comparing efficiency of the X-μ approach and the traditional ap-
proach to fuzzy

The following is a comparison of the efficiency of X-μ set operations and traditional fuzzy set
operations. Calculation times for a test of 50,000 runs per set operation are shown in seconds
(rounded). Tests were built using Python3. Note that there may be some insignificant outliers
in shortest and longest times, due to irrelevant and unavoidable background operations, these
are reported nonetheless for general interest. The average values are the significant values for
our research. The comparison takes the form of two membership functions M representing
medium values over a continuous universe having the interval [1, 6], and L representing large
values over the same continuous universe. The results for the X-μ operations for union (∪),
intersection (∩) and set difference (\) are :

X-μ L ∪M X-μ L ∩M X-μ L\M X-μ M\L
Shortest 0.000649 0.000649 0.002535 0.002335
Average 0.000667 0.000664 0.002586 0.002382
Longest 0.019448 0.018663 0.021275 0.020763

Traditional Fuzzy Operations on the other hand, over the same number of runs (50,000). Note
that with traditional fuzzy, we must “chunk” the function into granules, the granularity chosen
for these operations is 100 over U . We get the following results in seconds:

Fuzzy M ∪ L Fuzzy M ∩ L Fuzzy L\M Fuzzy M\L
Shortest 0.010632 0.010668 0.011136 0.011295
Average 0.010955 0.011055 0.011416 0.011613
Longest 0.276682 0.025687 0.026220 0.026597

For the traditional fuzzy operations, if we increase the granularity by a power of 10, i.e. a gran-
ularity of 1000, the calculation times increase by a factor of 10. Calculation times in seconds
per operation are:

3Python 2.7.8 :: Anaconda 2.1.0 (64-bit), on an Intel i7 quad-core 2.10GHz processor, 8GB RAM, Ubuntu
Linux version 14.04
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Fuzzy M ∪ L Fuzzy M ∩ L Fuzzy L\M Fuzzy M\L
Shortest 0.107317 0.108812 0.114085 0.116270
Average 0.112935 0.112298 0.117960 0.122728
Longest 1.665969 0.136700 0.128512 0.147879

These granularisations need not occur when performing symbolic X-μ operations, as the opera-
tions in X-μ are simply combined using traditional algebraic formulae combination techniques.
For this reason set operations in X-μ can be seen as being of O(1) efficiency, whereas tradi-
tional fuzzy operations require O(g) efficiency, where g represents the granularisation of the
membership function prior to the set operation.

7.2 Efficiency report on X-μ over SPARQL

To set a baseline figure, we must perform a SPARQL query from a crisp perspective. Here we
have firm boundaries, in our example we can compare three max runtimes for films separated
by 5 minutes (for this example 8100, 8400 and 8700 second durations). We can perform the
following crisp SPARQL query where R is our value:

SELECT COUNT(DISTINCT ? f u r i ) WHERE {
? f u r i dcterms : sub j e c t <http :// dbpedia . org / r e sou r c e /Category :2000 s a c t i o n f i lm s > ;

dbpedia−owl : runtime ? runtime .
FILTER (? runtime >= 0 . 0 ) .
FILTER (? runtime <= \{$R$\}) }

The test is performed on the official DBpedia SPARQL endpoint4, over a high-bandwidth
internet connection using a client-side script developed in the Python programming language.
Execution time results are in seconds and are rounded, they are inclusive of HTTP fetch-time
and the average is found over 100 iterations.

[0,8100] [0,8400] [0,8700]
Shortest 0.19 0.19 0.19
Average 0.21 0.20 0.20
Longest 0.54 0.49 0.39

We are able to build test a set of SPARQL queries to fetch results using X-μ member functions.
Considering the runtime example, we are able to push values of α into the X-μ function to fetch
an interval, which we then use the lower and upper bounds as part of our SPARQL query thus.

SELECT COUNT(DISTINCT ? f u r i ) WHERE {
? f u r i dcterms : sub j e c t <http :// dbpedia . org / r e sou r c e /Category :2000 s a c t i o n f i lm s > ;

dbpedia−owl : runtime ? runtime .
FILTER (? runtime >= {runtime(α).inf ∗ 60} ) .
FILTER (? runtime <= {runtime(α).sup ∗ 60} ) }

runtime() above could be short, medium or long or a set theoretic combination of those cat-
egories such as (short\medium). In the following execution tests we execute the SPARQL
queries using the short runtime membership function as defined earlier in this paper, and the
official DBpedia SPARQL endpoint as above. They are performed with granularities of 10, 100
and 1000. Execution times are for the total of all granules.

g = 10 g = 100 g = 1000
Shortest 1.81 18.93 176.52
Average 1.98 20.69 179.20
Longest 3.09 24.96 182.04

4http://dbpedia.org/sparql
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8 Summary

In summary, we have explained the vagueness inherent in hierarchical big data, namely in the
linked open data cloud. We have explained how a fuzzy set approach can embrace the vagueness
either by applying fuzzy at the ontology level, or by implementing a fuzzy model on top of pre-
existing crisp data sets. The X-μ approach is introduced within context of vagueness on linked
open data, and is described in terms of its efficiency and semantics. An example X-μ function
is then mapped on to a SPARQL query, ready to query the linked open data cloud. Finally,
we discussed the scalability of such operations in terms of processing capability. Further work
is required in the form of X-μ querying of knowledge-bases, however, the efficiency of X-μ in
comparison to traditional fuzzy, and X-μ being mappable to query languages indicates much
potential for positive future research and development.
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