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Abstract

We describe an integrated approach to vagueness and uncertainty within a propo-
sitional logic setting and based on a combination of three valued logic and probability.
Three valued valuations are employed in order to model explicitly borderline cases and
in this context we give an axiomatic characterisation of two well known three valued
models; supervaluations and Kleene valuations. We then demonstrate the close rela-
tionship between Kleene valuations and a sub-class of supervaluations. Belief pairs
are lower and upper measures on the sentences of the language generated from a prob-
ability distribution defined over a finite set of three valued valuations. We describe
links between these measures and other uncertainty theories and we show the close
relationship between Kleene belief pairs and a sub-class of supervaluation belief pairs.
Finally, a probabilistic approach to conditioning is explored within this framework.

1 Introduction

There is a highly interconnected relationship between vagueness and uncertainty. It is

not just that vagueness occurs in conjunction with epistemic uncertainty but also that

linguistic uncertainty is integral to vague propositions themselves. The latter refers to

uncertainty about the definition or interpretation of concepts in natural language and is

a natural result of the empirical manner in which language is learnt. Lawry [13] and Las-

siter [12] argue that this form of uncertainty is epistemic in nature and can be modelled

probabilistically. In this case, the blurred boundary of a vague category can be modelled

by probability defined over possible precise boundaries. There is nonetheless an impor-

tant distinction between blurred boundaries and the explicit identification of borderline

cases. Indeed the latter does not refer to epistemic uncertainty at all but instead results

from a non-Boolean truth model. For example, given an exact value for Ethel’s height it

might be certain that she is borderline short. Vagueness is not only the result of linguistic
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uncertainty or of borderline cases but comprises of at least both of these features. Fur-

thermore, vague predicates are everywhere embedded in our statements and beliefs about

the world. Consequently, to assess such beliefs we must consider vagueness in conjunc-

tion with epistemic uncertainty about the state of the world. This requires an integrated

approach capturing both uncertainty about the world and linguistic uncertainty about

the conventions of language, together with non-Boolean truth models resulting from more

flexible category representation.

In this paper we investigate these ideas in a propositional logic setting by combining

probability and three valued valuations i.e. taking truth values true, borderline or false.

Initially, we adopt an axiomatic approach and consider what properties should be satisfied

by three valued valuations if they are to appropriately represent explicitly borderline cases,

and following on from this we then investigate the relationship between two different

types of valuations. More specifically, we show that there is a strong relationship between

Kleene valuations and a sub-type of supervaluations over a restricted set of formulae of the

language. As a means of combining epistemic uncertainty and explicitly borderline cases

we will introduce belief pairs in the form of lower and upper measures on the sentences of

the language. These are generated from probability distributions defined over three valued

valuations. More formally, the lower measure of a sentence will be taken as corresponding

to the probability that it is true, and the upper measure as corresponding to the probability

that it is not false. We introduce different types of belief pairs based on different underlying

three valued truth models, and we investigate some of the relationships between them.

We then extend these ideas so as to consider conditional beliefs based on probabilistic

conditioning over three valued truth models.

An overview of the paper is as follows: In section 2 we introduce a generic definition

of three valued valuation in a propositional logic setting and give Kleene valuations and

supervaluations as distinct examples. Section 3 proposes a number of axiomatic properties

which we might require a suitable three valued valuation model to satisfy. We discuss the

reasonableness of these properties and provide characterisations of both Kleene valuations

and supervaluations. The notion of a vagueness ordering of valuations is discussed in sec-

tion 4 and a candidate partial ordering is proposed. These ideas are then used as the basis

of an argument against  Lukasiewicz valuations as a model of borderline cases. Belief pairs

are introduced in section 6 where we exploit the results in section 5 in order to demon-

strate the relationship between Kleene and supervaluation belief pairs. Furthermore, we

consider the special case in which uncertainty only concerns the level of vagueness of the

language. In section 7 we then outline a model of conditional belief within our proposed

framework. Finally, in section 8 we give some discussion and conclusions.

The main contributions of this paper are as follows: Firstly we give axiomatic charac-

terisations of both supervaluations and Kleene valuations as special cases of a very general

class of three valued truth functions. This helps to make explicit the assumptions about



the behaviour of borderline cases which is implicit in each case. Secondly, we clarify the

relationship between Kleene valuations and a sub-class of supervaluations called complete

bounded supervaluations. It is shown that these two types of valuations are equal on

the subset of sentences in negated normal form which do not involve both a proposi-

tional variable and its negation. Consequently, we have identified a functional class of

supervaluations1, which are similar to Kleene valuations but which preserve classical logic

equivalences and tautologies. Thirdly, we extend these results to belief pairs consisting of

lower and upper belief measures generated from a probability distribution defined over a

finite set of three valued valuations. More specifically, we show that complete bounded

supervaluation belief pairs coincide with Kleene belief pairs for the same class of sentences

described above. Finally, we investigate conditional belief pairs as generated by condi-

tional probabilities defined over a finite set of three valued valuations. This is rather a

novel approach to conditioning for non-classical logic, and is quite distinct from the more

usual implication operators defined for many valued logics. We prove a number of results

for conditional supervaluation and Kleene belief pairs under different assumptions. In

some cases the work presented extends results and employs definitions which have already

appeared in the literature including in [14], [15], [16] and [17]. Throughout the paper we

will, where appropriate, note the nature and scope of this extension.

2 Three Valued Valuations

In this section we propose a general definition for a three valued valuation of a proposi-

tional logic language and give two important examples as well as introducing some useful

notation. Let L be a language of propositional logic with connectives ∧, ∨ and ¬ and

propositional variables P = {p1, . . . , pn}. Let SL denote the sentences of L as generated

recursively from the propositional variables by application of the three connectives. Fur-

thermore, let LL = P ∪ {¬pi : pi ∈ P} denote the literals of L. The general definition of

a three valued valuation on L is then given as follows:

Definition 1. Three Valued Valuation [15]: A three valued valuation on L is a function

v : SL → {1, 12 , 0} such that ∀θ, ϕ ∈ SL if v(θ) ∈ {0, 1} and v(ϕ) ∈ {0, 1} then v(¬θ) =

1 − v(θ), v(θ ∧ ϕ) = min(v(θ),v(ϕ)) and v(θ ∨ ϕ) = max(v(θ),v(ϕ)). Here the truth

values denote absolutely true (1), borderline (12) and absolutely false (0) respectively. The

restriction on v is that it should obey the same rules as Tarski valuations2 in the case of

Boolean expressions.

1Although supervaluations are never truth-function they can be functional in a weaker sense. More
details are given later in the paper.

2We use the term Tarski valuations to refer to classical Boolean valuations v : SL → {0, 1} defined
recursively by the following combination rules for the connectives ∀θ,ϕ ∈ SL; v(¬θ) = 1− v(θ), v(θ∧ϕ) =
min(v(θ), v(ϕ)) and v(θ ∨ ϕ) = max(v(θ), v(ϕ)).



¬ 1 0
1
2

1
2

0 1

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

Table 1: Kleene truth tables

Definition 1 a very broad class of valuations with three truth values in which the

only requirement is that they remain consistent with Tarski valuations in the case of

sentences with binary truth values. Two well known examples of valuations of this form

are supervaluations and Kleene valuations:

Definition 2. Supervaluations [7]: Let T denote the set of Tarski (classical) valuations

defined on L. A supervaluation is a three valued valuation defined by a set Π ⊆ T of Tarski

valuations corresponding to admissible precisifications, such that ∀θ ∈ SL;

v(θ) =











1 : min{v(θ) : v ∈ Π} = 1

0 : max{v(θ) : v ∈ Π} = 0
1
2 : otherwise

Definition 3. Kleene valuations [10]: A Kleene valuation is a three valued valuation

defined recursively such that ∀θ, ϕ ∈ SL; v(¬θ) = 1 − v(θ),v(θ ∧ ϕ) = min(v(θ),v(ϕ))

and v(θ ∨ ϕ) = max(v(θ),v(ϕ)). The truth tables summarizing these combination rules

are shown in table 1.

Notice that unlike supervaluations, Kleene valuations are fully truth functional, mean-

ing that not only can the truth value of all sentences in SL be derived from the truth values

of P, but also that this mapping is based on fixed combination functions for each of the

connectives. Supervaluations can never be truth functional although, in section 3, we in-

troduce a sub-type of supervaluations which while not fully truth functional are functional

in the weaker sense that all truth values can be derived from those of the propositional

variables.

Given a three valued valuation v, for notational convenience, we also introduce asso-

ciated lower and upper valuations as follows:

Definition 4. Lower and Upper Valuations: Let v be a three valued valuation on L

then we define an associated pair of lower and upper valuations on L as follows: Let

v, v : SL → {0, 1} such that ∀θ ∈ SL,

v(θ) =

{

1 : v(θ) = 1

0 : v(θ) 6= 1
and v(θ) =

{

1 : v(θ) 6= 0

0 : v(θ) = 0

In other words, v(θ) = 1 if and only if θ is true, while v(θ) = 1 if and only if θ is not

false.



Notice that the underlying three valued valuation can be retrieved from the associated

lower and upper valuations according to: ∀θ ∈ SL;

v(θ) =
v(θ) + v(θ)

2

Indeed the pair of valuations ~v = (v, v) provides an alternative characterisation of v as

follows: ∀θ ∈ SL;

v(θ) = 1 if and only if ~v(θ) = (1, 1)

v(θ) =
1

2
if and only if ~v(θ) = (0, 1)

v(θ) = 0 if and only if ~v(θ) = (0, 0)

For supervaluations the lower and upper valuations are given by: ∀θ ∈ SL;

v(θ) = min{v(θ) : v ∈ Π} and v(θ) = max{v(θ) : v ∈ Π}

Notice that lower and upper supervaluations are formally equivalent to Boolean necessity

and possibility measures on SL [4]. Despite this formal identity there is none-the-less a

subtle difference in interpretation between the two models according to which possibility

theory treats the third truth value as meaning unknown rather than borderline. See [1]

for an in depth discussion of these issues.

For Kleene valuations the lower and upper valuations can be determined recursively

according to the following combination rules for the connectives: ∀θ, ϕ ∈ SL;

• v(¬θ) = 1 − v(θ) and v(¬θ) = 1 − v(θ).

• v(θ ∧ ϕ) = min(v(θ), v(ϕ)) and v(θ ∧ ϕ) = min(v(θ), v(ϕ)).

• v(θ ∨ ϕ) = max(v(θ), v(ϕ)) and v(θ ∨ ϕ) = max(v(θ), v(ϕ)).

Throughout the remainder of this paper we will use three valued notation (defini-

tion 1) and lower and upper valuations (definition 4) interchangeably according to the

relationships identified above.

3 Axioms for Three Valued Valuations

We now introduce a number of axiomatic principles which we might require three valued

valuations to satisfy if they are to capture the notion of explicitly borderline cases. As

mentioned above, in this paper we do not intend that the middle truth value should

represent epistemic uncertainty about the state of the world, but rather that it is due

to inherently borderline cases arising as a result of the inherent underlying flexibility of

the underlying language [1]. In other words, a truth value of 1
2 does not represent an



uncertain epistemic state. To illustrate this distinction consider a simple non-Boolean

model in which predicates have two distinct boundaries. For example, the predicate short

could be defined using lower and upper height thresholds h ≤ h, according to which a

height h is classified as being absolutely short if h ≤ h and absolutely not short if h > h.

Intermediate height values where h < h ≤ h are then classified as being borderline short.

In particular, if we knew that Ethel’s height lay in this range then there would be no

relevant epistemic uncertainty and we would be certain that Ethel was borderline short.

The difference between using the middle truth value to represent borderline and using it

to represent uncertainty is discussed in detail in [5] and [1]. For this paper we will consider

the axioms proposed below in the context in which we interpret the middle truth value as

modelling explicitly borderline cases and not epistemic states.

We now adopt this axiomatic approach so as to characterise both supervaluations and

Kleene valuations in terms of intuitive properties satisfied by three valued valuations.

Initially, we show that supervaluations are characterised by the following three axioms:

∀θ, ϕ ∈ SL;

• P1 Duality: v(¬θ) = 1 − v(θ) 3.

• P2 Tautology: If |= θ then v(θ) = 1.

• P3 Equivalence: If θ ≡ ϕ then v(θ) = v(ϕ).

where |= and ≡ refer to the classical (Tarski) entailment and equivalence relations respec-

tively. Given definition 1 P1 simply requires that the negation of a borderline case is also

a borderline case. This then seems perhaps the least controversial of all the axioms we con-

sider. P2 and P3 require respectively that classical (Tarski) tautologies and equivalences

are preserved by three valued valuations.

Theorem 5. Let v be a three valued valuation of L, then v satisfies P1, P2 and P3 if

and only if v is a supervaluation.

Proof. (⇐) trivial

(⇒) By the disjunctive normal form theorem of propositional logic and P3 it follows that

there exists functions f : 2T → {0, 1} and f : 2T → {0, 1} such that: ∀θ ∈ SL,

v(θ) = f({v ∈ T : v(θ) = 1}) and v(θ) = f({v ∈ T : v(θ) = 1})

By P1 it follows that ∀A ⊆ T,

f(A) = 1 − f(Ac) (1)

3Notice that given P1 then the lower and upper valuations are dual so that ∀θ ∈ SL; v(¬θ) = 1 − v(θ)
and v(¬θ) = 1 − v(θ).



Now by definition 4 we have that v ≤ v. This holds if and only if ∀A ⊆ T, f(A) ≤ f(A)

and by equation 1 this holds if and only if ∀A ⊆ T

f(A) + f(Ac) ≤ 1 (2)

From equation 2 it follows that ∀A ⊆ T, f(A) ⇒ f(Ac) = 0. Now by P2 we have that

f(T) = 1 and hence by equations 1 and 2 it follows that

f(∅) = 0 and f(T) = 1, f(∅) = 0 (3)

Now by definition 1 three valued valuations must agree with classical valuations for crisp

sentences. Hence, by definition 4 we have that ∀θ, ϕ ∈ SL, v(θ) = 1, v(ϕ) = 1 ⇒ v(θ∧ϕ) =

1. Therefore,

∀A,B ⊆ T, f(A ∩B) ≥ min(f(A), f(B)) (4)

Also, v(θ) = 1 or v(ϕ) = 1 ⇒ v(θ ∨ ϕ) = 1 and therefore

∀A,B ⊆ T, f(A ∪B) ≥ max(f(A), f(B)) (5)

We can now show that f is an increasing function in the sense that if A ⊆ B ⊆ T then

f(A) ≤ f(B): Suppose A ⊆ B and f(A) = 1 then since A ∪B = B it follows by equation

5 that f(B) ≥ 1 ⇒ f(B) = 1. It also follows that f is increasing in same sense. Suppose

again that A ⊆ B and that f(A) = 1 then by equation 1 1− f(Ac) = 1 ⇒ f(Ac) = 0 since

f is increasing4. Therefore 1 − f(Bc) = 1 ⇒ f(B) = 1.

We can now use the fact that f is increasing together with equations 3 and 4 to show

that f is a Boolean possibility measure [4]. This is a well known result but we include

the details for completeness. Suppose ∃A,B ⊆ T such that f(A ∩B) > min(f(A), f (B)).

This would imply that f(A ∩B) = 1 and min(f(A), f (B)) = 0. However, A ∩B ⊆ A and

A ∩B ⊆ B. Hence, since f is an increasing function, then f(A ∩B) = 1 ⇒ f(A) = 1 and

f(B) = 1 which is a contradiction. Therefore,

∀A,B ⊆ T, f(A ∩B) ≤ min(f(A), f(B))

Hence, by equation 4 it holds that

∀A,B ⊆ T, f(A ∩B) = min(f(A), f(B)) (6)

Furthermore, by equation 1 it follows that:

f(A ∪B) = 1 − f(Ac ∩Bc) = 1 − min(f(Ac), f(Bc)) by equation 6

= 1 − min(1 − f(A), 1 − f(B)) = max(f(A), f(B)) by equation 1

4Suppose f(Bc) = 1 ⇒ f(Ac) = 1 (since Bc ⊆ Ac) which is a contradiction.



Therefore, f and f are Boolean necessity and possibility measures on 2T respectively.

From this it follows that [4], ∀θ ∈ SL;

v(θ) = min{v(θ) : v ∈ Π} and v(θ) = min{v(θ) : v ∈ Π} where Π = {v ∈ T : f({v}) = 1}

as required.

There is a slight variant of this characterisation based on the following property:

• P4 Non-Vacuous: ∃θ ∈ SL such that v(θ) 6= 1
2 .

Corollary 6. A three valued valuation v on L satisfies P1, P3 and P4 if and only if v

is a supervaluation.

Proof. (⇐) Trivial. (⇒) We show that if v satisfies P1, P3 and P4 then v also satisfies

P2. In the proof of theorem 5 we showed using properties P1 and P3 only together with

definition 1 that, ∀θ ∈ SL, v(θ) = f({v ∈ T : v(θ) = 1}) and v(θ) = f({v ∈ T : v(θ) = 1})

where both f and f are increasing functions. By P4 we assume w.l.o.g. that ∃θ ∈ SL

such that v(θ) = 1. Let A = {v ∈ T : v(θ) = 1} then f(A) = f(A) = 1. Therefore, since

A ⊆ T and since both f and f are increasing it follows that f(T) = f(T) = 1. Hence, P2

holds. The result then follows trivially from theorem 5.

These results improve on a characterisation result for supervaluations given in [15] which

required the additional axiom that ∀θ, ϕ ∈ SL, v(θ ∨ ϕ) = max(v(θ), v(ϕ)).

Theorem 5 would initially seem to provide the basis of a strong case for adopting

supervaluations as a three valued truth model, at least in a simple propositional logic

setting. This would certainly be true if we were to interpret the middle truth value

as resulting from uncertainty about an underlying Tarski truth model. Given such an

interpretation then there would be a very strong case for preserving classical equivalences

and tautologies. For instance, suppose that v(θ) = 1
2 were simply to mean that the Boolean

truth value of θ is unknown. In this case θ could not be a classical tautology since it would

be known to be true in all Tarski valuations, hence removing all uncertainty. Also, since

any two classically equivalent sentences have the same truth value for all Tarski valuations

then there could only be uncertainty about one if there was also the same uncertainty about

the other. Indeed as mentioned earlier, Boolean possibility theory provides an alternative

epistemic interpretation of supervaluations consistent with exactly such a view. However,

since here we are using the third truth value to represent explicitly borderline cases then

the situation is much less clear cut. From this perspective the three truth values are

primitives resulting from an inherently non-Boolean interpretation of the language, and

consequently whether or not classical tautologies and equivalences are preserved is an open

question. On the other hand, it is not clear why simply allowing for borderline cases in the



language should, in itself, result in P2 or P3 being violated. Hence, we might then argue

that, in the absence of good reasons to the contrary, we should preserve Tarski tautologies

and equivalences as we move from a two to a three valued setting.

We now introduce four additional axioms which when taken together with P1 provide

a characterisation of Kleene valuations: ∀θ, ϕ, ψ ∈ SL;

• P5 Commutativity: v(θ ∧ ϕ) = v(ϕ ∧ θ) and v(θ ∨ ϕ) = v(ϕ ∨ θ).

• P6 Bounds: If v(θ) 6= 1 or v(ϕ) 6= 1 then v(θ∧ϕ) 6= 1, and if v(θ) 6= 0 or v(ϕ) 6= 0

then v(θ ∨ ϕ) 6= 0. 5

• P7 Monotonicity: If v(ψ) < v(ϕ) then v(θ∧ψ) ≤ v(θ∧ϕ) and v(θ∨ψ) ≤ v(θ∨ϕ).

• P8 Borderline: If v(θ) = v(ϕ) = 1
2 then v(θ ∧ ϕ) = v(θ ∨ ϕ) = 1

2 .

Lemma 7. Let v be a three valued valuation on L satisfying P5, P6 and P7 then ∀θ, ϕ ∈

SL;

v(θ ∧ ϕ) = min(v(θ), v(ϕ)) and v(θ ∧ ϕ) ≤ min(v(θ), v(ϕ))

and

v(θ ∨ ϕ) ≥ max(v(θ), v(ϕ)) and v(θ ∨ ϕ) = max(v(θ), v(ϕ))

Proof. By definition 1 it follows that if v(θ) = v(ϕ) = 1 then v(θ ∧ ϕ) = 1. In other

words, if v(θ) = v(ϕ) = 1 then v(θ ∧ ϕ) = 1 = min(v(θ), v(ϕ)). In all other cases,

we have that either v(θ) 6= 1 or v(ϕ) 6= 1 and hence by P6 v(θ ∧ ϕ) 6= 1. Therefore,

v(θ ∧ ϕ) = 0 = min(v(θ), v(ϕ)) as required.

Suppose that v(θ ∧ ϕ) > min(v(θ), v(ϕ)). This implies that v(θ ∧ ϕ) = 1 and

min(v(θ), v(ϕ)) = 0 i.e. that either v(θ) = 0 or v(ϕ) = 0. Now w.l.o.g. by P5 we

can assume that v(θ) = 0. If v(ϕ) = 1 then by definition 1 v(θ ∧ ϕ) = 0. Otherwise,

v(ϕ) ∈ {0, 12}. In this case can assume that there exists ψ ∈ SL such that v(ψ) = 1 6

so that by definition 1 v(θ ∧ ψ) = 0, and hence by P7 v(θ ∧ ϕ) = 0. Hence, in all cases

v(θ ∧ϕ) = 0. This is a contradiction and therefore v(θ ∧ϕ) ≤ min(v(θ), v(ϕ)) as required.

Also, by definition 1 it follows that if v(θ) = 0 and v(ϕ) = 0 then v(θ ∨ ϕ) = 0. In

other words, if v(θ) = v(ϕ) = 0 then v(θ ∨ ϕ) = 0 = max(v(θ), v(ϕ)). In all other cases,

we have that either v(θ) 6= 0 or v(ϕ) 6= 0 and hence by P6 v(θ ∨ ϕ) 6= 0. Therefore

v(θ ∨ ϕ) = 1 = max(v(θ), v(ϕ)) as required.

5The name bounds for this property is motivated by the fact that when translated into lower and upper
valuation notation it requires that ∀θ, ϕ ∈ SL, v(θ ∧ ϕ) ≤ min(v(θ), v(ϕ)) and v(θ ∨ ϕ) ≥ max(v(θ), v(ϕ))

6Otherwise ∀θ ∈ SL, v(θ) = 1

2
which trivially implies that v is a Kleene valuation and immediately

satisfies the required inequality.



Suppose that v(θ ∨ ϕ) < max(v(θ), v(ϕ)). This implies that v(θ ∨ ϕ) = 0 and

max(v(θ), v(ϕ)) = 1 i.e. that either v(θ) = 1 or v(ϕ) = 1. Now w.l.o.g. by P5 we

can assume that v(θ) = 1. If v(ϕ) = 0 then by definition 1 v(θ ∨ ϕ) = 1. Otherwise,

v(ϕ) ∈ {1
2 , 1}. In this case we can assume that there exists ψ ∈ SL such that v(ψ) = 0

so that by definition 1 v(θ ∨ ψ) = 1, and hence by P7 v(θ ∨ ϕ) = 1. Hence, in all cases

v(θ∨ϕ) = 1. This is a contradiction and therefore v(θ∨ϕ) ≥ max(v(θ), v(ϕ)) as required.

Theorem 8. Let v be a three valued valuation on L, then v satisfies P1, P5, P6, P7

and P8 if and only if v is a Kleene valuation.

Proof. (⇐) It is trivial to show that Kleene valuations satisfy all of P1, P5, P6, P7 and

P8.

(⇒) Given P1 and by lemma 7 it is only required to show that ∀θ, ϕ ∈ SL, v(θ ∧ ϕ) =

min(v(θ), v(ϕ)) and v(θ ∨ ϕ) = max(v(θ), v(ϕ)).

Suppose v(θ ∧ϕ) < min(v(θ), v(ϕ)). In this case v(θ ∧ϕ) = 0 and min(v(θ), v(ϕ)) = 1

i.e. v(θ) ∈ {1
2 , 1} and v(ϕ) ∈ {1

2 , 1}. Now if v(θ) = 1
2 and v(ϕ) = 1

2 then by P8

v(θ∧ϕ) = 1
2 in which case v(θ∧ϕ) = 1 which is a contradiction. Furthermore, if v(θ) = 1

and v(ϕ) = 1 then by definition 1 v(θ ∧ ϕ) = 1 in which case v(θ ∧ ϕ) = 1 which is a

contradiction. Hence, by P5 we need now only consider the case in which v(θ) = 1
2 and

v(ϕ) = 1. Now by P8 v(θ ∧ θ) = 1
2 and hence by P7 v(θ ∧ϕ) ∈ {1

2 , 1}. This implies that

v(θ ∧ ϕ) = 1 which is a contradiction. Hence, v(θ ∧ ϕ) 6< min(v(θ), v(ϕ)) and by lemma 7

v(θ ∧ ϕ) = min(v(θ), v(ϕ)).

Suppose v(θ∨ϕ) > max(v(θ), v(ϕ)). In this case v(θ∨ϕ) = 1 and max(v(θ), v(ϕ)) = 0

i.e. v(θ) ∈ {0, 12} and v(ϕ) ∈ {0, 12}. Now if v(θ) = 1
2 and v(ϕ) = 1

2 then by P8

v(θ∨ϕ) = 1
2 in which case v(θ∨ϕ) = 0 which is a contradiction. Furthermore, if v(θ) = 0

and v(ϕ) = 0 then by definition 1 v(θ ∨ ϕ) = 0 in which case v(θ ∨ ϕ) = 0 which is a

contradiction. Hence, by P5 we need now only consider the case in which v(θ) = 1
2 and

v(ϕ) = 0. Now by P8 v(θ ∨ θ) = 1
2 and hence by P7 v(θ ∨ϕ) ∈ {0, 12}. This implies that

v(θ ∨ϕ) = 0 which is a contradiction. Hence, v(θ ∨ϕ) 6> max(v(θ), v(ϕ)) and by lemma 7

v(θ ∨ ϕ) = max(v(θ), v(ϕ)).

Theorem 9. Supervaluations satisfy P5, P6 and P7.

Proof. P5 follows trivially from the commutativity of Tarski valuations. Now given P5

let v be a supervaluation then suppose that v(θ) 6= 1 then ∃v ∈ Π such that v(θ) = 0 ⇒

v(θ ∧ ϕ) = 0 and hence v(θ ∧ ϕ) 6= 1. Also, suppose v(θ) 6= 0 then ∃v ∈ Π such that

v(θ) = 1 ⇒ v(θ ∨ ϕ) = 1 and hence v(θ ∨ ϕ) 6= 0. Hence, P6 holds.



For P7 we must consider only the following cases (assuming P5)

• v(θ) = 1,v(ϕ) = 1: In this case v(θ ∧ ϕ) = 1 ≥ v(θ ∧ ψ) for any ψ.

• v(θ) = 1,v(ϕ) = 1
2 : In this case v(θ ∧ ϕ) = 1

2 . If v(ψ) = 0 then v(θ ∧ ψ) = 0 <

v(θ ∧ ϕ).

• v(θ) = 1
2 ,v(ϕ) = 1: In this case v(θ ∧ ϕ) = 1

2 ≥ v(θ ∧ ψ) for any ψ.

• v(θ) = 1
2 ,v(ϕ) = 1

2 : In this case v(θ ∧ ϕ) ∈ {0, 12}. If v(ψ) = 0 then v(θ ∧ ψ) = 0 ≤

v(θ ∧ ϕ).

• v(θ) = 0,v(ϕ) = 1: In this case v(θ ∧ ϕ) = 0 = v(θ ∧ ψ) for any ψ.

• v(θ) = 0,v(ϕ) = 1
2 : In this case v(θ ∧ ϕ) = 0 = v(θ ∧ ψ) for any ψ.

The result for disjunction follows similarly.

Theorems 8 and 9 suggest perhaps that P8 is the most controversial of these additional

properties. The intuition behind it is that the conjunction or disjunction of two borderline

sentences should not take any truth value other than borderline. In general, P8 is clearly

inconsistent with P2 as we can see by considering excluded middle tautologies θ ∨ ¬θ

when θ, and consequently by P1 also ¬θ, is a borderline case7. Of course, P8 also

means that contradictions θ ∧ ¬θ have a non-zero truth value if v(θ) = 1
2 . In the seminal

paper [7] Fine argues that a theory of vagueness should be able to account for penumbral

connections, these being logical relations between borderline sentences. So, for example,

Fine argues that even if θ has a borderline truth value then θ∨¬θ and θ∧¬θ are true and

false respectively. However, in the case of vague sentences this seem rather a subjective

judgement. One way of gaining insight into this issue would be to undertake experimental

studies into how people actually deal with penumbral connections in natural language.

There have been only a few examples of such studies reported in the literature and broadly

speaking the results are mixed (see [28] for an overview). However, in one such study

Ripley [24] finds that there is evidence that people are willing to accept contradictions in

borderline cases. We will return to the issue of penumbral connection in the discussion in

section 8. In the sequel we show that it is possible to identify a subclass of supervaluations

which behave as Kleene valuations on a restricted set of sentences and hence which satisfy

P2 generally and P8 in this fragment of the language. Initially, in the following section

we introduce a natural vagueness ordering on three valued valuations and argue that this

provides a strong case against another well known three valued valuation as a model of

explicit borderlines.

7Note that it is not the case that Kleene valuations can be characterised simply by adding P8 to P1 and
P3 since Kleene valuations do not satisfy P3. To see this consider a Kleene valuation for which v(p1) = 1
and v(p2) = 1

2
. Now p1 ≡ (p1 ∧ p2) ∨ (p1 ∧ ¬p2) but for Kleene valuations v((p1 ∧ p2) ∨ (p1 ∧ ¬p2)) = 1

2
.



¬ 1 0
1
2

1
2

0 1

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2 0 0

0 0 0 0

∨ 1 1
2 0

1 1 1 1
1
2 1 1 1

2

0 1 1
2 0

Table 2:  Lukasiewicz truth tables

4 A Vagueness Ordering

Semantic precision [15] is a natural partial ordering on three valued valuations and concerns

the situation in which one valuation admits more borderline cases than another but where

otherwise their truth values agree. More formally, valuation v1 is less semantically precise

than v2, denoted v1 � v2, if they disagree only for some set of sentences of L, which

being identified as either absolutely true or absolutely false by v2, are classified as being

borderline cases by v1. In other words, v1 is less semantically precise than v2 if all the 1

and 0 valuations of v1 are preserved by v2. Hence, we might think of semantic precision

as ordering three valued valuations according to their relative vagueness. Shapiro [26]

proposed essentially the same ordering of interpretations which he refers to as sharpening

i.e. v1 � v2 means that v2 extends or sharpens v1.

Definition 10. Semantic Precision [15]: For three valued valuations v1 and v2, v1 � v2

if and only if ∀θ ∈ SL, v1(θ) ≤ v2(θ) and v1(θ) ≥ v2(θ). Furthermore, v1 ≺ v2 if v1 � v2

and v1 6= v2. Note that if P1 holds then v1 � v2 if and only if ∀θ ∈ SL, v1(θ) = 1 implies

that v2(θ) = 1.

Theorem 11. Semantic Precision for Kleene and Supervaluations [14], [15]:

• If v is a Kleene valuation on L then let P = {pi ∈ P : v(pi) = 1} and N = {pi ∈ P :

v(pi) = 0}. Then for Kleene valuations v1 and v2, v1 � v2 if and only if P1 ⊆ P2

and N1 ⊆ N2.

• Let v1 and v2 be supervaluations on L with sets of admissible valuations Π1 and Π2

respectively. Then v1 � v2 if and only if Π1 ⊇ Π2.

At this point it is interesting to consider  Lukasiewicz three valued valuations as a

possible model of explicit borderlines. As for Kleene valuations, these are truth functional

and are defined recursively as follows:

Definition 12.  Lukasiewicz Valuations [20]: A  Lukasiewicz valuation is a three val-

ued valuation defined recursively such that ∀θ, ϕ ∈ SL; v(¬θ) = 1 − v(θ), v(θ ∧ ϕ) =

max(0,v(θ) + v(ϕ) − 1) and v(θ ∨ ϕ) = min(1,v(θ) + v(ϕ)). Truth tables summarizing

these combination rules are given in table 2.



 Lukasiewicz valuations satisfy a number of the principles introduced in section 3, in-

cluding P1, P4, P5, P6 and P7. Although, of course, unlike Kleene valuations they

do not satisfy the borderline principle P8. The following result, however, suggests that

 Lukasiewicz valuations may not be a good model for borderline vagueness since such val-

uations cannot represent differing levels of vagueness in terms of the semantic precision

ordering.

Theorem 13. Let v1 and v2 be  Lukasiewicz valuations then v1 6≺ v2.

Proof. Let v1 and v2 be  Lukasiewicz valuations such that v1 6= v2, and let B1 = {l ∈ LL :

v1(l) = 1
2} and B2 = {l ∈ LL : v2(l) = 1

2}. Now using proof by contradiction we assume

that v1 ≺ v2. In this case by definition 10 it follows that B2 ⊂ B1. Let l ∈ B1 − B2.

Then v1(l) = 1
2 and by definition 12 v1(l ∧ l) = 0. Also, v2(l) 6= 1

2 and w.l.o.g we can

assume v2(l) = 1 (otherwise consider ¬l). Hence, v2(l ∧ l) = 1 and therefore by definition

12 v1 6≺ v2 since both v1(l ∧ l) = 0 < v2(l ∧ l) = 1 and v1(l ∧ l) = 0 < v2(l ∧ l) = 1 which

is a contradiction.

The negative result in theorem 13 is due to  Lukasiewicz valuations satisfying a property

which is dual to P8, namely that the conjunction (or disjunction) of two borderline sen-

tences is never borderline. But this would seem to be completely counter to our intuitive

understanding of vagueness in certain cases. For example, consider the two statements

‘Ethel is short’ and ‘Ethel is rich’ where short and rich are adjectives defined on com-

pletely independent scales and where the two propositions are logically independent in

the sense that a priori, fixing the truth value of one does not constrain the truth value

of the other. However, in this case all  Lukasiewicz valuations for which both propositions

are borderline, give the truth value false to ‘Ethel is short and rich’. In order words in

all states of the world in which Ethel is both borderline rich and borderline short we

are forced to accept a strong penumbral connection according to which Ethel being short

and rich is completely rule out. It is hard to envisage an intuitive interpretation of these

propositions which would justify such an assumption.

Notice that there do exists distinct  Lukasiewicz valuations for which v1 ≺ v2 if we

adopt a weaker semantic precision ordering according to which v1 � v2 provided that

the constraints v1(l) ≤ v(l) and v1(l) ≥ v2(l) are satisfied for all literals l. However,

this weaker definition would seem to give unwarranted preference to literals rather than

comparing the vagueness of two valuations across the whole language.

5 Relating Kleene and Supervaluations

We now introduce a particular class of supervaluations which we refer to as complete

bounded supervaluations. These are shown to be strongly related to Kleene valuations,



agreeing with the latter on a fragment of L, but otherwise more semantically precise. A

complete bounded supervaluation on L, is uniquely determined by its truth values on the

propositional variables, but this is via a non-truth functional mapping.

Definition 14. Complete Bounded Supervaluations: Let E be the partial ordering on T

according to which v1 E v2 if and only if ∀pi ∈ P, v1(p1) ≤ v2(pi). Then a complete

bounded supervaluation is a supervaluation with the set of admissible precisifications of

the form Π = {v ∈ T : v∗ E v E v∗} where ∀pi ∈ P, v∗(pi) = min{v(pi) : v ∈ Π} and

v∗(pi) = max{v(pi) : v ∈ Π}.

The following is the definition of a particular subset of the sentences of L, on which we

will later show that complete bounded supervaluations and Kleene valuations coincide.

Definition 15. A Restricted Set of Sentences: Let A = {A ⊆ LL : ∀pi ∈ P, {pi,¬pi} 6⊆

A, {pi,¬pi} ∩ A 6= ∅} where LL denotes the literals of L 8. For A ∈ A, let SLA ⊆ SL

denote the set of sentences of L generated recursively from A using only the connectives ∧

and ∨. Then we define SL∗ =
⋃

A∈A SLA. Notice that SL∗ is the subset of the sentences

of L in negated normal form, for which it is not the case that both a propositional variable

and its negation appear.

We now define a family of partial orderings on the set of Tarski valuations of which the

ordering used in definition 14 is a particular example. This is mainly a technical device

that is useful in several of the proofs in this section.

Definition 16. A Family of Partial Orderings on T: For A ∈ A we define the ordering

EA on T such that ∀v1, v2 ∈ T, v1 EA v2 if and only if ∀l ∈ A, v1(l) ≤ v2(l). Notice that

the partial ordering E in definition 14 corresponds to EP .

Definition 17. Minimal and Maximal Valuations: Let v be a supervaluation with admis-

sible valuations Π ⊆ T, then the maximal and minimal Tarski valuations of v, relative to

the ordering EA for A ∈ A, are defined as follows: v∗A, vA∗ ∈ T such that ∀l ∈ A,

v∗A(l) = max{v(l) : v ∈ Π} = v(l) and

vA∗(l) = min{v(l) : v ∈ Π} = v(l)

Notice that v∗ and v∗ in definition 14 correspond to vP∗ and v∗P respectively.

Lemma 18. Let v be a supervaluation then ∀A ∈ A, v∗ E v∗A E v∗ and v∗ E vA∗ E v∗.

Proof. Notice that trivially v∗A E v∗ and v∗ E vA∗, since ∀pi ∈ P, v∗(pi) = v(pi) and

v∗(pi) = v(pi) and by definitions 4 and 17 v∗A(pi) ≤ v(pi) and vA∗(pi) ≥ v(pi). We now

show that v∗ E vA∗ by considering the following two cases:

8Notice that each A ∈ A defines a unique Tarski valuation such that v(p) = 1 if p ∈ A and v(p) = 0 if
¬p ∈ A.



1) Suppose pi ∈ A then v∗A(pi) = 0 ⇒ (by definitions 4 and 17) v(pi) = 0 ⇒ v(pi) =

0 ⇒ v∗(pi) = 0.

2) Suppose ¬pi ∈ A then v∗A(pi) = 0 ⇒ (by definitions 4 and 17) v∗A(¬pi) = v(¬pi) =

1 ⇒ v(pi) = 0 ⇒ v∗(pi) = 0

Similarly, we show that vA∗ E v∗ by considering the following cases:

1) Suppose pi ∈ A then vA∗(pi) = 1 ⇒ (by definitions 4 and 17) v(pi) = 1 ⇒ v(pi) =

1 ⇒ v∗(pi) = 1.

2) Suppose ¬pi ∈ A then vA∗(pi) = 1 ⇒ (by definitions 4 and 17) vA∗(¬pi) = v(¬pi) =

0 ⇒ v(pi) = 1 ⇒ v∗(pi) = 1

as required.

Lemma 19. Let A ∈ A then for v1, v2 ∈ T, if v1 EA v2 then it holds that ∀θ ∈ SLA,

v1(θ) = 1 ⇒ v2(θ) = 1

Proof. We proceed by induction on SLA. Let SL0
A = A and SLk

A = SLk−1
A ∪{θ∨ϕ, θ∧ϕ :

θ, ϕ ∈ SLk−1
A }. Now for l ∈ A the result follows trivially by definition of 17. Now if

ψ ∈ SLk
A then either ψ ∈ SLk−1

A and the result follows trivially by the inductive hypothesis

or one of the follow holds: For θ, ϕ ∈ SLk−1
A ,

• ψ = θ∧ϕ: In this case v1(ψ) = 1 → v1(θ∧ϕ) = 1 ⇒ v1(θ) = 1, v1(ϕ) = 1 ⇒ v2(θ) =

1, v2(ϕ) = 1 by induction ⇒ v2(θ ∧ ϕ) = 1 ⇒ v2(ψ) = 1 as required.

• ψ = θ ∨ ϕ: In this case v1(ψ) = 1 → v1(θ ∨ ϕ) = 1 ⇒ v1(θ) = 1 or v1(ϕ) = 1 ⇒

v2(θ) = 1 or v2(ϕ) = 1 by induction ⇒ v2(θ ∨ ϕ) = 1 ⇒ v2(ψ) = 1 as required.

Theorem 20. Let v be a complete bounded supervaluation and, for some A ∈ A, let vA∗

and v∗A be minimal and maximal valuations generated from v according to definition 17.

Let v′ be the supervaluation with admissible valuations Π′ = {vA∗, v
∗
A} then ∀θ ∈ SLA,

v(θ) = v′(θ).

Proof. We show that ∀θ ∈ SLA, v(θ) = v′(θ) and v(θ) = v′(θ).

For θ ∈ SLA if v(θ) = 1 then ∃v ∈ Π such that v(θ) = 1 ⇒ v∗A(θ) = 1 since v EA v∗A
and by lemma 19. Also, if v′(θ) = 1 then by lemma 19 v∗A(θ) = 1. Now by lemma 18

v∗A ∈ Π since v is a complete bounded supervaluation pair. Hence v(θ) = 1.

Furthermore, if v(θ) = 1 then ∀v ∈ Π, v(θ) = 1. Now by lemma 18 vA∗, v
∗
A ∈ Π since

v is a complete bounded supervaluation pair. Hence v′(θ) = 1. Also, if v′(θ) = 1 ⇒

vA∗(θ) = 1. Hence since ∀v ∈ Π vA∗ EA v, then by lemma 19 it holds that v(θ) = 1.



Corollary 21. Let v be a complete bounded supervaluation and let A ∈ A. Then ∀θ, ϕ ∈

SLA, v(θ ∧ ϕ) = min(v(θ), v(ϕ)) and v(θ ∨ ϕ) = max(v(θ), v(ϕ)).

Proof. ∀θ, ϕ ∈ SLA, v(θ∧ϕ) = v∗A(θ∧ϕ) by theorem 20 = min(v∗A(θ), v∗A(ϕ)) = min(v(θ), v(ϕ))

by theorem 20 as required. Also, by theorem 20 v(θ∨ϕ) = vA∗(θ∨ϕ) = max(vA∗(θ), vA∗(ϕ)) =

max(v(θ), v(ϕ)) as required.

As an immediate consequence of corollary 21 we have that complete bounded superval-

uation pairs obey all the Kleene combination rules for ∧ and ∨ when restricted to SLA for

any A ∈ A. In particular, complete bounded supervaluations satisfy P8 when restricted

to SLA for some A ∈ A. The following result summarizes the strong relationship between

Kleene valuations and complete bounded supervaluations.

Theorem 22. Let vcbs be a complete bounded supervaluation, then there exists a unique

Kleene valuation vk such that vk � vcbs and ∀θ ∈ SL∗, vk(θ) = vcbs(θ).

Proof. We define vk such that ∀pi ∈ P, vk(pi) = vcbs(pi). Notice that trivially we have

that ∀l ∈ LL, vk(l) = vcbs(l). We now proceed by induction to show that for any A ∈ A

and ∀θ ∈ SLA, vk(θ) = vcbs(θ). For l ∈ A, the result holds trivially as above. If ψ ∈ SLk
A

then either ψ ∈ SLk−1
A in which case the result follows trivially by the inductive hypothesis

or one of the follow hold: For θ, ϕ ∈ SLk−1
A ,

• ψ = θ∧ϕ: In this case v(θ∧ϕ) = min(vk(θ), vk(ϕ)) by induction = min(vcbs(θ), vcbs(ϕ)) =

vcbs(θ ∧ ϕ) by definition 2. Also, vk(θ ∧ ϕ) = min(vk(θ), vk(ϕ)) by induction

= min(vcbs(θ), vcbs(ϕ)) = vcbs(θ ∧ ϕ) by corollary 21.

• ψ = θ∨ϕ: In this case vk(θ∨ϕ) = max(vk(θ), vk(ϕ)) by induction = max(vcbs(θ), vcbs(ϕ)) =

vcbs(θ ∨ ϕ) by corollary 21. Also, vk(θ ∨ ϕ) = max(vk(θ), vk(ϕ)) by induction

= max(vcbs(θ), vcbs(ϕ)) = vcbs(θ ∨ ϕ) by definition 2.

Clearly, vk is the only Kleene valuation which agrees with vcbs on SL∗ since for any other

Kleene valuation there must exist a propositional variable where it disagrees with vcbs.

We now show by induction that vk � vcbs. Let SL0 = P and SLk = SLk−1 ∪ {θ ∧

ϕ, θ ∨ ϕ,¬θ : θ, ϕ ∈ SLk−1}. Clearly by the definition of vk, it holds that ∀pi ∈ P,

vk(pi) = vcbs(pi) and hence the result holds for SL0. Now suppose that ψ ∈ SLk then

either ψ ∈ SLk−1, in which case the result holds trivially, or ∃θ, ϕ ∈ SLk−1 such that one

of the following cases holds:

• ψ = θ ∧ ϕ: In this case, if vk(θ ∧ ϕ) = 1 then by definition 3 min(vk(θ), vk(ϕ)) = 1

which implies that vk(θ) = 1 and vk(ϕ) = 1. Hence, by induction vcbs(θ) = 1 and

vcbs(ϕ) = 1 and by definition 2 vcbs(θ ∧ ϕ) = 1 as required. Also, if vcbs(θ ∧ ϕ) = 1



then by definition 2 vcbs(θ) = 1 and vcbs(ϕ) = 1 which implies by induction that

vk(θ) = 1 and vk(ϕ) = 1. Hence, min(vk(θ), vk(ϕ)) = vk(θ ∧ ϕ) = 1 as required.

• ψ = θ ∨ ϕ: In this case, if vk(θ ∨ ϕ) = 1 then by definition 3 max(vk(θ), vk(ϕ)) = 1

which implies that vk(θ) = 1 or vk(ϕ) = 1. Hence, by induction vcbs(θ) = 1 or

vcbs(ϕ) = 1 and by definition 2 vcbs(θ ∨ ϕ) = 1 as required. Also, if vcbs(θ ∨ ϕ) = 1

then by definition 2 vcbs(θ) = 1 or vcbs(ϕ) = 1 which implies by induction that

vk(θ) = 1 or vk(ϕ) = 1. Hence, max(vk(θ), vk(ϕ)) = vk(θ ∨ ϕ) = 1 as required.

• ψ = ¬θ: In this case, if vk(¬θ) = 1 then vk(θ) = 0 which implies by induction that

vcbs(θ) = 0. Hence, vcbs(¬θ) = 1 as required. Also, if vcbs(¬θ) = 1 then vcbs(θ) = 0

which implies by induction that vk(θ) = 0. Hence, vk(¬θ) = 1 as required.

Theorem 22 is related to an existing result in [15] which, while similar, only holds for

sentences in SLA where either A = P or A = {¬pi : pi ∈ P} although it does hold for a

slightly broader class of supervaluations.

6 Lower and Upper Belief Measures

As repeatedly emphasised above we are not using the third truth value in order to stand

for uncertain or unknown but rather to represent an explicitly borderline case. Instead we

propose that in our current setting, epistemic uncertainty should be quantified by defining

probabilities over three valued valuations. This is merely an extension of the usual possible

worlds approach to defining measures of belief on the sentences of L, but extended to three

valued truth models. As we will see below such an approach naturally yields a pair of

lower and upper measures on SL.

It is important to note here that we do not intend for there to be a crisp division

between epistemic uncertainty and vagueness, with the latter referring only to borderline

cases. As noted by Keefe and Smith [9], vagueness is a multifaceted phenomenon and

vague predicates exhibit blurred boundaries as well as borderline cases. We have consis-

tently argued that the former can be understood as resulting from a type of epistemic

uncertainty about what is the correct definition of predicates in language [13], [15], [17].

This semantic or linguistic uncertainty [12] naturally results from the distributed manner

in which language is learned through repeated interactions between individuals [23], [13].

On the other hand, there is also often epistemic uncertainty about the state of the world

occurring in conjunction with both blurred boundaries and explicit borderlines.

To illustrate these ideas recall the earlier example of the predicate short defined by

lower and upper threshold values h ≤ h. In this case linguistic uncertainty manifests itself



in terms of uncertainty about the exact values of the thresholds h and h. Furthermore, if

we are interested in the truth value of the proposition ‘Ethel is short’ then we also need

to take account of Ethel’s height h about which we might also be uncertain i.e. this being

uncertainty about the state of the world. Hence, by treating both types of uncertainty as

being epistemic in nature, and defining a joint distribution over h, h and h together with

similar variables relevant to the other propositions in the language, would then naturally

result in a probability distribution over the valuations of L. Given such as distribution we

can naturally define lower and upper belief measures on SL as follows:

Definition 23. Belief Pairs [14], [15]: Let V be a finite set of three valued valuations and

w be a probability distribution on V then we define a belief pair as a pair of lower and

upper measures ~µ = (µ, µ) where µ, µ : SL → [0, 1] such that ∀θ ∈ SL;

µ(θ) = w({v ∈ V : v(θ) = 1}) and µ(θ) = w({v ∈ V : v(θ) 6= 0}). 9

It can also be interesting to consider mid-point belief degrees generated from a belief

pair by taking the average of the lower and upper measures as follows:

Definition 24. Mid-Point Belief Degrees [17]: Let V be a finite set of three valued val-

uations and w be a probability distribution on V and let ~µ = (µ, µ) be the corresponding

belief pair as given in definition 23 then the corresponding mid-point belief degree (belief

degree for short) β : SL → [0, 1] is defined as follows: ∀θ ∈ SL;

β(θ) =
µ(θ) + µ(θ)

2
= w({v ∈ V : v(θ) = 1}) +

w({v ∈ V : v(θ) = 1
2})

2

Hence, we can think of β(θ) as being determined by reallocating the probability associated

with truth value 1
2 evenly between the probabilities associated with truth values 0 and 1.

Furthermore, β(θ) is in fact the expected truth value of θ given distribution w, i.e. β(θ) =

E(v(θ)) [29]. The use of the term belief degree in this content is therefore consistent with

Smith’s proposal [27] that the degree of belief of a sentence should be generally defined as

its expected truth value.

In earlier work [17] we have used the term truth degree instead of belief degree for mid-

point measures of the above form. This is perhaps not ideal since here we are referring to

a measure of subjective belief rather than to a truth value in infinite valued logic, in which

context the term truth degree it is more typically applied. On the other hand, later in this

section we will describe how belief degrees can provide a characterisation of a certain type

of infinite valued truth (see theorem 25), thus providing a strong link between these two

concepts.

9We are assuming here that there is sufficient information to allow agents to quantify their uncertainty
using a precise probability distribution on V. It would also be interesting to consider the case in which
uncertainty was quantified by a set of probability distributions (a credal set) over three valued valuations
but this is beyond the scope of the current paper. Also notice that we are abusing notation slightly here
and using the same symbol for the probability distribution w and the measure that it generates.



In the cases that V is restricted only to supervaluations or to Kleene valuations we

refer to ~µ as a supervaluation belief pair or a Kleene belief pair respectively. Further-

more, ~µ is a complete bounded supervaluation belief pair if V is restricted to complete

bounded supervaluations 10. It is well known that supervaluation belief pairs correspond

to Dempster-Shafer belief and plausibility measures on SL [8], [6]. However, the specific

properties of complete bounded supervaluation belief pairs have only recently been studied

[15] and we recall some of them later in this section. There is also a clear link between

belief degrees determined from supervaluations belief pairs and credibility measures as

initially proposed by Dubois and Prade [3] and later developed at some length by liu and

liu [19]. In fact, credibility measures are defined from necessity and possibility measures

and hence, in the current context, relate to cases in which there is only uncertainty about

the correct level of vagueness at which the language should be interpreted, as represented

by the semantic precision ordering. We will consider exactly this case in the sequel.

Kleene belief pairs have been proposed independently in [14] and [29]. We now recap

on some of their properties including a surprising characterisation of min-max fuzzy logic

as shown in [17]. Furthermore, we exploit theorem 22 in order to extend a result in [15]

and hence to clarify the relationship between Kleene belief pairs and complete bounded

supervaluation belief pairs.

Notice that if V is restricted to valuations which satisfy P1 then trivially by definition

23 we have duality between the lower and upper measures so that ∀θ ∈ SL;

µ(¬θ) = 1 − µ(θ) and µ(¬θ) = 1 − µ(θ)

Furthermore, by theorem 5 it follows that supervaluation belief pairs satisfy the following

• If |= θ then ~µ(θ) = (1, 1).

• If θ ≡ ϕ then ~µ(θ) = ~µ(ϕ).

By definition 23 it follows immediately that ∀θ ∈ SL;

w({v ∈ V : v(θ) =
1

2
}) = µ(θ) − µ(θ)

In addition, for Kleene belief pairs we have that ∀θ ∈ SL;

µ(θ ∧ ¬θ) = 2β(θ ∧ ¬θ) = w({v ∈ V : v(θ) =
1

2
})

In contrast, for supervaluation belief pairs the fact that supervaluations satisfy P2 ensures

that:

µ(θ ∧ ¬θ) = β(θ ∧ ¬θ) = 0

10In light of the discussion in section 4 we will not consider probabilities defined over  Lukasiewicz
valuations in this paper. Instead we refer the reader to the work of Mundici [21], [22] which investigates
probability measures defined over MV algebras with  Lukasiewicz operators.



In general, Kleene belief pairs are additive so that ∀θ, ϕ ∈ SL;

µ(θ ∨ ϕ) = µ(θ) + µ(ϕ) − µ(θ ∧ ϕ) and µ(θ ∨ ϕ) = µ(θ) + µ(ϕ) − µ(θ ∧ ϕ)

In contrast, for supervaluation belief pairs µ is super-additive and µ is sub-additive so

that ∀θ, ϕ ∈ SL;

µ(θ ∨ ϕ) ≥ µ(θ) + µ(ϕ) − µ(θ ∧ ϕ) and µ(θ ∨ ϕ) ≤ µ(θ) + µ(ϕ) − µ(θ ∧ ϕ)

We now consider a special case of belief pairs in which an agent’s uncertainty relates

only to the level of vagueness at which L should be interpreted. More formally this means

that w is non-zero only on a set of valuations which can be totally ordered according to

semantic precision (definition 10). The following results taken from [14] and [17] summarize

the properties of Kleene belief pairs under this assumption and in particular that the

resulting mid-point belief degrees provide a complete characterisation of min-max fuzzy

logic [30].

Theorem 25. [17] Let ζ : SL → [0, 1] then ζ satisfies ∀θ, ϕ ∈ SL, ζ(¬θ) = 1 − ζ(θ),

ζ(θ ∧ ϕ) = min(ζ(θ), ζ(ϕ)) and ζ(θ ∨ ϕ) = max(ζ(θ), ζ(ϕ)) if and only if ∀θ ∈ SL, ζ(θ) =
µ(θ)+µ(θ)

2 where ~µ = (µ, µ) is a Kleene Belief pair generated by a probability distribution w

over Kleene valuations such that {v : w(v) > 0} = {v1, . . . ,vr} and v1 � . . . � vr.

Theorem 26. [17] Let β : SL → [0, 1] be a belief degree generated from a Kleene belief

pair as in theorem 25. Then ∀θ ∈ SL;

µ(θ) = max(0, 2β(θ) − 1) and µ(θ) = min(1, 2β(θ))

Corollary 27. [14] [17] Let ~µ be a Kleene belief pair generated from a probability distri-

bution w for which {v : w(v) > 0} = {v1, . . . ,vr} where v1 � . . . � vr. Then ∀θ, ϕ ∈ SL;

µ(θ ∧ ϕ) = min(µ(θ), µ(ϕ)), µ(θ ∧ ϕ) = min(µ(θ), µ(ϕ)) and

µ(θ ∨ ϕ) = max(µ(θ), µ(ϕ)), µ(θ ∨ ϕ) = max(µ(θ), µ(ϕ))

We now consider the relationship between Kleene belief pairs and complete bounded

supervaluation pairs. The following results extend those given in [15] to a wider class of

propositional formulae. Theorem 28 exploits corollary 21 and theorem 22 to show the

properties of complete bounded supervaluation belief pairs under the above assumption

that all uncertainty concerns semantic precision, while theorem 30 demonstrates the equiv-

alence between Kleene belief pairs and complete bounded supervaluation belief pairs for

all sentences in SL∗.

Theorem 28. Let ~µ be a complete bounded supervaluation belief pair generated from a

probability distribution w for which {v : w(v) > 0} = {v1, . . . ,vr} where v1 � . . . � vr.

Then for any A ∈ A, it holds that ∀θ, ϕ ∈ SLA;

µ(θ ∨ ϕ) = max(µ(θ), µ(ϕ)) and µ(θ ∧ ϕ) = min(µ(θ), µ(ϕ))



Proof. By the conditions of the theorem it follows that for any θ ∈ SL, if vi(θ) = 1 then

vj(θ) = 1 for j = i + 1, . . . , r. Hence, ∃t ≤ r such that {vi : vi(θ) = 1} = {vt, . . . ,vr}.

Similarly for ϕ ∈ SL, ∃t′ ≤ r such that {vi : vi(ϕ) = 1} = {vt′ , . . . ,vr}. Now if θ, ϕ ∈ SLA

then by corollary 21 we have that:

µ(θ ∨ ϕ) = w({v : v(θ ∨ ϕ) = 1}) = w({v : max(v(θ), v(ϕ)) = 1})

=
r

∑

j=min(t,t′)

w(vj) = max(µ(θ), µ(ϕ))

The result for µ(θ ∧ ϕ) also follows similarly from corollary 21.

Corollary 29. Let ~µ be a complete bounded supervaluation belief pair generated from a

probability distribution w for which {v : w(v) > 0} = {v1, . . . ,vr} where v1 � . . . � vr.

Then for any A ∈ A, it holds that ∀θ, ϕ ∈ SLA;

µ(θ ∨ ϕ) = max(µ(θ), µ(ϕ)) and µ(θ ∧ ϕ) = min(µ(θ), µ(ϕ))

and ∀θ, ϕ ∈ SL;

µ(θ ∧ ϕ) = min(µ(θ), µ(ϕ)) and µ(θ ∨ ϕ) = max(µ(θ), µ(ϕ))

Proof. The restriction that w is non-zero only on v1 � . . . � vr ensures that µ and µ

are necessity and possibility measures on SL respectively. Hence, ∀θ, ϕ ∈ SL, µ(θ ∧ ϕ) =

min(µ(θ), µ(ϕ)) and µ(θ ∨ ϕ) = min(µ(θ), µ(ϕ)). The result then follows trivially from

theorem 28.

Theorem 30. Let ~µ1 be a complete bounded supervaluation belief pair on SL, then there

is a Kleene belief pair ~µ2 on SL such that ∀θ ∈ SL∗, ~µ1(θ) = ~µ2(θ) and ∀θ ∈ SL,

µ
1
(θ) ≥ µ

2
(θ) and µ1(θ) ≤ µ2(θ).

Proof. Let Vk and Vcbs denote the sets of Kleene valuations and complete bounded su-

pervaluations on L respectively. For any complete bounded supervaluation vcbs, let vk

be the unique Kleene valuation determined by ∀pi ∈ P, vk(pi) = vcbs(pi) as in the proof

of theorem 22. Furthermore, let f : Vcbs → Vk denote the bijective functional mapping

according to which f(vcbs) = vk. Now let w1 be a probability distribution on Vcbs then

we define a corresponding distribution w2 on Vk, such that ∀v ∈ Vcbs, w2(f(v)) = w1(v).

Then by theorem 22 we have that: ∀θ ∈ SL∗

µ
1
(θ) = w1({v ∈ Vcbs : v(θ) = 1}) = w1({v ∈ Vcbs : f(v)(θ) = 1})

= w2({v ∈ Vk : v(θ) = 1}) = µ
2
(θ)

It then follows similarly that µ1(θ) = µ2(θ).



Furthermore, from theorem 22 we have that f(v) � v. Hence, ∀θ ∈ SL;

µ
2
(θ) = w2({v ∈ Vk : v(θ) = 1}) = w1({v ∈ Vcbs : f(v)(θ) = 1})

≤ w1({v ∈ Vcbs : v(θ) = 1}) = µ
1
(θ)

The proof that µ2(θ) ≥ µ1(θ) follows similarly.

7 Conditional Belief Pairs

In this section we propose a conditioning model according to which belief pairs can be

updated on the basis of new information about the truth value of sentences of L. In view

of the inherently probabilistic nature of belief pairs we will adopt an approach based on

conditional probability. For this approach we assume that new knowledge takes the form

of constraints on the three valued truth values of sentences of L. Given the interconnection

between vagueness and uncertain discussed in the previous section then we can think of

such constraints as providing new information both about the state of the world and about

the underlying interpretation of L.

Definition 31. Conditional Belief Pairs [16]: Suppose an agent obtains new knowledge

regarding sentences in SL in the form of a set of constraints K on three valued valuations

of the following form:

K = {v(ϕi) ∈ Zi : i = 1, . . . , t} where Zi ⊆ {0,
1

2
, 1} and ϕi ∈ SL for i = 1, . . . , t

Given a prior probability distribution on V then we define lower and upper belief pairs

conditional on K as follows: ∀θ ∈ SL;

µ(θ|K) =
w({v ∈ V(K) : v(θ) = 1})

w(V(K))
and µ(θ|K) =

w({v ∈ V(K) : v(θ) = 1})

w(V(K))

where V(K) ⊆ V is the set of three valued valuations in V which satisfy K. The corre-

sponding conditional belief degree given K is then defined by:

β(θ|K) =
µ(θ|K) + µ(θ|K)

2

Theorem 32. [16] If w is defined on a subset of the Kleene valuations on L, then ∀θ, ϕ ∈

SL such that µ(ϕ) > 0;

µ(θ|v(ϕ) = 1) =
µ(θ ∧ ϕ)

µ(ϕ)
, µ(θ|v(ϕ) = 1) =

µ(θ ∨ ¬ϕ) − µ(¬ϕ)

1 − µ(¬ϕ)
and

µ(θ|v(ϕ) 6= 0) =
µ(θ ∨ ¬ϕ) − µ(¬ϕ)

1 − µ(¬ϕ)
, µ(θ|v(ϕ) 6= 0) =

µ(θ ∧ ϕ)

µ(ϕ)



Theorem 33. If w is defined on a subset of the supervaluations on L, then ∀θ, ϕ ∈ SL

such that µ(ϕ) > 0;

µ(θ|v(ϕ) = 1) =
µ(θ ∧ ϕ)

µ(ϕ)
, µ(θ|v(ϕ) = 1) =

µ(θ ∨ ¬ϕ) − µ(¬ϕ)

1 − µ(¬ϕ)
and

µ(θ|v(ϕ) 6= 0) ≤
µ(θ ∨ ¬ϕ) − µ(¬ϕ)

1 − µ(¬ϕ)
, µ(θ|v(ϕ) 6= 0) ≥

µ(θ ∧ ϕ)

µ(ϕ)

Proof. We assume that V is a subset of the supervaluations on L. Then

µ(θ|v(ϕ) = 1) =
w({v ∈ V : v(θ) = 1,v(ϕ) = 1})

w({v ∈ V : v(ϕ) = 1})

=
w({v ∈ V : v(θ ∧ ϕ) = 1})

w({v ∈ V : v(ϕ) = 1})
=
µ(θ ∧ ϕ)

µ(ϕ)

Furthermore,

µ(θ|v(ϕ) 6= 0) =
w({v ∈ V : v(θ) 6= 0,v(ϕ) 6= 0})

w({v ∈ V : v(ϕ) 6= 0})

≥
w({v ∈ V : v(θ ∧ ϕ) 6= 0)

w({v ∈ V : v(ϕ) 6= 0})
=
µ(θ ∧ ϕ)

µ(ϕ)

This follows since v(θ∧ϕ) 6= 0 ⇒ v(θ) 6= 0 and v(ϕ) 6= 0 whilst the converse does not hold.

In particular, it is possible that both the sets {v ∈ Π : v(θ) = 1} and {v ∈ Π : v(ϕ) = 1}

are non-empty but that their intersection is empty. The remaining results then follow by

duality by considering the following relationships:

µ(θ|v(ϕ) = 1) = 1 − µ(¬θ|v(ϕ) = 1) and µ(θ|v(ϕ) 6= 0) = 1 − µ(¬θ|v(ϕ) 6= 0)

Corollary 34. If w is defined on a subset of the complete bounded supervaluations on L,

then for A ∈ A it holds that ∀θ, ϕ ∈ SLA;

µ(θ|v(ϕ) = 1) =
µ(θ ∧ ϕ)

µ(ϕ)
, µ(θ|v(ϕ) = 1) =

µ(θ ∨ ¬ϕ) − µ(¬ϕ)

1 − µ(¬ϕ)
and

µ(θ|v(ϕ) 6= 0) =
µ(θ ∨ ¬ϕ) − µ(¬ϕ)

1 − µ(¬ϕ)
, µ(θ|v(ϕ) 6= 0) =

µ(θ ∧ ϕ)

µ(ϕ)

Proof. By corollary 21 we have that v(θ ∧ ϕ) = min(v(θ), v(ϕ)). Hence,

w({v ∈ V : v(θ) 6= 0,v(ϕ) 6= 0}) = w({v ∈ V : v(θ) = 1, v(ϕ) = 1})

= w({v ∈ V : min(v(θ), v(ϕ)) = 1}) = w({v ∈ V : v(θ ∧ ϕ) = 1})

Therefore,

µ(θ|v(ϕ) 6= 0) =
µ(θ ∧ ϕ)

µ(ϕ)



Consequently by duality we have that,

µ(θ|v(ϕ) 6= 0) =
µ(θ ∨ ¬ϕ) − µ(¬ϕ)

1 − µ(¬ϕ)

The result then follows by theorem 33.

Given that supervaluation belief pairs correspond to Dempster-Shafer belief and plausi-

bility measure on SL [8], [6], then from theorem 33 we note that by taking K = {v(ϕ) = 1}

we obtain the standard model of Dempster-Shafer conditioning as originally proposed [25].

In view of our assumption about the non-epistemic nature of the borderline truth

value, it then makes sense for an agent to condition their beliefs given the information

that a particular sentence is borderline. For example, if we learn that Ethel is borderline

short then this provides us with new information about her height. In contrast, simply

being told that it is unknown whether or not Ethel is short provides us with no additional

information about her height. For the case of Kleene belief pairs the resulting lower and

upper measures have the following simple form [16]:

µ(θ|v(ϕ) =
1

2
) =

µ(θ ∨ ϕ ∨ ¬ϕ) − µ(ϕ ∨ ¬ϕ)

1 − µ(ϕ ∨ ¬ϕ)
and µ(θ|v(ϕ) =

1

2
) =

µ(θ ∧ ϕ ∧ ¬ϕ)

µ(ϕ ∧ ¬ϕ)

It is also interesting to consider conditioning in those situations in which the only

uncertainty relates to the level of vagueness of L, as ordered according to semantic precision

(definition 10). In the light of theorem 25 we focus on belief degree conditioning in this

context.

Lemma 35. Let v1 � . . . � vr be an totally ordered set of Kleene valuations on L. Let

bi : SL → {0, 1} for i = 1, . . . , 2r such that ∀θ ∈ SL;

bi(θ) =

{

vi(θ) : i ≤ r

v2r+1−i : i > r

Furthermore, for θ ∈ SL let iθ = min{i : bi(θ) = 1}. Then the following hold: ∀θ, ϕ ∈ SL;

(1) iθ∧ϕ = max(iθ, iϕ) and iθ∨ϕ = min(iθ, iϕ).

(2) i¬θ = 2r + 2 − iθ.

Proof. The proof of part (1) is given in [17].

(2) For i ≤ r we have that bi(¬θ) = 1 if and only if vi(¬θ) = 1 if and only if vi(θ) = 0 if

and only if b2r+1−i(θ) = 0.

Also, for i > r we have that bi(¬θ) = 1 if and only if v2r+1−i(¬θ) = 1 if and only

if v2r+1−i(θ) = 0 if and only if b2r+1−i(θ) = 0. Hence, ∀i, bi(¬θ) = 1 if and only if

b2r+i−1(θ) = 0 if and only if 2r+ i−1 ≤ iθ−1 if and only if i ≥ 2r+2− iθ as required.



Theorem 36. Let ~µ be a Kleene valuation pair generated from a probability distribution

w for which {v : w(v) > 0} = {v1, . . . ,vr} where v1 � . . . � vr and let β : SL → [0, 1] be

the associated belief degree. Then if µ(ϕ) > 0 it holds that ∀θ ∈ SL;

β(θ|v(ϕ) = 1) =

{

min(1, β(θ)+β(ϕ)−1
2β(ϕ)−1 ) : β(θ) > β(¬ϕ)

0 : otherwise

Proof. Let iK = min{i : vi(ϕ) = 1} so that {v : v(ϕ) = 1} = {viK , . . . ,vr}. Hence, the

condition K = {v(ϕ) = 1} restricts us to a subset of valuations which can then be used

to generate the following sequence of binary mappings:

viK ≤ . . . ≤ vr ≤ vr ≤ . . . ≤ viK

which can also be written as:

biK ≤ . . . ≤ br ≤ br+1 ≤ . . . ≤ b2r+1−iK

Notice that since µ(ϕ) > 0 then iK ≤ r. From this it follows that bi(ϕ) = 1 if and only if

i ≥ iK if and only if iK = iϕ. Furthermore, by theorem 26

µ(ϕ) = max(0, 2β(ϕ) − 1)

Hence, µ(ϕ) > 0 if and only if 2β(ϕ) − 1 > 0 if and only if β(ϕ) > 1
2 . Therefore,

w(vi|v(ϕ) = 1) =

{

w(vi)
2β(ϕ)−1 : i ≥ iK

0 : i < iK

Hence, we can define:

w′(bi|v(ϕ) = 1) =

{

w(vi|v(ϕ)=1)
2 : i ≤ r

w(v2r+1−i|v(ϕ)=1)
2 : i > r

Therefore,

w′(bi|v(ϕ) = 1) =

{

w′(bi)
2β(ϕ)−1 : i = iK , . . . , 2r + 1 − iK

0 : otherwise

Now from above it follows that:

β(θ|v(ϕ) = 1) =
2r
∑

i=iθ

w′(bi|v(ϕ) = 1)

Now w′(~vi|v(ϕ) = 1) > 0 if and only if iϕ = iK ≤ i ≤ 2r + 1 − iK = 2r + 1 − iϕ = i¬ϕ − 1

by lemma 35. Hence, if iθ ≥ i¬ϕ if and only if β(θ) ≤ β(¬ϕ) then β(θ|v(ϕ) = 1) = 0.

Otherwise:

β(θ|v(ϕ) = 1) =

∑2r+1−iK
i=max(iK ,iθ)

w′(bi)

2β(ϕ) − 1
=

∑i¬ϕ−1
i=max(iϕ,iθ)

w′(bi)

2β(ϕ) − 1



Also by lemma 35,

i¬ϕ−1
∑

i=max(iϕ,iθ)

w′(bi) =

i¬ϕ−1
∑

i=iθ∧ϕ

w′(bi) =

2r
∑

i=iθ∧ϕ

w′(bi) −
2r
∑

i=i¬ϕ

w′(bi) = β(θ ∧ ϕ) − β(¬ϕ)

= β(θ ∧ ϕ) − (1 − β(ϕ)) = min(β(θ), β(ϕ)) + β(ϕ) − 1

Hence,

β(θ|v(ϕ) = 1) =
min(β(θ), β(ϕ)) + β(ϕ) − 1

2β(ϕ) − 1
= min(1,

β(θ) + β(ϕ) − 1

2β(ϕ) − 1
)

as required.

Theorem 37. Let ~µ be a Kleene valuation pair generated from a probability distribution

w for which {v : w(v) > 0} = {v1, . . . ,vr} where v1 � . . . � vr and let β : SL → [0, 1] be

the associated belief degree. Then if µ(ϕ) > 0 it holds that ∀θ ∈ SL;

β(θ|v(ϕ) 6= 0) =















2β(ϕ)+β(θ)−1
2β(ϕ) : β(θ) > β(¬ϕ)

1
2 : β(ϕ) ≤ β(θ) ≤ β(¬ϕ)
β(θ)
2β(ϕ) : β(θ) < β(ϕ)

Proof. Let iK = max{i : vi(ϕ) = 1} so that {vi : vi(ϕ) = 1} = {v1, . . . ,viK}. Hence, the

condition K = {v(ϕ) 6= 0} restricts us to a subset of valuations which can then be used

to generate the following sequence of binary mappings:

v1 ≤ . . . ≤ viK ≤ viK ≤ . . . ≤ v1

which can also be written as:

b1 ≤ . . . ≤ biK ≤ b2r+1−iK ≤ . . . ≤ b2r

Now there are two possibilities:

1) iϕ ≤ r if and only if ∀i, vi(ϕ) = 1 if and only if iK = r

2) iϕ > r if and only if vi(ϕ) = 1 for i = 1, . . . , 2r+1−iϕ if and only if iK = 2r+1−iϕ =

i¬ϕ − 1 by lemma 35.

Now for case 1) we have that w({v(ϕ) 6= 0}) = 1 and hence β(θ|v(ϕ) 6= 0) = β(θ).

Furthermore, w({v(ϕ) 6= 0}) = µ(ϕ) = 1 if and only if β(ϕ) ≥ 1
2 by theorem 26. Now

consider case 2) where µ(θ) < 1 if and only if β(ϕ) < 1
2 . In this case by theorem 26 we

have that:

µ(ϕ) = min(1, 2β(ϕ)) = 2β(ϕ)



Hence,

w(vi|v(ϕ) 6= 0) =

{

w(vi)
2β(ϕ) : i = 1, . . . , iK

0 : otherwise

Taking,

w′(bi|v(ϕ) 6= 0) =

{

w(vi|v(ϕ)6=0)
2 : i ≤ r

w(v2r+1−i)
2 : i > r

then we have that:

w′(bi|v(ϕ) 6= 0) =

{

w′(bi)
2β(ϕ) : i ≤ iK or i ≥ 2r + 1 − iK

0 : otherwise

For θ ∈ SL we now consider the following three cases:

2 a) iθ ≤ iK = i¬ϕ − 1 if and only if β(θ) > β(¬ϕ): In this case:

β(θ|v(ϕ) 6= 0) =
2r
∑

i=iθ

w′(bi|v(ϕ) 6= 0) =

∑iK
i=iθ

w′(bi) +
∑2r

i=2r+1−iK
w′(bi)

2β(ϕ)

=

∑iK
i=iθ

w′(bi) +
∑2r

i=iϕ
w′(bi)

2β(ϕ)
=

∑iK
i=iθ

w′(bi) + β(ϕ)

2β(ϕ)

Now

iK
∑

i=iθ

w′(bi) =

i¬ϕ−1
∑

i=iθ

w′(bi) =
2r
∑

i=iθ

w′(bi) −
2r
∑

i=i¬ϕ

w′(bi)

= β(θ) − β(¬ϕ) = β(θ) + β(ϕ) − 1

Hence,

β(θ|v(ϕ) 6= 0) =
β(θ) + β(ϕ) − 1 + β(ϕ)

2β(ϕ)
=

2β(ϕ) + β(θ) − 1

2β(ϕ)

as required.

2 b) i¬ϕ − 1 = iK < iθ ≤ 2r + 1 − iK = iϕ if and only if β(ϕ) ≤ β(θ) ≤ β(¬ϕ): In this

case,

β(θ|v(ϕ) 6= 0) =
2r
∑

i=iθ

w′(bi|v(ϕ) 6= 0) =
2r
∑

i=2r+1−iK

w′(bi|v(ϕ) 6= 0) =

∑2r
i=2r+1−iK

w′(bi)

2β(ϕ)

=

∑2r
i=iϕ

w′(bi)

2β(ϕ)
=

β(ϕ)

2β(ϕ)
=

1

2

as required.



2 c) iθ > 2r + 1 − iK = iϕ if and only if β(θ) < β(ϕ): In this case,

β(θ|v(ϕ) 6= 0) =

2r
∑

i=iθ

w′(bi|v(ϕ) 6= 0) =

∑2r
i=iθ

w′(bi)

2β(ϕ)
=

β(θ)

2β(ϕ)

as required.

Note that despite the characterisation of min-max fuzzy logic given by theorem 25,

there does not appear to be a close link between the conditional belief degrees given in

theorems 36 and 37 and any of the fuzzy logic implication operators proposed in the

literature (see [11] for an overview). This is perhaps not surprising given our use of

probabilistic conditioning, this being in contrast to fuzzy implication operators which are

usually envisaged as being a many valued generalisation of the implication connective in

classical logic.

The following example serves to illustrate the main ideas concerning conditional belief

in a three valued setting as introduced in this section.

Example 38. Consider an experiment in which a fair die is tossed twice such that the first

and second throws are independent. Let X and Y be the random variables corresponding to

the sum of the two scores and the maximum of the two scores respectively. An agent aims

to evaluate their beliefs in the propositions pi : i = 1, . . . , 12 and qj : j = 1, . . . , 6 where

pi =‘X is about i’ and qj =‘Y is about j’. These propositions are interpreted according to

the following three valued valuation:

v(pi) =











1 : X = i
1
2 : X ∈ {i− 1, i + 1}

0 : otherwise

and v(qj) =











1 : Y = j
1
2 : Y ∈ {j − 1, j + 1}

0 : otherwise

Now suppose that the agent learns that the outcome of the experiment is such that v(q3) =
1
2 then they can then infer that Y ∈ {2, 4} and consequently that the outcome of the

experiment is one of the following pairs of scores; (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (3, 4),

(4, 1), (4, 2), (4, 3) or (4, 4). Given that each of these outcomes is equally likely then the

agent infers the following conditional beliefs for p5:

µ(p5|v(q3) =
1

2
) = P (X = 5|Y ∈ {2, 4}) =

1

5

µ(p5|v(q3) =
1

2
) = P (X ∈ {4, 5, 6}|Y ∈ {2, 4}) =

1

2

β(p5|v(q3) =
1

2
) =

1
5 + 1

2

2
=

7

20

Furthermore, suppose that in addition to uncertainty about the outcome of the experiment,

the agent also has semantic uncertainty about how pi and qj should be interpreted. More



specifically, the agent considers that there are two types of interpretation of these propo-

sitions, one strict and one more relaxed. Here we assume that the strict interpretation is

as above, while the relaxed interpretation is defined by the following three valued valuation:

v(pi) =











1 : X = i
1
2 : X ∈ {i− 2, i − 1, i + 1, i+ 2}

0 : otherwise

and

v(qj) =











1 : Y = j
1
2 : Y ∈ {j − 2, j − 1, j + 1, j + 2}

0 : otherwise

We assume that the agent believes that either the strict interpretation should apply to all

propositions with probability 1
2 or that the relaxed interpretation should apply to all propo-

sitions also with probability 1
2 . Furthermore, we assume that the choice between strict and

relaxed interpretations is independent of the outcome of the experiment. Now if the agent

learns that v(q3) = 1
2 then under the strict interpretation this implies that Y ∈ {2, 4} and

under the relaxed interpretation that Y ∈ {1, 2, 4, 5}. The former identifies the outcomes

described above while the latter identifies the following outcomes of the experiment; (1, 1),

(1, 2), (1, 4), (1, 5), (2, 1), (2, 2), (2, 4), (2, 5), (3, 4), (3, 5), (1, 4), (2, 4), (3, 4), (4, 4),

(4, 5), (1, 5), (2, 5), (3, 5), (4, 5) and (5, 5). Hence, the agent now evaluates the following

conditional beliefs for p5:

µ(p5|v(q3) =
1

2
) =

1

2
P (X = 5|Y ∈ {2, 4}) +

1

2
P (X = 5|Y ∈ {1, 2, 4, 5}) =

1

2

(

1

5

)

+
1

2

(

1

10

)

=
3

20

µ(p5|v(q3) =
1

2
) =

1

2
P (X ∈ {4, 5, 6}|Y ∈ {2, 4}) +

1

2
P (X ∈ {3, 4, 5, 6, 7}|Y ∈ {1, 2, 4, 5})

=
1

2

(

1

2

)

+
1

2

(

3

5

)

=
11

20

β(p5|v(q3) =
1

2
) =

3
20 + 11

20

2
=

7

20

8 Conclusion and Discussion

In this paper we have explored the interconnection between vagueness and uncertainty

in a propositional logic setting by considering explicitly borderline cases in conjunction

with epistemic uncertainty. The former are not a result of uncertainty at all, but arise as

the result of an inherently non-Boolean underlying truth model. Furthermore, the latter

includes both uncertainty about the state of the world as well as linguistic (semantic)

uncertainty about the interpretation of the language. Indeed we have argued that the



blurred boundaries which are typical of vague predicates result from linguistic uncertainty,

this reinforcing the claim that there is no strict division between epistemic uncertainty

and vagueness. Instead explicit borderlines and blurred boundaries are both part of the

complex phenomenon of vagueness, some aspects of which are probabilistic and some

of which are non-probabilistic in nature. Also, vagueness usually occurs together with

uncertainty about the state of the world which is often probabilistic.

We have proposed an integrated model which combines three value logic, represent-

ing borderline cases, and probability, quantifying uncertainty. A summary of the main

contributions of this paper is as follows. We have provided axiomatic characterisations

of two well known types of three valued valuations, supervaluations and Kleene valua-

tions, and we have explored the sometimes close relationship between them. To a certain

extend this clarifies the assumptions made in both cases, so as to help us judge if they

are reasonable given our interpretation of the third truth value as meaning borderline.

Furthermore, we have described belief pairs of lower and upper measures, as naturally

generated from a probability distribution defined over a finite set of three valued valu-

ations. By defining probabilities over supervaluations we obtain Dempster-Shafer belief

and plausibility measures over the sentences of the language. By exploiting the results

relating Kleene valuations and supervaluations, it is then shown that there is a close rela-

tionship between a special case of these measures and Kleene belief pairs generated from a

probability distribution defined over Kleene valuations. The latter also provide a complete

characterisation of min-max fuzzy logic in the case when the uncertainty concerns only

the level of vagueness at which the language should be interpreted. Finally, in keeping

with the probabilistic underpinnings of this approach we have defined conditional belief

pairs based on conditional probabilities over three valued valuations and have given some

new results for both Kleene and supervaluation belief pairs in this context.

The results presented in section 5 of this paper show that complete bounded superval-

uations are equivalent to Kleene valuations on a significant subset of the sentences of L,

whilst still preserving classical equivalences as required by theorem 5. Kleene valuations

are completely truth functional so that the truth value of any compound sentence can be

determined from the truth values of its components by means of recursive application of a

set of truth functions, one for each of the connectives in the language. Complete bounded

supervaluations are also functional but in a weaker sense. For this class of valuations,

while it is not the case that there is a fixed set of truth functions associated with the

connectives which can be applied recursively in order to determine the truth value of any

sentence, it is nonetheless the case that the truth values of the propositional variables

completely determine the truth values of all the sentences of L. To see this notice that by

definition 14, for a complete bounded supervaluation the set of admissible valuations and

hence the entire valuation is determined by v∗ and v∗. Furthermore, since for all propo-

sitional variables v∗(pi) = v(pi) and v∗(pi) = v(pi) it follows that Π can be completely



determined from v(pi) : i = 1, . . . , n. Now for Kleene valuations truth functionality un-

derlies their inability to represent penumbral connections, including those in the form of

classical tautologies. Complete bounded supervaluations do capture the latter but they

are still severely limited in the type of penumbral connections that they can encode. For

example, consider the propositions p1 =‘Ethel is middle class’ and p2 =‘Ethel is rich’ and

suppose that v(p1) = v(p2) = 1
2 . In this case we might expect that there would be a

penumbral connection between p1 and p2 according to which being middle class would

rule out being rich and vice versa. This would suggest that Π should not contain any

Tarski valuations for which v(p1 ∧ p2) = 1. In fact it might well be appropriate to assume

an even stronger relationship according to which, if both p1 and p2 have borderline truth

values then p1 is equivalent to ¬p2
11. In this case Π should also not contain valuations for

which v(¬p1 ∧ ¬p2) = 1. However, by definition 14 any complete bounded supervaluation

for which v(p1) = v(p2) = 1
2 must have a set of admissible valuations containing at least

one valuation for which v(p1 ∧ p2) = 1 and at least one for which v(¬p1 ∧ ¬p2) = 1. Con-

sequently, we see that complete bounded supervaluations will tend to be inappropriate

when there are important penumbral connections beyond those which are represented by

classical tautologies and contradictions. On the other hand, when this is not the case then

the functionality of complete bounded supervaluations provides computational advantages

similar to those of Kleene valuations whilst preserving an underlying classical framework.

The relationship between Kleene and complete bounded supervaluations is carried

over to belief pairs, as described in section 6. In this context an interesting case is that in

which there is only uncertainty about the level of vagueness at which sentences should be

interpreted. For Kleene belief pairs the resulting measures on SL turn out to be fully truth

functional as based on the minimum and maximum operators (see theorem 25). Under the

same assumptions supervaluation belief pairs are necessity and possibility measures on the

sentences of L. Making the further restriction to complete bounded supervaluation pairs

results in a subclass of necessity and possibility measures which follow both the minimum

and maximum rules for conjunction and disjunction respectively, on a significant fragment

of the language (see corollary 29). This relationship between Kleene and complete bounded

supervaluation belief pairs may then perhaps explain some of the confusion about the

difference between fuzzy logic and possibility theory as, for example, outlined in [2].

The use of conditional probability in the definition of conditional belief pairs, as de-

scribed in section 7, seems natural given the probabilistic treatment of uncertainty that we

have adopted. Furthermore, the resulting measures allow for conditioning on knowledge

relating to the full range of truth values of the sentences of L. For example, according

to the proposed model it is possible to condition on the knowledge that a sentence is

true, that it is not false or that it is borderline. It remains unclear, however, what is the

exact relationship between this form of conditional measures and the various implication

11For example, this could hold if the concepts middle class and rich were defined only by income.



operators used in fuzzy logics. In particular, theorem 36 and 37 show that even in the

case when all valuations with non-zero probability form a nested sequence ordered by se-

mantic precision, the resulting conditional belief degrees do not coincide with any of the

commonly used implication operators. Perhaps the reason for this can be found in an ex-

tension to the analysis of Lewis [18] comparing conditional probabilities with probabilities

of material conditionals. Such a study could be illuminating with regard to the general

issue of conditioning in a non-classical setting and should be part of future research into

this topic.
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