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Abstract

We study a static model for 2-D and 3-D networks that accurately represents
the average distance travelled by packets under deflection routing, which is
a specific form of adaptive routing. The model captures static properties of
the network topology and the spatial distribution of traffic, but does not take
into account traffic loading and congestion. Even though this static model
cannot accurately predict packet latency under high load, we contend that it
is a perfect predictor of deflection routing networks’ relative performance un-
der any load condition below saturation, and thus always correctly predicts
the optimum network configuration. This is verified through cycle-accurate
simulations of congested and uncongested networks with fully adaptive, de-
flection routing for regular traffic patterns such as uniform random, localized,
bursty, and others, as well as irregular patterns in both regular and irregu-
lar networks. As the networks with minimal average distance perform best
even under high traffic load, the average distance model establishes a robust
relation between a static network property, average distance, and network
performance under load, providing new insight into network behaviour and
an opportunity to identify the optimal network configuration without time-
consuming simulations.
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1. Introduction

Analytical models of communication performance in networks are difficult
to obtain because of the chaotic and complex nature of a congested commu-
nication system. The delicate balance between the switching, buffering, flow
control, routing algorithm, and the traffic distribution across the network5

and over time determines whether a network operates at peak efficiency or
exhibits overloaded and unbounded latencies. Predicting the expected packet
delay in a network when it is near its saturation point is notoriously difficult.
In fact, the specific load level that causes a network to become saturated not
only depends on details of the spatial distribution (where packets are routed)10

and the burstiness (data injection patterns over time) of the traffic, but also
on the history of the network’s congestion.

To understand worst case timing, analytic models are indispensable and
various methods have been applied to derive the worst case delay and perfor-
mance in Networks-on-Chip (NoC) [1]. For instance, scheduling theory [2],15

network calculus [3], data flow analysis [4], and models used in statistical
physics [5] are actively being pursued in the literature for networks that
use deterministic routing. However, these models derive the upper latency
bounds based on the worst possible interference patterns and congestion,
which often is far from the average case. The task is even more daunting for20

adaptive routing. In deterministic routing networks, the delay of a packet
only depends on direct and indirect interference on the packet’s path. In
contrast, adaptive routing balances the load over the entire network, which
means that every packet may directly compete with any other packet. How-
ever, adaptive routing is a popular technique in NoCs due to its high perfor-25

mance [6, 7, 8], its load balancing capabilities [9, 10] and its fault-tolerant
properties [11]. There have been attempts to exploit such properties by using
a model-based approach in routing decisions [12], but there is no work known
to us that offers an analytic delay model for average performance. Due to
the exceedingly complex spatial and temporal interference patterns of pack-30

ets across the network in adaptive routing networks, an accurate analytic
latency model seems to be out of reach.

Consequently, simulation has been the predominant tool to assess the
performance of networks for particular applications and application classes.
The shortcomings of simulations are obvious: high effort in setting up realis-35
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tic simulations; even higher effort in setting up realistic application scenarios;
very long simulation times; limited predictive value for application variants
that are not simulated; and difficulties in obtaining clues for improving per-
formance.

Given the challenges in formulating accurate analytic models and the40

enormous effort in setting up useful simulation scenarios, we ask the follow-
ing question: Are there static, analytic properties that can serve as reliable
predictors for network performance, even if their accuracy in predicting la-
tency is limited?

In this work, we study one candidate for such a predictor: the average45

distance in hops that packets traverse in a network. In our model, a routing
node consists of a router with one or more processing elements connected
to it. Given any network topology, the geometric distance, expressed in the
number of hops, between two specific routing nodes can easily be computed.
For example, in a 3×4 2-D mesh network, the distance between any two50

neighbouring routing nodes is 1, and the distance between two diagonally
opposite corner routing nodes is 5. If the probability of a specific node A
sending a packet to a specific node B is known for all routing nodes A and
B in the network, the average distance travelled by all packets for the given
network topology and set of probabilities can be computed. We denote the55

average distance of a network by H(φ, ψ) (or H for short), where φ is the
spatial distribution of traffic and ψ represents the topology. We call this
metric the zero-load average distance model as it models the average latency
in networks completely free of congestion, or in other words networks with
zero loading. We use the terms average-distance model and zero-load model60

interchangeably to mean the same thing.
We demonstrate the predictive power of H by showing that for any topol-

ogy with deflection routing, whether homogeneous or heterogeneous, under
numerous realistic traffic scenarios, the model exhibits near perfect fidelity
for all investigated cases. Fidelity is defined as the average latency for net-65

work ’A’ being consistently less than network ’B’ regardless of the congestion
level and traffic pattern, when the average distance H is less for network ’A’
as predicted by the zero-load model. We examine the fidelity of our model
by considering the packet latencies of networks that are equally sized in
terms of total routing nodes, but have unequal radices (for example 4×4×470

versus 8×8×1 versus 2×4×8) as well as different configurations (different
placements of specific traffic generators and consumers), under various traf-
fic patterns with increasing injection rate. The zero-load model differentiates
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between networks when other commonly used metrics, such as bisection chan-
nel bandwidth, Bc [13], can be inconclusive. For example, Bc = 8 for 8×8×175

and 2×4×8 meshes.
The main contribution of this work is to validate that the average dis-

tance model predicts relative network performance well for deflection rout-
ing networks, by means of a wide range of cycle accurate simulations using
spatio-temporal traffic generators. Additional experiments are performed for80

placement of hot-spot nodes and IP-cores in irregular networks to demon-
strate the potential of the model in network architecture optimisation.

The paper is organised as follows: in section 2, we discuss related works.
In section 3 the different spatial traffic patterns are analysed and corre-
sponding expressions for the zero-load average distance formulated. Also the85

basis for modelling bursty traffic is described. Section 4 describes the sim-
ulation environment and experimental methodology used in the study. In
section 5 we validate our model by showing experimental results based on
cycle-accurate simulations for regular network configurations under load for
all the regular traffic patterns investigated.90

Then, in section 6 we present results for irregular traffic patterns for both
regular and irregular networks, and demonstrate the potential use of the
model in optimizing network configuration. After discussing the results in
7, we draw our conclusions in section 8.

2. Related Works95

The performance of communication networks has been widely studied
and, in particular, there is a substantial body of work that deals with delay
models for deterministic routing and regular topologies [1, 14, 15, 16]. Much
less work has been done for adaptive routing networks, because the task is
inherently more difficult. Therefore, all previous approaches make simpli-100

fying assumptions that make the task tractable but renders the model less
general and restricts its scope.

One of the first delay models for adaptive routing networks was devel-
oped by Boura et al. in 1994 [17] for hypercube topologies. In 1998 Ould-
Khaoua [18] reported a delay model for general k-ary n-cubes covering Du-105

ato’s fully adaptive routing algorithm for wormhole switched networks and
two or more virtual channels [19]. In 2000 Sarbazi-Azad et al. [20] pro-
posed a modification which results in a model which has improved accuracy
but is computationally very expensive because it recursively computes the
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packet blocking delays in each node for every possible path a packet may110

take. In 2003 Khonsari et al. [21] provided an alternative delay model based
on Boura’s et al. earlier work [17] but for general k-ary n-cubes. It is less
accurate but significantly faster to compute than the model of Sarbazi-Azad
et al. [20].

These models assume a uniform spatial distribution and a Poisson pro-115

cess to model the temporal distribution of packet generation. In 2007 Min
at al. [22] considered bursty traffic based on a compound Poisson process
that models bursts, burst lengths and inter-arrival times of bursts as well as
allowing exactly one hotspot. A model has also been proposed to predict the
formation of hotspot traffic for the use of congestion-aware routing in certain120

networks [23].
All these delay models are fairly accurate only under the given assump-

tions, which are however, quite restrictive with regard to topology as well
as traffic distribution. In relation to topology, some are restricted to hyper-
cubes [17, 22], while all others target k-ary n-cubes [21, 20, 18]. No model125

available in the literature considers meshes (i.e. links do not wrap around
peripheral nodes), which are popular for NoCs, or other regular or irregu-
lar topologies. All models except [22] assume and use Poisson processes for
packet generation under a uniform spatial distribution. Min et al. do al-
low for bursty traffic and one hot-spot. However, self-similar traffic, found130

by many to closely resemble traffic flow in real applications [24, 25, 26], or
spatial distribution of traffic beyond a single hot-spot, cannot be modelled.
These are severe restrictions because real-world applications do not follow
these idealistic assumptions. Relaxing or changing some of these assump-
tions requires a significant effort to adapt the delay model or develop a new135

approach without any guarantee of success. In contrast, our approach works
for any topology and traffic pattern. We have collected evidence that it is
valid and useful over a wide range of regular and irregular topologies and
traffic patterns.

An even smaller number of works discuss the modelling and usage of the140

average distance as a performance metric. General zero-load latency models
for different networks are described in [13, 27]. An approached based on
average distance has been used by [28] to formulate models for static latency
when accessing memory in large scale chip multiprocessors. In comparing
network topologies, Agarwal [29] analysed the network latency for 2-D, 3-D145

and 4-D networks under localized traffic. The analysis is performed for zero-
load and disregards the effect of congestion on the latency. It assumes that
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routers and wires are the only constraints that affect delay. They report the
following expression for the average distance in k-ary n-mesh networks:

H =
n

3
(k − 1

k
). (1)

In practice, networks are rarely configured with equal radices. This is150

especially true with the advent of 3-D integration technologies. For a given
network size the routing nodes are often arranged with different k1, k2 and k3
radices. In formulating a simple adaptive partitioning strategy to minimise
the communication cost, Liu et al. in [30] derived an expression for average
distance in k1×k2 type 2-D mesh networks:155

H =
1

3
(k1 − 1

k1
) +

1

3
(k2 − 1

k2
). (2)

When k1 = k2, equation (2) is equivalent to Agarwal’s equation (1).
In previous work [31] we showed how the average distance depends on

the probability of transmission, pi,j, of a packet with source i and destination
j, and the actual source-destination Manhattan distance in terms of hops,
with the following formulation for a 1-D network:160

H1×k =

∑k
i=1

∑k
j=1 pi,j × |i− j|

∑k
i=1

∑k
j=1 pi,j

. (3)

We went on to discuss unequal radices and formulated an average distance
model for an n-D mesh that is the generalisation of Agarwal’s and Liu’s
formulation:

Hurt =
n∑

i=1

Hurt1×ki

=
K1

3
− 1

3K1

+
K2

3
− 1

3K2

+ ...+
Kn

3
− 1

3Kn

(4)

Based on (3) we also derived average distance models for the spatial traffic
patterns of uniform random traffic and local random traffic and verified the
fidelity of the model by simulating networks under loading for these traffic
patterns.
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A more comprehensive approach is to use spatio-temporal traffic patterns165

that exhibit bursty characteristics, which is more representative of how real
applications communicate over networks. Several studies have already shown
that both system- and chip-level networks demonstrate properties of self-
similarity [24, 26]. However, to our knowledge, no latency models have been
published for spatio-temporal traffic patterns.170

The network link bandwidth is dependent on the number of links available
in the network. Depending on the configuration, the total number of links
varies, even though the total number of routing nodes may be identical. This
has been shown in [32] through comparative analysis of 2-D mesh and 3-D
cube networks having the same routing node size. The expression for the175

total number of links is:

L2D = 4k1k2 − 2(k1 + k2)

L3D = 6k1k2k3 − 2k1k2 − 2k1k3 − 2k2k3
(5)

which quantifies the differences in link bandwidth in different topologies.
Most analytical models take congestion into account to predict absolute

network performance. The zero-load delay in such models can be deduced by
setting the congestion level down to zero. However, finding zero-load delay180

in such an approach doesn’t guarantee the accurate prediction of the relative
performance of networks under load. Depending on the switching mechanism,
and routing algorithm of the network, fidelity may not be maintained all the
time. Also, the application of such models is limited to regular network
topologies with regular traffic patterns.185

In this paper, we broaden the scope of the study we presented in [31]
by considering significantly more traffic pattern models including bursty and
irregular traffic, as well as irregular networks. We evaluate the fidelity of
the model in each case by comparing against results obtained from cycle
accurate simulations, and demonstrate how it provides insight into the rel-190

ative performance of differently configured networks under dynamic loading
conditions. The study significantly expands on our previous work in terms
of more experimentation and on understanding the underpinning theoretical
concepts.

3. Traffic Patterns and Hop-count Models195

Synthetic traffic models play an important role in design space exploration
and verification. When an application runs, packets injected into the network
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tend to exhibit repetitive spatio-temporal patterns that can be captured in
a model [25]. The model should replicate both the temporal distribution,
i.e. the timing of release of packets in the period under consideration, and200

the spatial distribution, i.e. the variation of destination addresses.

3.1. Spatial Distribution
Most works in the literature that propose synthetic traffic patterns discuss
their spatial distribution, which determines how destination addresses are
generated for packets. Spatial and temporal distributions are orthogonal to205

each other, and any temporal distribution can be superimposed on any spa-
tial distribution. The set of destinations may contain only one node, resulting
in a deterministic pattern, or it may include all nodes in the network with
an associated probability. If the probability of transmitting to each node
is identical, the traffic pattern is uniform random, while a probability that210

decreases with increasing distance results in localized traffic. In our experi-
ments we utilise the following commonly used deterministic and probabilistic
traffic patterns: uniform random (URT), bit reverse (BRT), bit complement
(BCT), and local random (LRT) traffic.

For the purpose of defining spatial traffic patterns, routing nodes are215

assigned unique numbers S = 0 · · ·N−1 with N being the number of routing
nodes. In a 3-D mesh topology the x, y and z address components are mapped
from these routing node identifiers as follows:

x = S mod Nx

y = (S div Nx) mod Ny

z = S div (NxNy)

(6)

where div is integer division and Nx, Ny, Nz denote the size of the network
in each dimension. For a 2-D mesh the same equations hold except for the220

third, which becomes irrelevant.
For each traffic pattern, zero-load hop count models based on our original

definition are expressly derived or stated below.

3.1.1. Uniform Random Traffic (URT)

In URT, the destination addresses are generated randomly and can be any225

processing element across the network other than the source itself 1. For a

1Our convention does not allow a source to generate packets to itself. This does not
detract from the generality, as simple modifications in the expressions can accommodate
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Figure 1: The bit-reverse traffic pattern with the node identifier shown in binary.

given network size of N routing nodes, URT creates a uniformly distributed
spatial pattern, with equal destination probabilities for all source-destination
pairs:

PD =
1

N − 1
(7)

The overall average over the Manhattan distances associated with all source-230

destination pairs gives the average distance travelled by a packet across the
network. In our previous work [31], the average distance expression in terms
of hop count for a 3-D network under URT has been generalized as given in
(8)

Hurt =
1

3
((x− 1

x
) + (y − 1

y
) + (z − 1

z
)). (8)

3.1.2. Bit-Reverse Traffic (BRT)235

In BRT, the destination address is formed by reversing the binary format
of the source node identifier as defined in section 3.1 and equation (6). For
example, source node (001110) will send all its packets to destination node
(011100). Figure 1 shows this pattern for a 4× 4 network.
Let ςn denote the bit-reverse of n, (e.g. ς100 = 001), S the source node240

identifier, D the destination node identifier, and Sx, Sy, Sz, Dx, Dy, Dz the
address components of the source and destination nodes respectively [13].

the case with self-traffic. For example, equation (7) would have N instead of N − 1.
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Then equation (6) results in the following dependencies:

Sx = S mod Nx

Sy = (S div Nx) mod Ny

Sz = S div (NxNy)

D = ςS mod N

Dx = D mod Nx

Dy = (D div Nx) mod Ny

Dz = D div (NxNy).

(9)

If N is not a power of 2, i.e. N �= 2k, some bit-reversed values ςS will be
greater than N . Therefore we define D = ςs mod N . When N = 2k, as in245

Figure 1, the modulo operation has no effect.
The distance between a source S and a destination D is the sum of the

x, y and z differences:

Hbr,SD = |Dx − Sx|+ |Dy − Sy|+ |Dz − Sz|. (10)

For a network with N nodes, the average distance is expressed as the mean
over all source-destination distances:

Hbr =
1

N

N−1∑

S=0

N−1∑

D=0

Hbr,SD. (11)

3.1.3. Bit-Complement Traffic (BCT)

The destination node identifiers in the bit-complement pattern are derived
by bit-wise complementing the source node identifier [13]. Figure 2 shows
an example. If ¬n denotes the bit-wise complement operation on a bit string
n (e.g. ¬01011 = 10100), then equation (6) gives:

Sx = S mod Nx

Sy = (S div Nx) mod Ny

Sz = S div (NxNy)

D = ¬S mod N

Dx = D mod Nx

Dy = (D div Nx) mod Ny

Dz = D div (NxNy).

(12)
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Figure 2: The bit-complement traffic pattern with the node identifier shown in binary.

As in the bit-reverse case, the distance between any source S and any desti-
nation D is

Hbc,SD = |Dx − Sx|+ |Dy − Sy|+ |Dz − Sz|, (13)

giving the average distance for a 3-D mesh as:

Hbc =
1

N

N−1∑

S=0

N−1∑

D=0

Hbc,SD. (14)

3.1.4. Localized Random Traffic (LRT) - the Alpha Model

In any architectural design, common sense dictates that components which250

communicate frequently with each other are placed in close proximity to
avoid unnecessary delay and congestion, inasmuch as is possible within the
physical constraints on placement. Local traffic models capture such sensible
design decisions. Under a local traffic pattern, the probability of a given
routing node being the destination for a generated packet varies inversely255

as the source-destination distance. Thus for any given source node, packets
with close-by destinations are more numerous than packets with far-away
destinations.

The level of localization can be explicitly specified in the model by the
locality coefficient, α. When α=0, localization does not exist, and every260

node generates packets with equal probability to all nodes (always excluding
self-traffic), whether near or far; this is identical to URT. As α increases, the
localization effect increases and the number of packets generated with nearby
destinations increases. As α→∞, the average packet distance approaches 1
hop.265
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Figure 3: Effect of the variation of localization coefficient α on the average distance
measured in hop counts. The hop count converges to 1 with increasing α.

For a given network size of N routing nodes the probability of sending a
packet from S to D is

PD =
1

KS

.
1

|S −D|α (15)

for S �=D, where |S−D| is the geometric (Manhattan) distance and KS is a
normalizing factor that limits the sum of all probabilities to 1. Its value is
different for each source S and is calculated as follows:

KS =
N−1∑

D=0

1

|S −D|α . (16)

Then the average hop count is derived as follows:

Hα,SD =
1

N − 1

N−1∑

S=0

N−1∑

D=0

(|S −D|PD). (17)

Substituting (15) in (17) results in:

Hα,SD =
1

N − 1

N−1∑

S=0

N−1∑

D=0

|S −D|1−α

Ks

. (18)

The localization effect varies according to the network size and topology.
Figure 3 shows the localization effect on the average distance for a network
of 216 routing nodes arranged as 8×8×8 and 2×8×16 cuboids and a 16×16×1
mesh. When α=0, the average hop count is the same as with URT, though the
values are different for each configuration. As α increases, the localization of270

traffic increases, and the average distance decreases until all curves converge
to a value of 1 hop count.
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3.2. Temporal Distribution

The temporal distribution defines the timing of release of packets into the
network. Several studies have concluded that realistic network traffic demon-275

strate the property of self-similarity over a long period of time [24, 25, 26].
As bursty traffic is very prevalent in real applications, we have established a
self-similar synthetic pattern as a bursty traffic model which emulates real-
istic streaming of data.

Discrete self-similar traffic can be modelled by the bursty model (B-280

Model) as described in [25]. In the B-Model, a bias β (0 < β < 1) is
introduced to the streaming pattern. A bias β=0.5 indicates that packets
are streamed at a uniformly distributed rate throughout a time interval com-
prising, say, n cycles. When the bias is set below or above 0.5, the streaming
rate becomes skewed, with the n-cycle time interval being split into two equal285

portions, and a specified fraction of packets being emitted in the first half,
and the rest in the second half. For example, a bias of β=0.2 implies that
20% of the packets are streamed in the first half and 80% in the second half of
the time interval under consideration, or vice versa. This process of halving
is continued for each generated half of the original interval, for a number of290

times that is defined as the depth d, resulting in some number of discrete time
intervals in which the packets are distributed. For an n-cycle time series, the
number of such discrete intervals in the final sequence is given by n

2d
. The

maximum value for d is limited by the inequality n
2d
≥1 or d≤ log2(n) (where

the simulation cycle duration has been normalised to 1), as a simulation cycle295

is an indivisible, atomic unit of time. After each division, the choice of which
half is assigned 20%, and which 80% (in this example), is made randomly.

The total number of packets, φtotal, to be transmitted within the time-
series of n cycles depends on the injection rate, γ, (0 ≤ γ ≤ 1). At the
maximum injection rate (γmax = 1) a node can inject at most one packet per300

clock cycle, i.e. n packets in an n-cycle time-series. In general the following
relationship holds:

φtotal(γ) = γn. (19)

The physical time at the beginning of period i in the sequence is given
by i n

2d
. If the total number of packets allocated to each period in the final

sequence is x(i n
2d
), the total traffic volume (total number of packets) is the305
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Figure 4: Allocation of packets in the B-model. The original n-cycle time-series is divided
into a number of discrete time intervals by a process of continuously splitting the parent
sequence into two halves. In the first step, the sequence comprises the entire time series,
and hence there is one interval which contains all of the packets. Halving this interval for
a number of times, d (depth), and randomly allocating to each resulting interval a fraction
of either β or 1−β of the total number of packets in the parent sequence results in the
final distribution of packets over time.

sum of the traffic volume in each period:

φtotal(γ) =
2d∑

i=0

x(i
n

2d
). (20)

The number of packets that a node injects into the network within any
period, x(i n

2d
), can be expressed as a function of the bias, β, the division

depth, d, and the injection rate, γ

x(i
n

2d
) = ({β, 1− β})d(γn−

i−1∑

j=0

x(j
n

2d
). (21)

In (7), the traffic volume at a given point in the final time sequence is310

defined as a function of the traffic volume at the coarser time step, and has
a straightforward recursive implementation.

Figure 5 shows the distribution of 1,000 packets over 10,000 cycles with
a bias of β = 0.2 and an injection rate of γ = 0.1. If the total is increased to
2,000 packets (γ = 0.2), the only change is in the amplitude (y-axis). The315

temporal distribution (x-axis) is identical.

It turns out that the temporal distribution of packet generation has no
impact on the average hop count. The distance is determined by locations of
source and destination of packets, but not when in time they travel. Conse-
quently, it has no effect on the average hop count metric. However, it is well320

known that bursty traffic is unhealthy for networks. Given a certain amount
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Figure 5: Distribution of 1000 packets over 10,000 cycles according to the B-model with
β=0.2.

of traffic to be transmitted, networks handle smooth traffic flows much better
than bursty traffic with big spikes. Viewed differently, a network needs more
buffering resources to cope well with bursty traffic.

In this light one can suspect that the average distance model has diffi-325

culties to predict the relative performance of networks if the traffic is very
unevenly distributed over time. Intuition would suggest that two network
configurations may have significantly different capabilities to handle bursts,
even if both of them exhibit the same average distance. It therefore came as
a surprise to us that this effect did not appear in any of our simulations, as330

exemplified by Figures (7, 8, 10, 11, 13, 14, 16, 17). Certainly, more bursty
traffic results in heavier loading and causes the network to saturate at a lower
injection rate. However, this affects all alternative network configurations in
the same way and any differences of networks to cope with bursts are evened
out by the load distribution capability of the deflection routing algorithm.335

4. Simulation Environment and Comparison Methodology

In this section we describe the simulation environment and experimental
setup. In our network simulator, a hop is counted when a packet traverses
the link between adjacent routers.

4.1. Traffic configuration340

The average distance predicted by the zero-load model for the various
traffic patterns as described in section 3 is calculated numerically for three
network topologies having the same total number of routing nodes, 4×4×4,

15



2×4×8 and 8×8×1. Each spatial traffic model is then combined with a self-
similar temporal bursty traffic model with bias values of 0.1, 0.3 and 0.5,345

and used to generate traffic for cycle-accurate register-transfer-level (RTL)
simulations. The zero-load case is emulated by having a very low injection
rate of 0.01 packets per node per cycle, and the fidelity of the model in pre-
dicting the network performance is checked by increasing the injection rate
beyond the saturation point. For a range of injection rates within the simu-350

lation period, the average latency values are calculated for packets collected
from a sample window defined within the stable phase of the network (after
the warm-up phase and before the cool-down phase). For the specific router
micro-architecture considered, a single hop count is equivalent to five clock
cycles in simulation. The simulation window is always long enough that no355

packets are dropped.

4.2. On-Chip Network Architecture

A hop count can be translated into network latency given that the phys-
ical constraints are known. Ideally, the router-to-router hop delay is equal
throughout the network. This assumes that the link sizes are the same and360

that all routers are identical. If the network is not regular, router-to-router
length is not the same and hops cannot be directly converted to network la-
tency. An example is a 3-D cube network where through silicon vias (TSVs)
are used to connect the vertical layers. The TSVs are short and fast com-
pared to long global planar wires due to their lower electrical parasitics. As a365

result, inter-layer communication is typically faster than intra-layer commu-
nication. This means that horizontal networks hops are slower than vertical
hops. Thus, vertical and horizontal hops are separated to calculate the net-
work latency.

In this study we use a buffer-less switch and non-minimal, fully adaptive,370

deflective routing, also known as hot-potato routing. Buffer-less routers have
an inherent advantage of simplicity, energy-efficiency, and cost-effectiveness [33].
Different implementations of buffer-less architectures have been reported [34]
[35]. Each router consists of control units and sorting units and utilise a
crossbar architecture, pipelined in three stages, with connectivity between375

input/output ports to six directions and to the resource. The six directional
ports are North, South, East, West, Up, and Down with the seventh port pro-
viding access to the resource (such as on-chip processing elements or off-chip
blocks such as memory or I/O).
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Mesh networks are used throughout to connect routers in 2-D, and cube380

networks in 3-D. Meshes are chosen because of their simplicity in configura-
tion and practicality in hardware implementation. Depending on its position,
a single router connects between two and four routers in its Manhattan neigh-
bourhood in a 2-D mesh; a router connects between three and six routers in
3-D cube networks.385

A packet is a single flit long containing both control and payload bits.
Once the destination address is provided by the source, the packetization
process is initiated in a network interface (NI) component. A relative ad-
dressing scheme is used to set the destination bits in the form of X, Y, Z.
For temporal traffic, a self-similar pattern is used; the spatial traffic patterns390

comprise variously uniform, bit-reverse, bit-complement, hot-spot, and local
patterns. When running simulations the injection rate is varied depending
on the traffic pattern in use.

When two or more packets compete for the same link, we honour an
oldest packet first priority scheme. No packets are dropped from the network.395

Instead, when the network is congested, the packets are accumulated in a
FIFO buffer in the network interface (NI) situated between each router and
its local processing element. More details of the routing protocol and router
micro-architecture are given in [36].

4.3. Simulation Methodology400

Packet latencies are extracted by running cycle accurate RTL simulations,
collating packet injection, ejection and traversal data at each router over the
entire simulation and processing this data in Matlab. The latency in all
graphs is given in multiples of clock cycles. This allows a straightforward
comparison between regular and irregular networks where a hop comprises405

different numbers of clock cycles. More details of the simulation methodology
are given in [36].

5. Experiments on Regular Traffic Patterns

In this section and the next, we show how the zero-load predictive model
exhibits almost perfect fidelity for regular and irregular traffic patterns and410

network topologies, and any deviation is within the limits of numerical ac-
curacy imposed by the simulations and calculations. We also show how the
model can be used to find the optimum network node placement within the
limits allowed by the communication and physical constraints imposed by
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Figure 6: Variation of average latency with increasing injection rate for non-bursty URT
with bias, β=0.5

the specifications. This section concentrates on regular traffic patterns and415

regular networks, characterised by homogeneity across the network in both
cases. Section 6 looks at irregular traffic patterns and irregular networks
characterised by heterogeneity across the network.

5.1. Uniform Random Traffic (URT)

Figure 6 plots the simulation results for a 64 routing node network configured420

as an 8×8×1 2-D mesh, and 2×4×8 and 4×4×4 3-D meshes. Packets are
injected under the URT model with no burstiness (i.e. bias β=0.5). At very
low injection rates, the average hop counts are equal to the zero-load delay in
terms of clock cycles. The configuration with the minimum average distance
is the 4 × 4 × 4 3-D mesh, as its geometry dictates that packets have to425

traverse fewer links to reach their destinations. When the injection rate is
increased the network congestion levels increase, and as a consequence the
average delay grows for all configurations.

Interestingly, increasing injection rates increase the differences between
these configurations under load. We observe this phenomenon in many, but430

not all traffic patterns, with hot-spot being a notable exception as discussed
in section 6.1.

Figures 7 and 8 show the growth of latency with increasing injection rate
for bursty URT with bias β=0.3 and β=0.1 respectively. While the saturation
injection rate drops, the zero-load average distance model exhibits perfect435

fidelity.
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Figure 7: Variation of average latency with increasing injection rate for bursty URT with
bias β=0.3.

Figure 8: Variation of average latency with increasing injection rate for bursty URT with
bias β=0.1.

5.2. Bit-Reverse Traffic (BRT)

The injection rate is varied from 0.01 up to 1.0 packets per node per cycle for
biases of β=0.5, β=0.3 and β=0.1 under the self-similar temporal model for
bit-reverse traffic. Figure 9 shows the result for β=0.5 which is equivalent440

to the case of packets being uniformly distributed in time according to the
bit-reverse spatial pattern. When the bias is skewed to β=0.3, as shown
in Figure 10, the average distances start to increase in each case due to
the increased congestion in the network and the network exit points. This
worsens when the bias is set to β=0.1, as shown in Figure 11. In all cases,445

the zero-load model predicts the relative performance of the configurations
correctly up to the saturation point.
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Figure 9: Variation of average latency with increasing injection rate for non-bursty BRT
with bias, β=0.5.

Figure 10: Variation of average latency with increasing injection rate for bursty BRT with
bias, β=0.3.

5.3. Bit-Complement Traffic (BCT)

Figure 12 shows the results for unbiased traffic with the bit-complement
spatial distribution. For low injection rates the average latency converges450

to the delay predicted by the zero-load model in terms of clock cycles for
each configuration. When the injection rates are increased, the latency also
increases without the curves ever crossing each other. Similarly, we observe
also perfect fidelity for bursty traffic with bias β=0.3 and β=0.1 as shown in
Figures 13 and 14 respectively.455
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Figure 11: Variation of average latency with increasing injection rate for bursty BRT with
bias, β=0.1.

Figure 12: Variation of average latency with injection rate for non-bursty BCT when bias,
β=0.5.

5.4. Localized Random Traffic (LRT)

Figure 15 shows how the latency increases with injection rate when the lo-
calization coefficient α=1 and the self-similar bias β=0.5, ensuring uniform
streaming of packets under a local traffic pattern. At low injection rates the
latency converges to the zero-load average distance as for the other cases.460

When the bias is set to β=0.3 (Figure 16), or β=0.1 (Figure 17), the result-
ing temporally skewed traffic causes insignificant changes. This is because
strong localization in the traffic generation results in more packets with des-
tinations within a relatively short distance compared to the network dimen-
sions. Clearly, for each configuration, the average latency for local traffic is465

less than the corresponding URT traffic shown in Figures 6, 7 and 8.
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Figure 13: Variation of average latency with increasing injection rate for bursty BCT with
bias, β=0.3.

Figure 14: Variation of average latency with increasing injection rate for bursty BCT with
bias, β=0.1.

6. Experiments on Irregular Traffic Patterns

In this section, we further validate the zero-load predictive model for networks
with irregular traffic patterns as well as irregular networks. We also show
how such networks can be configured for optimal performance.470

6.1. Networks with Hot-Spots

Nodes that generate or receive a greater proportion of traffic than other
nodes are called hot-spots. Typical hot-spot nodes are memory controllers,
a critical processing resource, or a system controller.

For instance, the wide-IO JEDEC standard specifies 512 bit wide data475

interfaces [37] from the logic plane to the DRAM memory plane in stacked
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Figure 15: Variation of average latency for non-bursty (bias, β=0.5) LRT with alpha α=1.

Figure 16: Variation of average latency for LRT with α=1 and bias β=0.3.

.

systems. DRAM layers can be physically stacked on top of (or below) logic
layers and connected by means of through-silicon vias (TSVs). Each wide
I/O access port requires 512 interconnects for data and additional lines for
addressing. The processing elements or cores in the logic layers typically480

share the memory layers. This means that data access is made only through
the parallel TSV clusters, which in turn are accessed on the die through
a dedicated resource. Such shared access creates a hot-spot region in an
on-chip network architecture. Hot-spot regions should be designed in such
a way that there is sufficient link bandwidth to support worst-case traffic485

congestion. This leads us to explore the optimal placement of hot-spot nodes
on a die to minimise congestion, given placement constraints.

23



Figure 17: Variation of average latency for LRT with α = 1 and bias β = 0.1.

.

Figure 18: Placement of hot-spot nodes on top layer.

Figure 18 shows different configurations of two resources serving as access
ports to DRAM either stacked in the same package or placed off-chip. The
memory access resources have to be on the top logic layer due to I/O consid-490

erations. Each core in the network in any of the three layers that has access
to any block in the memory layers sends requests through the access ports.
The combined requests generate a hot-spot region with heavier traffic in the
area surrounding these tiles.
The optimal placement of these hot-spots that yields the best performance495

is found through cycle accurate RTL simulations for networks under loading.
For this experiment, we examine networks of three different sizes, 4×4×4,
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Figure 19: Variation of average latency with injection rate for hot-spot traffic in 4×4×4
network with HS1 and HS2 hot-spot placement on top layer

Figure 20: Variation of average latency with injection rate for hot-spot traffic in 7×7×7
network with HS1, HS2 and HS3 hot-spot placement

7×7×7, and 10×10×10. The different placements of the access tiles on the
top layer considered are shown in Figure 18. While some other arrange-
ments are possible, many can be eliminated through symmetry, and these500

are carefully selected as being representative of most sensible configurations
to validate the case.

In this exercise hot-spot nodes receive 80% of the packets generated by the
non-hot-spot nodes, while the remaining 20% are sent to other non-hot-spot
destinations under a uniform random distribution. This spatial distribu-505

tion is then uniformly distributed over time (bias β=0.5 in the self-similar
model). Figures 19 to 21 show the results for each network configuration
with increasing injection rate from 0.001 up to 0.01 packets per node per
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Figure 21: Variation of average latency with injection rate for hot-spot traffic in 10×10×10
network with HS1, HS2 and HS3 hot-spot placement

Figure 22: The three configurations have an equal no. of routing nodes and each has two
hot-spots located at their center. The Y-axis gives the saturation injection rate while the
X-axis denotes the fraction of overall traffic directed to the hot-spots. As this fraction
increases, the networks’ saturation injection rates decrease and converge.

cycle.
With increasing injection rate, the average packet latency in each config-510

uration increases without the curves crossing each other. The model again
exhibits perfect fidelity for all tested hot-spot configurations.
It is interesting to note that the differences in latency of different configu-
rations decrease as the network load increases, unlike all the traffic patterns
studied earlier. For URT, LRT, BRT and BCT the differences grow because515

the longer a packet has to travel the more it will suffer from increased con-
gestion simply because there is more time for it to be affected. As the less
optimal topologies have on average more packets that travel longer, they are
affected more by congestion and hence the differences in latency increase.
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Figure 23: A 6× 6 network configuration in 3 layers with node clustering

Figure 24: Percent differences for selected configurations

With hot-spot traffic, packets that travel to a hot-spot or nearby a hot-spot520

will suffer more than other packets from congestion. As load increases, the
congestion around hot-spots will rise first, affecting all packets that travel
near-by indiscriminately. Therefore we see in Figures 19, 20, and 21 that
the latency curves of the different configurations increase roughly in par-
allel until the congestion starts to dominate the delay, at which point the525

lines converge. This convergence of saturation points is demonstrated in
Figure 22. It shows three network configurations with two hot-spots around
their respective centres. As the fraction of traffic directed to these hot-spots
increases, the injection rate at which these different configurations saturate
decrease and converge. Hence, strong hot-spot traffic tends to dominate a530

loaded network, defines its saturation point, but does not, even under high
load, reverse the relative performance ranking of networks. Consequently, the
average distance model is a valid predictor for hot-spot dominated networks.
See section 7 for a discussion of when this trend is likely to be reversed.
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Table 1: Traffic probabilities for MAP IP-cores
Source IP cores Probability to target IP-core Relative Injection rate

GPU 68% L2 GPU, 2% CPU, 20% Display Interface, 9% total to all other interfaces, 1% System control 1 IR
CPU 40% L2 CPU, 8% All GPU, 10% Audio, 10% Video, 4% Camera, 5% Security 22% all other Interface, 1% System control 0.7 IR
Audio 30% WideIO, 28% Security, 20% CPU, 15% Standard, 3% Ethernet, 3% User, 1% System control 0.2 IR
Video 50% WideIO, 9% Security, 20% CPU, 20% all interfaces, 1% System control 0.8 IR
Camera 30% WideIO, 60% Display, 5% CPU, 4% Security, 1% System control 0.8 IR
Security 60% WideIO, 20% Audio, 14% Video, 5% CPU, 1% System control 0.3 IR
L2 GPU 19% L3, 80% GPU, 1% System control 0.8 IR
L3 26% L2 GPU A, 26% L2 GPU B, 26% L2 CPU, 21% WideIO, 1% System control 1 IR
L2 CPU 20% L3, 79% CPU, 1% System control 0.8 IR
WideIO 48% L3, 15% Audio, 26% Video, 5% Security, 5% Camera, 1% System control 1 IR
System Control 24% CPU, 24% GPU, 4% To every remaining 13 cores, 0.2 IR
Standard Interface 16% GPU, 20% CPU, 46% Audio, 10% Video, 5% Security, 2% Camera, 1% System control 0.5 IR
User 24% GPU, 22% CPU, 24% Audio, 24% Video, 5% Security, 1% System control 0.5 IR
Ethernet 24% GPU, 25% CPU, 15% Audio, 30% Video, 5% Security 1% System control 0.5 IR
Display 64% GPU, 12% Video, 15% CPU, 12% WideIO, 3% Camera, 5% Security,1% System control 0.5 IR

6.2. Configuration of Regular Networks with Irregular Traffic Patterns535

In this example we attempt to identify the best placement configuration in
a complex 3-D network by means of the zero-load predictive model. The
network has three layers with each layer having 6×6 nodes as shown in Fig-
ure 23. The network includes two hot-spot nodes. The first provides access
to off-chip data inputs and outputs, and is placed at the periphery of the540

bottom layer based on I/O considerations. The second provides access to a
wide-IO port that connects to a memory layer stacked on top of the three
layers. It is placed in the middle of the network based on manufacturing
considerations [38]. In order to simplify the traffic allocation, the routing
nodes are grouped into six different clusters defined by their traffic genera-545

tion probability as shown in table 2.

Table 2: Traffic generation probabilities of cores in different clusters to hot-spot nodes
(memory & off-chip) and other nodes

Number of cores To Memory To Off-chip To other cores
Cluster 1=18 7.14% 7.14% 85.71%
Cluster 2=18 14.29% 14.29% 71.43%
Cluster 3=18 21.43% 21.43% 57.14%
Cluster 4=18 28.57% 28.57% 42.86%
Cluster 5=18 35.71% 35.71% 28.57%
Cluster 6=18 42.86% 42.86% 14.29%

By permutation of the six clusters in the network, 720 possible configurations
(M001-M720) can be derived. The zero-load average distance model reveals
that configuration M451 with 4.6041 hops has the shortest average distance
whereas M245 with 4.888 hops has the longest average distance. Figure 24550
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shows the first five top configurations (M451, M549, M470, M452, & M450)
with shortest average distance as well as the one with the longest (M245)
in the top row. The relative % difference between any two configurations is
calculated.

The difference in average distance between all six configurations are also555

shown in Figure 24. For example, the relative difference of M245 and M451
is 6.17%. Given the large number of possible configurations, the difference
between any two consecutive configurations is quite small.

In order to check the fidelity of the model and see how the predictions
hold up under increasing load, we carried out RTL simulations for all config-560

urations.
In this example we did find cross-overs in the latency curves for different
configuration, which are marked as red cells in Figure 24. It turns out that
cross-overs only occurred when the difference in the zero-load average dis-
tance was less than or equal to 0.13%, which translates to an absolute differ-565

ence on the order of 0.006 for the zero-load average distance values prevalent
in this example. In the post-processing, latency values are rounded to two
decimal places and truncated, leading to a maximum absolute error in indi-
vidual readings of 0.005, which can accumulate over multiple transactions.
Also, the stochastic processes used to generate packets over time for the570

simulations deviate in any finite time period from the ideal probability dis-
tributions used in the zero-load model. Therefore these cross-overs seem to
be within the range of the numerical error introduced by the simulations and
proceeding calculations and appear not to represent a true violation of the
fidelity of the model.575

6.3. Configuration of Irregular Networks with Irregular Traffic Patterns

The relevance of the zero-load predictive model for different applications is
further investigated with an irregular network, based on two configurations
of a generic mobile application processor (MAP) shown in Figure 25(a) and
25(b). The MAP is composed of processing elements of different sizes each580

connected to a routing node and thus the network topology used to connect
them is an irregular one. We have used the following core descriptions to
obtain likely tile sizes for the network as well as representative (irregular)
traffic pattern models of communication between the different elements. The
MAP consists of GPU clusters each with four GPU cores, and a single CPU585

cluster with eight cores. Each cluster accesses its own dedicated L2 cache.
There is a common L3 cache with direct access to a 3-D wide-IO port located
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(a) MAP Model 1 (b) MAP Model 2

Figure 25: Two configurations of a generic Mobile Application Processor (MAP)

at the center. The wide-IO DRAM blocks are stacked on top of the MAP.
There are also application specific IP-cores such as an audio DSP and video
codec, a camera, and security and system controls. For off-chip accesses, a590

standard interface such as USB, SPI or any user defined interface can be
used. A display interface and wired connectivity through Ethernet is also
included.

The traffic generated by individual IP-cores is non-uniform. Cores such
as GPUs stream packets at a higher rate while IP-cores such as system con-595

trollers generate packets at a lower rate with a small contribution to the
overall traffic. Table 1 shows the spatial probability distribution of traffic
used to simulate the two MAP configurations, normalised to the GPU in-
jection rate. For example, the relative injection rate of 0.2 for the security
IP-core means that its traffic contribution is only 20% of the maximum traffic600

contribution by a core (i.e. the GPU’s contribution). The simulation results
are shown in Figure 26, and the results confirm 100% fidelity of the model
for injection rates below saturation.

7. Discussion

In the absence of reliable delay models for NoCs with adaptive routing,605

cycle-accurate simulation is the only tool to assist system architects in decid-
ing upon network topology, mapping, and other critical early-phase design

30



Figure 26: Average clock cycles with self-similar irregular traffic pattern for MAP config-
urations

choices. By focusing on a relative rather than absolute performance metric,
we have formulated a model that predicts with high fidelity whether one con-
figuration will exhibit better performance than another even under high load610

with burstiness in packet injection. The zero-load model is a static prop-
erty of topology, mapping and traffic probabilities. Even though it does not
take into account congestion, interference or temporal variability in traffic,
it surprisingly shows almost perfect fidelity for deflection routing networks.
We studied the model under a wide range of loading and topological con-615

ditions from uniform random to hot spots to irregular traffic and networks.
Under all these conditions we only observed the relative performance of dif-
ferent network configurations changing under load in a few cases when the
average distance of two alternative configurations differed by 0.13% or less.
These differences fall within the numerical error introduced by rounding and620

stochastic variations in the traffic generation.
It is interesting to note that in all studied cases of regular traffic patterns

the differences in delay grow with increasing traffic load, as attested to by
the diverging delay curves in Figures 6-17. For hot-spot and other irregular
traffic patterns the curves run parallel (Figures 19, 21, 26) or even converge625

(Figure 20). It seems that divergence occurs when congestion builds up
uniformly in the whole network, thus aggravating every initial difference.
However, if network behaviour is dominated by the congestion in a small
area, the saturation point is reached when this small area becomes heavily
congested, and thus any initial advantage in terms of the average distance630

is lost. Thus, in these scenarios the delay curves converge towards the same
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saturation point (Figure 22). A prime example is a pronounced hot spot
where the congestion in a single routing node’s exit link determines when
the network is saturated.

More generally, whenever some local congestion cannot be absorbed and635

balanced over the whole network, it will dominate the network at high load.
If different configurations still have the same (or similar) bottleneck channel
or channels (figures 22), the zero-load predictive model holds. If they have
a different bottleneck channel, as may happen with deterministic routing
algorithms, the average distance does not contain sufficient information to640

predict relative performance under load.
Thus, it needs to be emphasised, that the predictive power of the average

distance model relies on the load distribution capability of adaptive routing.
Our experiments have shown that it is less suitable for deterministic routing
because in such networks individual links may constitute bottlenecks deter-645

mining the limit of the network’s load, even though the network as a whole
has abundant spare capacity. The average distance model is a global property
and it averages out local imbalances, thus mirroring closely the load distri-
bution of adaptive routing. We have validated the model only for deflection
routing, which, it can be argued, has a perfect load distribution capability.650

We hypothesize that the model is well suited for other adaptive routing al-
gorithms to the extent that they have good load balancing capabilities; to
confirm this hypothesis is future work.

Hence, it is ironic but understandable, that deflection routing together
with other adaptive routing algorithms defies all attempts to formulate an655

accurate analytic delay model but finds in the average distance model a very
good predictor of relative performance.

8. Conclusion

Delay models for NoCs with adaptive routing that can accommodate a
range of spatio-temporal traffic patterns and topologies do not exist, due to660

the inherent complexity in capturing the effect of packet interaction across
time and space. However we have have shown that a static, relative metric
that does not consider congestion is able to predict with remarkable fidelity
whether a network will exhibit better or worse performance than another,
even under heavy loading and bursty traffic. This metric, the zero-load665

average distance, is a good predictor of the relative performance of NoCs with
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adaptive routing because it is a global property that captures the essence of
the load balancing capability of a network.
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