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Abstract

A Dempster-Shafer theory based model of assertion is proposed for multi-agent
communications so as to capture both epistemic and strategic uncertainty. Treating
assertion as a choice problem, we argue that for complex multi-agent communication
systems, individual agents will only tend to have sufficient information to allow them
to formulate imprecise strategies for choosing between different possible true asser-
tions. In a propositional logic setting, an imprecise assertion strategy is defined as a
functional mapping between a valuation and a set of true sentences, where the latter is
assumed to contain the optimal assertion given that particular state of the world. Un-
certainty is then quantified in terms of probability distributions defined on the joint
space of valuations and strategies, naturally leading to Dempster-Shafer belief and
plausibility measures on sets of possible assertions. This model is extended so as to
include imprecise valuations and to provide a meta-level treatment of weak and strong
assertions. As a case study, we consider the application of our proposed assertion mod-
els to the problem of choosing between a number of different vague descriptions, in
the context of both epistemic and supervaluationist approaches to vagueness.

Keywords Multi-agent communication, assertion strategies, uncertainty, vagueness

1 Introduction

Any satisfactory theory of natural language communication must give an account of as-

sertion. That is, how and why do we choose the particular assertions which we make in a

given context? Certainly, veracity cannot be the only factor since, for a particular state

of the world, there are usually a huge, perhaps infinite, number of grammatically correct

true sentences available as possible candidates. But what are the additional factors at play

and how can they best be modelled? Dating back to Lewis’ work on coordination games
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[18], game theory provides one established approach to the assertion problem. More recent

contributions in this area include communication games proposed by Parikh [20] which are

based on Grice’s maximums of cooperation in language [11]. Typically, communication

games involve two players, a speaker and a listener, each with a payoff function depending

on the decisions and actions taken as a result of interactions between agents 1. In many

cases there are optimal strategies for playing the games, taking the form of Nash equilibria.

However, communication games which attempt to model the rich and varied multi-agent

interactions which make up natural language communications in general, are likely to be

highly complex. Individual agents involved in the game will tend to have only imprecise

and uncertain knowledge both of the state of the world and also of the exact nature of

the game itself. This will then make the identification of optimal strategies, if they exist,

difficult or even impossible. Furthermore, given the dynamic nature of language there is

an inherent problem with identifying a fixed optimal strategy. Although a communication

strategy may be optimal for a fixed point in time we would need a more general strategy

to be constantly adapting in order for it to remain optimal within a dynamical system.

Instead, we suggest that in such situations agents will consider applying robust imprecisely

defined strategies which take account of the best available evidence, but which are then

unlikely to identify single optimal assertions. In this paper we propose a Dempster-Shafer

theory approach to modelling imprecise assertion strategies in the presence of uncertainty

both about the state of the world and about the exact nature of the communication game

being played. It is important to note the distinction between these uncertainties. In-

deed, Parikh [21] argues that the assertability of an expression must depend on both an

agent’s belief in the truth of a sentence as well as factors external to that belief. Factors

such as how a sentence is likely to be interpreted, recognition of differences in beliefs and

motivations across a population and the consequences of any misinterpretations, may all

contribute to uncertainty about the nature of a communication game. Here we consider

only a very simple type of communication game in which the speaker identifies a single,

one-off assertion to make to the listener. For instance, we do not attempt to model an

interactive dialogue between the speaker and, potentially multiple, listeners, in which the

speaker’s choice of her next assertion would need to take into account both her previous

assertions and any responses made to them by the listeners. However, while the proposed

model is preliminary and developed only for propositional logic, it does provide some initial

insight into how imprecise probabilities, such as Dempster-Shafer belief and plausibility,

could be applied to the assertion problem. Furthermore, we believe that this elementary

model could be subsequently developed so to take account of a more interactive dialogue

game, although such an extension lies beyond the scope of this current paper.

The assertion problem is becoming of increasing practical importance in areas of artifi-

cial intelligence including natural language generation systems [24], and language evolution

1See Allot [2] for a nice overview of game theoretic models of communication.



in robotics. Natural language generation systems are software tools which receive a rep-

resentation of the state of the world as input, usually in terms of certain key attributes,

and then output natural language text in the form of a description, summary, diagnosis or

forecast. Existing systems include those developed for automatic weather forecasting [10]

and as medical diagnosis tools [23]. The assertion problem is also of great importance in

language games. This is a paradigm introduced by Steels [27] in order to study the evo-

lution of communication protocols between agents in a simulated or real environment. As

with communication games, language games are played between two agents. One agent,

acting as a speaker, will formulate a linguistic utterance to be asserted to the interacting

agent (the listener) given the agent’s conceptual model, a goal and the constraints placed

upon this goal (for example by the environment). The listener must then recognise the as-

sertion given to her, interpret its meaning in relation to her conceptual model and update

this model so as to satisfy any constraints implied by the assertion.

In both the types of AI system described above, the assertion problem tends to be

formulated as a kind of decision problem. For instance, in natural language generation

systems, rather than viewing the problem as one of translation from some formal repre-

sentation of the state description into natural language text, it is instead thought of as

a problem of choosing between a number of alternative viable texts. Similarly, robotic

agents playing a form of Steels’ language game must choose between different available

descriptions of the objects they encounter. Here we adopt essentially the same approach,

in which agents attempt to identify an optimal assertion in the face of uncertainty and

partial information. In fact, the formulation of such a choice problem within a Dempster-

Shafer theory setting requires the following unique assertion assumption on the part of

the communicating agents: Agents assume that for any given state of the world there

is a single optimal assertion 2 . This is required since our approach relies on an epis-

temic interpretation of Dempster-Shafer theory according to which the associated belief

and plausibility measures quantify uncertainty about what is the single true state of the

world. Now we might perhaps question the strength of this assumption, especially since,

for example, it is easy to envisage payoff functions which give equal maximum value to

several possible assertions in a given context. However, from a practical perspective, and

in view of the fact that an agent must eventually identify a single assertion, it is perhaps

reasonable for them to believe in the existence of a coherent optimal strategy which would

allow them make such a choice in a principled manner.

An outline of the paper is as follows. Section 2 gives a brief introduction to Dempster-

Shafer theory outlining its relationship with probability and imprecise probability. Section

3 proposes a formal definition of imprecise strategies in a propositional logic setting. Sec-

2We should clarify that under a model of probabilistic uncertainty an agent may generate a distribution
over possible assertions. This means that in practice an agent will have a probability distribution over
possible candidates for the single optimal assertion, and under a stochastic assertion rule any sentence
with non-zero probability could be selected.



tion 4 then introduces a Dempster-Shafer model of assertion by allowing for both epistemic

and strategic uncertainty. In section 5 we show how this model can be applied to the prob-

lem of choosing between different vague statements when adopting an epistemic approach

to vagueness. The basic DS-model proposed in section 3 is extended in section 6 to al-

low for imprecisely specified states of world in addition to imprecise assertion strategies.

Finally, section 7 gives some conclusions and discussion.

2 Dempster-Shafer Theory

In this section we give a short introduction to some of the basic ideas from the Dempster-

Shafer theory of evidence [5], [25]. In contrast to probability theory, Dempster-Shafer

theory identifies a pair of dual measures referred to as the belief and the plausibility

respectively. The underlying intuition is that belief measures the level of evidence which

directly supports a given hypothesis, whilst plausibility measures the level of evidence

which is at least consistent with the hypothesis. Both measures are characterised by an

underlying mass function or basic probability assignment which quantifies the level of

support given exactly to each particular piece of evidence. A more formal treatment is

then as follows:

Let U denote a finite domain of discourse comprised of all possible states of the world.

A mass function is a function m : 2U → [0, 1] such that m(∅) = 0 and
∑

A⊆U m(A) = 1.

For A ⊆ U we can now define the level of belief and plausibility in the hypothesis that the

true state of the world is contained in A, as follows:

Definition 1. Belief and Plausibility

Given a mass function m as above then the belief measure Bel : 2U → [0, 1] and the

plausibility measure Pl : 2U → [0, 1] characterised by m are defined as follows: ∀A ⊆ U ;

Bel(A) =
∑

B⊆A

m(B) and Pl(A) =
∑

B∩A 6=∅

m(B)

Notice that if m is non-zero only on singleton sets B = {x} for x ∈ U , then m defines a

probability distribution on U and Bel = Pl is a probability measure on 2U .

From definition 1 it is easy to see that Bel and Pl are dual measures in the sense

that, ∀A ⊆ U , Pl(Ac) = 1 − Bel(A), and also satisfy Bel(U) = Pl(U) = 1 and Bel(∅) =

Pl(∅) = 0. Furthermore, Bel is a super-additive and Pl is a sub-additive measure so that;

For A1, . . . , Am ⊆ U ;

Bel(
m
⋃

i=1

Ai) ≥
∑

∅6=S⊆{1,...,m}

(−1)|S|−1Bel(
⋂

i∈S

Ai) and

Pl(

m
⋂

i=1

Ai) ≤
∑

∅6=S⊆{1,...,m}

(−1)|S|−1Pl(
⋃

i∈S

Ai)



In addition, Bel and Pl can be interpreted as a special case of lower and upper (imprecise)

probabilities. To see this, let M denote the set of all probability measures defined on 2U .

Now given a belief measure Bel we define a credal set [17] C ⊆ M according to:

C = {P ∈ M : ∀A ⊆ U , P (A) ≥ Bel(A)}

In this case, Bel and Pl correspond to the lower and upper probability measures induced

by C so that:

∀A ⊆ U , Bel(A) = inf{P (A) : P ∈ C} and Pl(A) = sup{P (A) : P ∈ C}

Now if, in addition to the mass function m, there is also a prior probability measure P on

2U then this naturally identifies a single posterior probability measure in the credal set C.

Definition 2. Posterior Probability

Let P be a prior probability measure on 2U and let the available evidence be characterised

by the mass function m. Then the posterior measure Pm ∈ C is given by: ∀A ⊆ U ;

Pm(A) =
∑

B⊆U

P (A|B)m(B)

This gives the associated posterior probability distribution on U as:

∀x ∈ U , Pm(x) = P (x)
∑

B:x∈B

m(B)

P (B)

In the particular case that P is the uniform prior then Pm is the so called pignistic dis-

tribution [26] given by:

∀x ∈ U , Pm(x) =
∑

B:x∈B

m(B)

|B|

Note that in order for Pm to be defined it is required that the prior P (B) > 0 for all subsets

B for which m(B) > 0, and is undefined otherwise. In addition, for any such prior P ,

Pm ∈ C since ∀A ⊆ U ,

Pm(A) =
∑

B⊆U

P (A|B)m(B) =
∑

B⊆A

P (A|B)m(B) +
∑

B 6⊆A

P (A|B)m(B)

=
∑

B⊆A

m(B) +
∑

B 6⊆A

P (A|B)m(B) ≥
∑

B⊆A

m(B) = Bel(A)

Definition 2 can perhaps best be understood from the perspective of the random set

interpretation of Dempster-Shafer theory [19], [5]. This requires us to think of the mass

function m as the probability distribution of a random set E into 2U , and where E has an

associated probability measure Λ on 22
U

, so that ∀A ⊆ U the following holds;

Λ(E = A) = m(A), Λ(E ⊆ A) = Bel(A) and Λ(E ∩A 6= ∅) = Pl(A)



Within this interpretation we can view the posterior distribution given in definition 2

as resulting from a generalized form of Bayesian updating in which the evidence is itself

uncertain. More formally, given a prior probability measure P on 2U , suppose we then

obtain uncertain evidence in the form of the random set E . Now a Bayesian approach would

require us to evaluate the posterior distribution P (x|E), but this cannot be determined

precisely since the set-value of E is uncertain. However, if instead we take the expected

value of P (x|E) across all the possible instantiations of E then we obtain the posterior

distribution Pm(x) as given in definition 2. That is;

∀x ∈ U , Em(P (x|E)) =
∑

B⊆U

P (x|B)Λ(E = B) =
∑

B⊆U

P (x|B)m(B) = Pm(x)

Smets [26] has proposed the pignistic distribution, a special case of definition 2 in

which the prior is uniform, as an important decision making tool within Dempster-Shafer

theory. Although it should be noted that Smets rejected the random set interpretation,

instead justifying the pignistic distribution in terms of more general indifference principles.

Indeed for different interpretations of Dempster-Shafer theory other mappings between

belief functions and probability distributions can be justified, including, for example, using

Dempster’s rule to combine the prior and the mass function. See Daniel [4] for an overview

of alternative probabilistic transformations.

3 Assertion Strategies

In this section we propose a formal definition of an assertion strategy within the simple

context of propositional logic. Within this framework we then consider what is meant by

precise and imprecise strategies.

Let L be a language of propositional logic with propositional variables P = {p1, . . . , pn}

and connectives ∧,∨ and ¬. Let SL denote the sentences of L generated in the standard

way by recursive application of the connectives to the propositional variables, and let LL

denote the literals of L. Let V denote the set of all valuations of L. We further assume

that the set of admissible assertions is restricted to a finite subset of sentences AL ⊆ SL.

The intuition behind this assumption is as follows: In principle an agent could assert any

sentence in SL which they believe to be true. However, we argue that in practice only

a finite subset of sentences are actually ever assertible. Indeed, such a restriction could

even be based mainly on syntactic considerations. For example, following a Gricean [11]

maxim of quantity, agents may be unwilling to assert any sentence for which there is a

syntactically simpler equivalent sentence3 which they could assert in its place. This would

mean, for instance, that neither ¬¬p1 nor (p1 ∧ p2)∨ (p1 ∧ ¬p2) would ever be asserted in

place of simply p1.

3i.e. perhaps a sentence with fewer connectives.



While veracity is insufficient to provide a full account of assertion we do assume that,

following Gricean principles [11], agents do at least want to be truthful. Consequently,

a valuation identifies a maximal subset of possible assertions corresponding to those sen-

tences in AL which it designates as being true.

Definition 3. Maximal Assertion Set

A valuation v ∈ V defines a maximal set of admissible assertions corresponding to those

sentences in AL which are true under v.

AL(v) = {θ ∈ AL : v(θ) = 1}

Definition 4. Assertion Strategy

An assertion strategy for L is a function s : V → 2AL − {∅} such that ∀v ∈ V,

s(v) ⊆ AL(v). Let S denote the set of all strategies for L. It is convenient to think

of a strategy s as being defined in a piecewise manner of the form: For V = {v1, . . . , v2n}

and {s1, . . . , s2n} ⊆ S;

s(v) = si(v) if v = vi

Let s0 denote the vacuous strategy for which s0(v) = AL(v), ∀v ∈ V.

Definition 5. Precise and Imprecise Strategies

s ∈ S is a precise strategy for L if ∀v ∈ V, |s(v)| = 1. A strategy s is precise for

a particular valuation v if |s(v)| = 1. Let PS denote the set of precise strategies and let

PS(v) denote the set of strategies which are precise for v. Notice that PS =
⋂

v PS(v). Also

notice that any precise strategy s ∈ PS can be written as a piecewise function s = si : vi

for i = 1, . . . , 2n where si ∈ PS(vi). We refer to any strategy in S − PS as an imprecise

strategy.

4 Uncertainty and Assertion

As outlined above, a natural way of formulating the assertion decision problem is to assume

that agents are playing a form of communication game in which they receive different

payoffs for different assertions given different states of the world. The unique assertion

assumption is then simply the assumption that there is a unique precise strategy s ∈ PS

for which the assertion s(v) will provide the speaking agent with the maximal payoff given

the state of the world v ∈ V. In this context an agent’s uncertainty takes two main forms:

• Epistemic Uncertainty: This is uncertainty about what is the true state of the world.

For a propositional model, epistemic uncertainty results from insufficient knowledge

or evidence to determine which are the true propositional variables i.e. to identify

the true valuation.



• Strategic Uncertainty: This is uncertainty about what is the optimal assertion strat-

egy. We can think of this as resulting from a lack of knowledge about the exact

nature of the communication game being played. For example, a speaker agent may

be uncertain about the payoff functions and/or strategies of the listening agents.

Now as mentioned above the unique assertion assumption requires that there is a single

optimal precise strategy s ∈ PS, however, in the light of strategic uncertainty agents

may only have sufficient evidence to support certain combinations of imprecise strategies.

Hence, we initially propose an integrated model of both types of uncertainty in the form

of a probability distribution w on V × S
4. This approach will then be extended so

as to incorporate imprecisely defined valuations in section 6. Taking such a probability

distribution as representing an agent’s knowledge then this naturally generates a measure

µ : SL → [0, 1], where µ(θ) quantifies the agent’s belief that the sentence θ is true.

Definition 6. Given a probability distribution w on V× S then ∀θ ∈ SL;

µ(θ) =
∑

v:v(θ)=1

w(v) where w(v) =
∑

s∈S

w(v, s)

As given in definition 6, µ is a probability measure defined on SL and hence satisfies

the following properties (see Paris [22] for an exposition):

• If |= θ then µ(θ) = 1.

• If θ ≡ ϕ then µ(θ) = µ(ϕ).

• If |= ¬(θ ∧ ϕ) then µ(θ ∨ ϕ) = µ(θ) + µ(ϕ).

In contrast, the agent’s beliefs concerning what is the optimal assertion to make, as in-

ferred from distribution w, are most naturally quantified by Dempster-Shafer belief and

plausibility measures as follows:

Definition 7. A DS model of Assertion

Given a probability distribution w on V × S, let m : 2AL → [0, 1] be a mass function on

2AL such that:

∀A ⊆ AL m(A) =
∑

(v,s):s(v)=A

w(v, s)

Let the corresponding belief and plausibility measures be denoted by Bel and Pl respectively.

In this case, for B ⊆ AL, Bel(B) and Pl(B) respectively quantify the agent’s belief and

plausibility that the optimal assertion is contained in B.

4In the sequel we will abuse notation and use the same symbol to present both a probability distribution
and the probability measure which it induces.



Notice that in keeping with the random set interpretation of DS theory we can view that

pair (v, s) as defining a random set s(v) into AL. Also, the unique assertion assumption

allows us to view AL as a set of exclusive and exhaustive elements as required in DS theory,

since according to this assumption there is a single optimal assertion and by definition it

must be in AL.5

The following theorem explores the relationship between the Dempster-Shafer belief

and plausibility measures quantifying the agent’s uncertainty about what is the optimal

sentence to assert and the probability measure µ quantifying the agent’s uncertainty about

what sentences are true.

Theorem 8. Given a probability distribution w on V× S, then for A ⊆ AL;

Bel(A) ≥ µ(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ) and Pl(A) ≤ µ(
∨

θ∈A

θ)

Furthermore, if
∑

v w(v, s0) = 1 then;

Bel(A) = µ(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ) and Pl(A) = µ(
∨

θ∈A

θ)

Proof. Consider the marginal distribution on V given by:

w(v) =
∑

s∈S

w(v, s)

By definition 6 we have that, ∀θ ∈ AL;

µ(θ) =
∑

v∈V

w(v)

Now for any A ⊆ AL;

Bel(A) =
∑

B⊆A

m(B) =
∑

s

∑

v:s(v)⊆A

w(v, s) ≥
∑

s

∑

v:AL(v)⊆A

w(v, s)

=
∑

v:AL(v)⊆A

∑

s

w(v, s) =
∑

v:AL(v)⊆A

w(v) = w({v : v(
∨

θ∈A

θ) = 1, v(
∨

θ∈AL−A

θ) = 0})

= w({v : v(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ) = 1}) = µ(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ)

Also,

Pl(A) =
∑

B∩A 6=∅

m(B) =
∑

s

∑

v:s(v)∩A 6=∅

w(v, s) ≤
∑

s

∑

v:AL(v)∩A 6=∅

w(v, s)

=
∑

v:AL(v)∩A 6=∅

∑

s

w(v, s) =
∑

v:AL(v)∩A 6=∅

w(v) = w({v : ∃θ ∈ A, v(θ) = 1})

= w({v : v(
∨

θ∈A

θ) = 1}) = µ(
∨

θ∈A

θ)

5Note that this exclusivity in no way requires the elements of AL to be logically exclusive. Instead, it
only means that exactly one of them is the correct assertion to make.



In the case that
∑

v w(v, s0) = 1 then if w(w, s) > 0 it follows that s(v) = AL(v). Hence,
∑

s

∑

v:s(v)⊆A

w(v, s) =
∑

s

∑

v:AL(v)⊆A

w(v, s) and

∑

s

∑

v:s(v)∩A 6=∅

w(v, s) =
∑

s

∑

v:AL(v)∩A 6=∅

w(v, s)

as required.

Example 9. Let P = {p1, p2, p3} and let AL = {p1, p2,¬p1,¬p2, p1 ∧ p2, p1 ∧ ¬p2,¬p1 ∧

p2,¬p1 ∧¬p2}. Suppose a politician needs to identify an assertion to make to a particular

audience. The proposition p3 indicates whether or not the audience is generally receptive

to the politicians views. p1 and p2 are distinct positive statements forecasting the state of

the economy in five years time. Now consider the following strategies:

• s1: s1(v) = AL(v) − {θ : ∃ϕ ∈ AL(v), ϕ |= θ, ϕ 6≡ θ}.

• s2: s2(v) = AL(v) − {ϕ : ∃θ ∈ AL(v), ϕ |= θ, ϕ 6≡ θ}

Intuitively then s1 is the strategy of picking the most specific statements, whilst s2 is the

strategy of picking the most general statements. Also notice that s1 is a precise strategy

whilst s2 is an imprecise strategy. Suppose that the politician’s knowledge is as given by a

probability distribution w on V× S as summarised in the following table.

valuation p1 p2 p3 strategy w

v1 1 1 1 s1 0.25

v2 1 0 1 s1 0.15

v3 0 1 1 s1 0.05

v4 0 0 1 s2 0.05

v5 1 1 0 s1 0.25

v6 1 0 0 s2 0.15

v7 0 1 0 s2 0.05

v8 0 0 0 s2 0.05

Now

AL(v1) = AL(v5) = {p1, p2, p1 ∧ p2}

AL(v2) = AL(v6) = {p1,¬p2, p1 ∧ ¬p2}

AL(v3) = AL(v7) = {¬p1, p2,¬p1 ∧ p2}

AL(v4) = AL(v8) = {¬p1,¬p2,¬p1 ∧ ¬p2}

Hence,

s1(v1) = {p1 ∧ p2}, s1(v2) = {p1 ∧ ¬p2}, s1(v3) = {¬p1 ∧ p2}

s2(v4) = {¬p1,¬p2}, s1(v5) = {p1 ∧ p2}, s2(v6) = {p1,¬p2}

s2(v7) = {¬p1, p2}, s2(v8) = {¬p1,¬p2}



From this we have the following mass function:

m := {p1 ∧ p2} : 0.5, {p1 ∧ ¬p2} : 0.15, {¬p1 ∧ p2} : 0.05,

{¬p1,¬p2} : 0.1, {p1,¬p2} : 0.15, {¬p1, p2} : 0.05

Now consider A = {p1,¬p2, p1 ∧ ¬p2}.

Bel({p1,¬p2, p1 ∧ ¬p2}) = m({p1,¬p2}) +m({p1 ∧ ¬p2})

= 0.15 + 0.15 = 0.3

and

Pl({p1,¬p2, p1 ∧ ¬p2}) = m({p1,¬p2}) +m({p1 ∧ ¬p2}) +m({¬p1,¬p2})

= 0.15 + 0.15 + 0.1 = 0.4

Also,

∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ

= (p1 ∨ ¬p2 ∨ (p1 ∧ ¬p2)) ∧ (¬p2 ∧ ¬(¬p1) ∧ ¬(p1 ∧ p2) ∧ ¬(¬p1 ∧ p2) ∧ ¬(¬p1 ∧ ¬p2))

≡ (p1 ∧ ¬p2)

Hence,

µ(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ) = µ(p1 ∧ ¬p2) = w({v : v(p1 ∧ ¬p2) = 1})

= w(v2) + w(v6) = 0.15 + 0.15 = 0.3

In addition,

∨

θ∈A

θ = p1 ∨ ¬p2 ∨ (p1 ∧ ¬p2) ≡ p1 ∨ ¬p2

Hence,

µ(
∨

θ∈A

θ) = µ(p1 ∨ ¬p2) = 1− w(v3)− w(v7) = 1− 0.05− 0.05 = 0.9

The above DS model of assertion requires us to determine a joint probability distribu-

tion on V× S. This is potentially problematic since even for a moderately sized language

the cardinality of this space is too large for us to feasibly determine probability values

for all (but one of) its elements. Underlying this difficulty is the fact that |V| = 2n i.e.

that the number of valuations of L is exponential in the number of propositional variables.

Furthermore, although we might expect the number of strategies under consideration to

be much small than 2n, this may also increase with the language size. In order to partly



circumvent this problem we might consider adopting any one of a number of techniques

which have been proposed in the literature for determining a probability distribution on

valuations when given only incomplete information about the probability of certain sen-

tences of L i.e. when given a set of constraints on µ. For example, Paris [22] provides a

detailed analysis of different possible selection algorithms in the case that the constraints

on µ are linear. As Paris [22] points out such algorithms initially require us to check if the

given set of constraints are consistent. This is referred to as probabilistic satisfiability and

is NP hard in general, although Hansen et al. [12] overviews a number of linear program-

ming based algorithms which can be applied in practice. Alternatively, we might assume

that the propositional variables are independent of each other and then construct the dis-

tribution on V by taking products of µ(pi) or µ(¬pi) for i = 1, . . . , n. Such methods can

allow us to determine the distribution on V, but it still remains to construct the full joint

distribution on V × S. Rewriting w(v, s) as w(v)w(s|v) we might expect the conditional

distribution w(v|s) to take a relatively simple form. In particular, for a given valuation v

it is perhaps reasonable to assume that w(s|v) > 0 only for a small number of strategies

s. In other words, for a particular state of the world only a relatively small number of

assertion strategies would be considered relevant. If this assumption were to hold then it

would simplify the elicitation of the conditional distribution w(s|v), which when combined

with w(v) would then allow us to estimate the joint distribution w(v, s) as above.

4.1 Assertion Probabilities

In the particular case that the agent’s knowledge allows her to formulate precise strategies

for all possible states of the world then any resulting uncertainty takes the form of a

probability distribution on AL. More formally, suppose that w on V × S is such that,

w(v, s) > 0 implies that s ∈ PS(v), then the resulting mass function as given in definition

7 only allocates non-zero mass to singleton subsets of AL. Consequently, in this case

Bel = Pl corresponding to a probability measure on 2AL with an associated probability

distribution on AL given by:

∀θ ∈ AL, Pm(θ) =
∑

v

∑

s:s(v)={θ}

w(v, s)

An alternative scenario in which a probability distribution on assertions is naturally gen-

erated from a more general w on V × S is when the agent also has an underlying prior

probability distribution on AL. Given such a prior then the additional knowledge w can

be use to generate a posterior distribution as given in the following definition.

Definition 10. Posterior Probability on Assertions

Let w be a probability distribution on V × S and let P be a prior probability distribution



on AL. Then ∀θ ∈ AL let;

Pm(θ) = P (θ)
∑

B⊆AL:θ∈B

m(B)

P (B)
=

∑

v∈V

∑

s∈S

P (θ|s(v))w(v, s)

For example, suppose that AL = LL corresponding to the literals of L then an agent

might have a degree of prior preference for positive (i.e. non-negated) statements over

negative statements but is otherwise a priori indifferent. This can be formalised by a prior

where P (pi) = α
n

and P (¬pi) = 1−α
n

for i = 1, . . . , n (where α ∈ [0, 1]). Now suppose

the agent gains additional knowledge about the state of the world but has no information

about the optimal assertion strategy. This then takes the form of a distribution w for which
∑

v w(v, s0) = 1 and the posterior distribution given in definition 10 has the following form:

∀pi ∈ P;

Pm(pi) = α
∑

A⊆P:pi∈A

m(A ∪ {¬pi : pi ∈ Ac})

α|A|+ (1− α)(n − |A|)
and

Pm(¬pi) = (1− α)
∑

A⊆P:pi 6∈A

m(A ∪ {¬pi : pi ∈ Ac})

α|A|+ (1− α)(n − |A|)

In the case that α = 1
2 then we have the following expression: ∀l ∈ LL, Pm(l) = µ(l)

n
.

Simplified models of this kind have been applied in language game studies [7], [8] and also

in computing with words [13].

Notice that definition 10 is a special case of definition 2 in which a posterior probability

distribution on the universe of discourse is determined from an underlying prior together

with evidence in the form of a mass function.

In the current context, one natural interpretation of the posterior distribution given

in definition 10 is that the agent is using the prior in order to specify precise strategies as

restrictions of the imprecise strategies allocated non-zero probability by w. More formally,

for s, s′ ∈ S, we say that s′ is a restriction of s, denoted s′ ≤ s if ∀v ∈ V, s′(v) ⊆ s(v). Then

the following theorem shows that we can view definition 10 in terms of a process in which

given w, the agent determines a new distribution w′ on V × S, in which the probability

w(v, s) is re-distributed to w′(v, s′), where s′ ≤ s and s′ ∈ PS(v). Furthermore, this

redistribution is done in such a way so as to be proportionate to the prior P on AL.

Notice that the mass function generated by w′ as in definition 7 is restricted to singleton

sets and hence naturally determines a probability distribution on assertions as described

above. This distribution is equal to that given by definition 10 for the same prior.

Theorem 11. Given w on V × S and a prior P on AL, let w′ on V × S be defined as

follows: If s ∈ PS(v) then let w′(v, s) = w(v, s). Otherwise ∀θ ∈ s(v) and ∀s′ ≤ s such

that s′(v) = {θ} let

w′(s′, v) =
P (θ|s(v))w(s, v)

|{s′ ≤ s : s′(v) = {θ}}|



In this case:

Pm′(θ) = Pm(θ)

where m and m′ are the mass functions on AL generated by w and w′ respectively.

Proof.

∀θ ∈ AL, Pm′(θ) =
∑

v∈V

∑

s∈S

P (θ|s(v))w′(v, s)

=
∑

v∈V

∑

s∈PS(v)

P (θ|s(v))w(v, s) +
∑

v∈V

∑

s∈S−PS(v)

∑

s′≤s:s′(v)={θ}

P (θ|s(v))

|{s′ ≤ s : s′(v) = {θ}}|
w(v, s)

=
∑

v∈V

∑

s∈PS(v)

P (θ|s(v))w(v, s)

+
∑

v∈V

∑

s∈S−PS(v)

P (θ|s(v))w(v, s)
∑

s′≤s:s′(v)={θ}

1

|{s′ ≤ s : s′(v) = {θ}}|

=
∑

v∈V

∑

s∈PS(v)

P (θ|s(v))w(v, s) +
∑

v∈V

∑

s∈S−PS(v)

P (θ|s(v))w(v, s)

=
∑

v∈V

∑

s∈S

P (θ|s(v))w(v, s) = Pm(θ)

Example 12. Consider the language and mass function given in example 9. Now further

suppose that a prior P is defined on AL such that:

P (p1) = P (p2) = 0.2, P (¬p1) = P (¬p2) = 0.06, P (p1 ∧ p2) = 0.25,

P (p1 ∧ ¬p2) = 0.1, P (¬p1 ∧ p2) = 0.1, P (¬p1 ∧ ¬p2) = 0.03

Applying definition 10 to condition on the mass function m derived in example 9, we

obtain a posterior distribution Pm as follows: Trivially, we have;

Pm(p1 ∧ p2) = 0.5, Pm(p1 ∧ ¬p2) = 0.15, Pm(¬p1 ∧ p2) = 0.05, Pm(¬p1 ∧ ¬p2) = 0

In addition,

Pm(¬p1) = P (¬p1)
∑

B:¬p1∈B

m(B)

P (B)
= P (¬p1)

(

m({¬p1,¬p2})

P ({¬p1,¬p2})
+

m({¬p1, p2})

P ({¬p1, p2})

)

= 0.06

(

0.1

0.06 + 0.06
+

0.05

0.2 + 0.06

)

= 0.0615385

Similarly, we also obtain;

Pm(¬p2) = 0.0846154, Pm(p1) = 0.1153846, Pm(p2) = 0.0384615



It is perhaps appropriate at this juncture to consider the epistemic status of prior

distributions defined on the set of possible assertions. If we adopt the unique assertion

assumption that in any context there is a single optimal assertion to make, then from

a Bayesian perspective we can use a prior probability distribution in order to represent

knowledge which the speaker might have about what this assertion should be, before

she obtains any evidence about strategies or the current state of the world. Such prior

knowledge could be derived from general experience of socio-linguistic conventions, and

take the form of rules-of-thumb for deciding what to say in the absence of any specific

contextual information. For example, as above the speaker may believe a priori that it

tends to be better to make positive rather than negative assertions. This belief might be

captured as a parametrised prior giving higher weight to positive than negative literals,

but which is otherwise uniform, or as in example 12, it might discriminate more precisely

between different combinations of positive and negative statements. As is usually the case

in the Bayesian approach, such probability distributions are simply a formalism for en-

coding prior knowledge or preferences. Furthermore, in DS theory as well as in imprecise

probability theory more broadly, the validity of a precisely defined prior distribution is

questioned, especially with regard to its failure to distinguish adequately between igno-

rance and uncertainty. However, while we would tend to accept this view, from a practical

perspective the use of priors in assertion modelling can provide a convenient mechanism

by which to encode speaker preferences between different types of assertions. In addition,

posterior distributions as in definition 10 also give us an effective decision making criterion

for when a single assertion needs to be selected.

5 Vagueness and Assertion

In this section we explore how imprecise assertion strategies can be applied in order to

choose between different vague statements or descriptions. Here we associate vagueness

with semantic uncertainty [16], which is taken as referring to uncertainty about the correct

interpretation of certain defining predicates. For example, suppose that the predicate short

is interpreted as an interval of heights [0, ǫ] for some threshold value ǫ > 0. In this simple

case, semantic uncertainty would take the form of uncertainty about what is the correct

value of ǫ. From this perspective we might consider treating ǫ as a random variable with

an associated density function f , where the latter represents the agent’s knowledge about

how short should be correctly interpreted. This naturally results in a probabilistic version

of membership function in which the membership of a height h in short corresponds to

the probability that ǫ ≥ h. That is:

µshort(h) = P (ǫ ≥ h) =

∫ ∞

h

f(ǫ)dǫ



A more general formulation of this idea was given in Lawry and Tang [15] and is based

on a prototype theory representation for the extension of a vague predicate. Consider

the unary predicates Qi : i = 1, . . . , n with extensions corresponding to regions of an

underlying space Ω as follows: Let d : Ω2 → R
+ be a pseudo-distance metric on Ω, and

let ai ∈ Ω be the prototype for Qi. Then, according to [15], for any element x ∈ Ω,

Qi(x) holds if and only if d(x, ai) ≤ ǫi where ǫi is a boundary threshold for Qi. Semantic

uncertainty can then be represented by a joint probability density f on the threshold

random variables ~ǫ = (ǫ1, . . . , ǫn). Now given x1, . . . , xn ∈ Ω let pi denote the proposition

Qi(xi) for i = 1, . . . , n, then any given allocation ~ǫ of threshold values determines a

valuation on the corresponding propositional language as follows:

v~ǫ(pi) =

{

1 : d(xi, ai) ≤ ǫi

0 : otherwise
for i = 1, . . . , n

Given a joint density f on ~ǫ then this naturally generates a probability distribution w on

V according to:

∀v ∈ V, w(v) = P (~ǫ : v~ǫ = v) =

∫

~ǫ:v~ǫ=v

f(~ǫ)dǫ

If an agent also has sufficient knowledge about the optimal assertion strategy for these

propositions so as to determine a probability distribution on the joint space V × S with

the above distribution as a marginal, then the Dempster-Shafer model outlined in section

4 can be applied. The following example shows how our model could potentially be used

and gives a simple illustration of what an assertion strategy might look like in this context.

Example 13. Consider the predicate short with extension [0, ǫ] where ǫ is a random

variable into R
+ and where ǫ is distributed according to a triangular distribution with

density function f given by:

f =























0 : ǫ < 150
1

400ǫ−
3
8 : 150 ≤ ǫ < 170

19
40 − 1

400ǫ : 170 ≤ ǫ < 190

0 : ǫ ≥ 190

The membership function µshort : R+ → [0, 1] is then defined such that, for a given

h ≥ 0, µshort(h) corresponds to the probability that h ∈ [0, ǫ] i.e. the probability that

short(h) is true. For this example, we have that:

µshort(h) = P (ǫ ≥ h) =

∫ ∞

h

f(ǫ)dǫ =























1 : h < 150

− 1
800h

2 + 3
8h− 217

8 : 150 ≤ h < 170
1

800h
2 − 19

40h+ 361
8 : 170 ≤ h < 190

0 : h ≥ 190



Now for the sequence of heights (in cm) h1 = 155, h2 = 165, h3 = 175 and h4 = 185,

let the proposition pi denote ‘a person with height hi is short’, i.e. pi = short(hi), for

i = 1, . . . , 4 (see figure 13). In this case there are five possible valuations as given in table

1. The associated probability distribution w on V, also shown in table 1, is determined as

follows: All of the possible valuations have the property that if v(pj) = 1 then v(pi) = 1

for all i ≤ j. Hence,

w(v) = P (ǫ ∈ [hj , hj+1)) = µshort(hj)− µshort(hj+1) where j = max{i : v(pi) = 1}

Assuming that AL = LL = {p1, p2, p3, p4,¬p1,¬p2,¬p3,¬p4}, we now consider two sce-

narios regarding an agent’s knowledge about the optimal assertion strategy. In one case

we assume the agent is completely ignorant about what strategy to apply and hence always

applies the vacuous strategy s0. In the second case we assume that the agent adopts the

strategy s defined by:

s(v) = {pj ,¬pj+1} where j = max{i : v(pi) = 1}

The intuition behind this strategy is that pj and ¬pj+1 are the most informative positive

and negative assertions respectively. This is because if pj is asserted then the listener(s)

can infer that pi holds for all i ≤ j and similarly if ¬pj+1 is asserted then they can infer

that ¬pi holds for all i ≥ j + 1. Let w1 and w2 be probability distributions on V × S both

with marginal distribution w on V as defined above, but where for w1 strategy s0 is always

applied and for w2 strategy s is always applied. That is:

∀v ∈ V, w1(v, s0) = w2(v, s) = w(v)

These two probability distributions generate mass functions m1 and m2 given by:

m1 := {p1, p2, p3, p4} : 0.03125, {p1, p2, p3,¬p4} : 0.25, {p1, p2,¬p3,¬p4} : 0.4375,

{p1,¬p2,¬p3,¬p4} : 0.25, {¬p1,¬p2,¬p3,¬p4} : 0.03125

and

m2 := {p4} : 0.03125, {p3,¬p4} : 0.25, {p2,¬p3} : 0.4375

{p1,¬p2} : 0.25, {¬p1} : 0.03125

Now suppose that the agent has a uniform prior probability distribution on AL then we

can determine posterior distributions according to definition 10 as given in table 2. Notice

that for Pm1
the assertions with maximal probability are p1 and ¬p4 which refer to the

heights h1 and h4 with maximum membership values in short and ¬short respectively. In

contrast Pm2
gives maximum probability to p2 and ¬p3 which refer to heights h2 and h3

these being the closest to the borderline between short and ¬short6.

6Here we think of borderline cases of short and ¬short as being those heights h for which µshort(h) ≈
µ¬short(h), 170cm being the typical case.
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Figure 1: Plot showing the four heights h1, . . . , h4 together with the membership functions
for short and ¬short.

p1 p2 p3 p4 w(v) s0(v) = AL(v) s(v)

v1 1 1 1 1 µshort(h4) = 0.03125 {p1, p2, p3, p4} {p4}

v2 1 1 1 0 µshort(h3)− µshort(h4) = 0.25 {p1, p2, p3,¬p4} {p3,¬p4}
v3 1 1 0 0 µshort(h2)− µshort(h3) = 0.4375 {p1, p2,¬p3,¬p4} {p2,¬p3}
v4 1 0 0 0 µshort(h1)− µshort(h2) = 0.25 {p1,¬p2,¬p3,¬p4} {p1,¬p2}
v5 0 0 0 0 1− µshort(h1) = 0.03125 {¬p1,¬p2,¬p3,¬p4} {¬p1}

Table 1: Table showing the possible valuations generated by the membership function for
the predicate short.

The probabilistic treatment of semantic uncertainty outlined in this section assumes

an epistemic approach to vagueness. This brings us close to Williamson’s epistemic theory

of vagueness [29] according to which any vague predicate has an objectively correct but

uncertain boundary between it and its negation. However, we would argue the notion of

semantic uncertainty requires only a somewhat weaker assumption about the epistemic

nature of vagueness. In particular, it is sufficient to assume that agents, when faced with

decision problems about assertions, find it useful as part of decision making strategy to

simply assume that there is a correct crisp interpretation of the underlying predicates. In

other words, when deciding what can be asserted agents behave as if the epistemic theory

is correct. In earlier work we have referred to this strategic assumption across a population

of agents as the epistemic stance [14]. In the next section we will consider an extension of

the epistemic stance in which the underlying truth model is supervaluationist [9] rather



p1 p2 p3 p4 ¬p1 ¬p2 ¬p3 ¬p4

Pm1
0.24219 0.17969 0.07031 0.00781 0.00781 0.07031 0.17969 0.24219

Pm2
0.125 0.21875 0.125 0.03125 0.03125 0.125 0.21875 0.125

Table 2: Table giving the posterior distributions on AL generated by m1 and m2 assuming
a uniform prior.

than classical.

6 Imprecise Valuations

In the previous sections, whilst we have allowed for imprecise strategies resulting from

incomplete knowledge of the underlying communication game, we have assumed that the

possible states of the world in the form of valuations on L are precisely defined. We now

weaken this assumption by allowing for imprecise valuations defined as subsets Π of V.

Imprecise valuations of this form can be completely characterised by associated upper

valuations defined by: v : SL → {0, 1} such that ∀θ ∈ SL;

v(θ) = max{v(θ) : v ∈ Π}

In fact, v is a boolean possibility measure on SL [6]. We can also naturally define the

following dual lower valuation corresponding to a Boolean necessity measure.

v(θ) = 1− v(¬θ) = min{v(θ) : v ∈ Π}

Let IV be the set of all imprecise valuations of L. We can then define a knowledge state

as a probability distribution w on IV× S where strategies in S are extended from precise

to imprecise valuations as follows: For s ∈ S, and Π ∈ IV;

s(Π) =
⋃

v∈Π

s(v)

Also, we define the maximal assertion set of Π as;

AL(Π) = s0(Π) =
⋃

v∈Π

AL(v)

Now a probability distribution on IV × S naturally generates lower and upper measures

µ : SL → [0, 1] and µ : SL → [0, 1] as follows:

Definition 14. Given a probability distribution w on IV× S then ∀θ ∈ SL;

µ(θ) =
∑

Π:v(θ)=1

∑

s

w(Π, s) and µ(θ) =
∑

Π:v(θ)=1

∑

s

w(Π, s)



Here µ(θ) and µ(θ) quantify the agents subjective belief that θ is necessarily true

and possibly true respectively. Given this definition then in fact µ and µ correspond to

Dempster-Shafer belief and plausibility measures on the sentences of L, and consequently

satisfy the following properties: ∀θ, ϕ, θ1, . . . , θm ∈ SL (see [22] for an exposition);

• If |= θ then µ(θ) = µ(θ) = 1

• If θ ≡ ϕ then µ(θ) = µ(ϕ) and µ(θ) = µ(ϕ).

• µ(θ) = 1− µ(¬θ).

• µ(
∨m

i=1 θi) ≥
∑

∅6=S⊆{1,...,m}(−1)|S|−1µ(
∧

i∈S θi) and

µ(
∧m

i=1 θi) ≤
∑

∅6=S⊆{1,...,m}(−1)|S|−1µ(
∨

i∈S θi)

On the other hand the agent’s beliefs about what is the optimal assertion are now quanti-

fied by belief and plausibility measures Bel and Pl as characterised by the following mass

function:

Definition 15. Given a probability distribution w on IV×S then ∀θ ∈ SL, let m : 2AL →

[0, 1] be such that:

∀A ⊆ AL, m(A) =
∑

s

∑

Π:s(Π)=A

w(Π, s)

The following theorem explores the relationship between the lower and upper measures

µ and µ on SL quantifying the agents beliefs about which sentences are true and Bel and

Pl measuring her beliefs about which is the optimal assertion to make.

Theorem 16. Given a probability distribution w on IV × S then for A ⊆ AL;

Bel(A) ≥ µ(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ) and Pl(A) ≤ µ(
∨

θ∈A

θ)

Furthermore, if
∑

Π w(Π, s0) = 1 then;

Bel(A) = µ(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ) and Pl(A) = µ(
∨

θ∈A

θ)

Proof. Consider the marginal distribution on IV given by;

w(Π) =
∑

s

w(Π, s)

From this we have that;

µ(θ) =
∑

Π:v(θ)=1

w(Π) and µ(θ) =
∑

Π:v(θ)=1

w(Π)



Now,

Bel(A) =
∑

B⊆A

m(B) =
∑

s

∑

Π:s(Π)⊆A

w(Π, s) ≥
∑

s

∑

Π:AL(Π)⊆A

w(Π, s)

=
∑

Π:AL(Π)⊆A

∑

s

w(Π, s) =
∑

Π:AL(Π)⊆A

w(Π)

Now it holds that:

AL(Π) ⊆ A ⇔
⋃

v∈Π

AL(v) ⊆ A ⇔ ∀v ∈ Π, AL(v) ⊆ A

⇔ ∀v ∈ Π, v(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ) = 1 ⇔ v(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ) = 1

Hence,

∑

Π:AL(Π)⊆A

w(Π) = w({Π : v(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ) = 1}) = µ(
∨

θ∈A

θ ∧
∧

θ∈AL−A

¬θ)

Also,

Pl(A) =
∑

B∩A 6=∅

m(B) =
∑

s

∑

Π:s(Π)∩A 6=∅

w(Π, s) ≤
∑

s

∑

Π:AL(Π)∩A 6=∅

w(Π, s)

=
∑

Π:AL(Π)∩A 6=∅

∑

s

w(Π, s) =
∑

Π:AL(Π)∩A 6=∅

w(Π)

Now

AL(Π) ∩A 6= ∅ ⇔ ∃θ ∈ A, ∃v ∈ Π, v(θ) = 1 ⇔ ∃v ∈ Π, v(
∨

θ∈A

θ) = 1 ⇔ v(
∨

θ∈A

θ) = 1

Hence,

∑

Π:AL(Π)∩A 6=∅

w(Π) = w({Π : v(
∨

θ∈A

θ) = 1}) = µ(
∨

θ∈A

θ)

Furthermore, in the case that
∑

Πw(Π, s0) = 1 we have that:

∑

s

∑

Π:s(Π)⊆A

w(Π, s) =
∑

s

∑

Π:AL(Π)⊆A

w(Π, s) and

∑

s

∑

Π:s(Π)∩A 6=∅

w(Π, s) =
∑

s

∑

Π:AL(Π)∩A 6=∅

w(Π, s)

as required.

In the following example we show how the combination of imprecise valuations with

imprecise assertion strategies can be relevant to the problem of choosing between different

vague assertions. In particular, we now outline an extension of the model of vagueness



proposed in section 5 so as to incorporate imprecision as well as semantic uncertainty.

Recall the unary predicates Qi : i = 1, . . . , n defined as regions of a space Ω, and with

prototypes ai ∈ Ω for i = 1, . . . , n. Now instead of a single boundary threshold ǫi for

each Qi it is supposed that there are lower and upper thresholds 0 < ǫi ≤ ǫi in each

case. Since any tuple of precise boundary values ~ǫ naturally generates a precise valuation

v~ǫ as defined in section 5, then a tuple of lower and upper bounds ~ρ = (ǫ1, ǫ1, . . . , ǫn, ǫn)

naturally generates an imprecise valuation of the form:

Π~ρ = {v~ǫ : ǫi ≤ ǫi ≤ ǫi, i = 1, . . . , n}

The associate lower and upper valuations v~ρ and v~ρ then satisfy the following properties:

v~ρ(pi) =

{

1 : d(xi, ai) ≤ ǫi

0 : otherwise
and v~ρ(pi) =

{

1 : d(xi, ai) ≤ ǫi

0 : otherwise
for i = 1, . . . , n

This approach to modelling vagueness is a form of supervaluationism as proposed by Fine

[9]. From this perspective the imprecise valuation Π~ρ identifies a set of admissible precise

(classical) valuations or precisifications. In other words, the inherent vagueness of the

language means that there are a number of valid precise interpretations which can be

appropriately applied. The formulation of supervaluationism for propositional languages

in terms of lower and upper valuations is described in detail in [16].

Now suppose that in addition to imprecise valuations there is also semantic uncertainty.

In the current context this might take the form of uncertainty about the lower and upper

threshold values. For instance, treating the lower and upper thresholds as random variables

and given a joint probability density function f on ~ρ we can naturally generate a probability

distribution on IV given by:

w(Π) = P (~ρ : Π~ρ = Π) =

∫

~ρ:Π~ρ=Π
f(~ρ)dρ

Furthermore, if fi is the corresponding marginal distribution on (ǫi, ǫi) then we can deter-

mine lower and upper membership functions for the predicate Qi according to:

µ
Qi
(x) = P (ǫi ≥ d(x, ai)) =

∫ ∞

d(x,ai)

∫ ∞

ǫi

fi(ǫi, ǫi)dǫidǫi and

µQi
(x) = P (ǫi ≥ d(x, ai)) =

∫ ∞

d(x,Pi)

∫ ǫi

0
fi(ǫi, ǫi)dǫidǫi

Example 17. Suppose that the predicate short is imprecisely defined in terms of lower

and upper thresholds ǫ ≤ ǫ on heights, so that any extension of short contained in {[0, ǫ] :

ǫ ≤ ǫ ≤ ǫ} is admissible. Furthermore, suppose that there is uncertainty about the exact

values of ǫ and ǫ, and that the agent’s beliefs about these thresholds is represented by a

joint probability density function f on (ǫ, ǫ) satisfying:
∫ ∞

0

∫ ∞

ǫ

f(ǫ, ǫ) dǫ dǫ = 1



Π w(Π) s(Π)

Π1 = {v5, v4, v3} (1− µ
s
(h1))(1− µs(h3)) = 0.015625 {p1, p2,¬p1,¬p2,¬p3}

Π2 = {v5, v4, v3, v2} (1− µ
s
(h1))(µs(h3)− µs(h4)) = 0.09375 {p1, p2, p3,¬p1,¬p2,¬p3,¬p4}

Π3 = {v5, v4, v3, v2, v1} (1− µ
s
(h1))µs(h4) = 0.015625 {p1, p2, p3, p4,¬p1,¬p2,¬p3,¬p4}

Π4 = {v4, v3} (µ
s
(h1)− µ

s
(h2))(1− µ(h3)) = 0.09375 {p1, p2,¬p2,¬p3}

Π5 = {v4, v3, v2} (µ
s
(h1)− µ

s
(h2))(µs(h3)− µs(h4)) = 0.5625 {p1, p2, p3,¬p2,¬p3,¬p4}

Π6 = {v4, v3, v2, v1} (µ
s
(h1)− µ

s
(h2))µs(h4) = 0.09375 {p1, p2, p3, p4,¬p2,¬p3,¬p4}

Π7 = {v3} µ
s
(h2)(1− µs(h3)) = 0.015625 {p2,¬p3}

Π8 = {v3, v2} µ
s
(h2)(µs(h3)− µs(h4)) = 0.09375 {p2, p3,¬p3,¬p4}

Π9 = {v3, v2, v1} µ
s
(h2)µs(h4) = 0.015625 {p2, p3, p4,¬p3,¬p4}

Table 3: Table showing the possible imprecise valuations generated by the lower and upper
membership functions for the predicate short.

Based on f we can naturally define lower and upper membership functions of short so that

for any height h (see figure 2);

µ
short

(h) = P (ǫ ≥ h) =

∫ ∞

h

∫ ∞

ǫ

f(ǫ, ǫ) dǫ dǫ and

µshort(h) = P (ǫ ≥ h) =

∫ ∞

h

∫ ǫ

0
f(ǫ, ǫ) dǫ dǫ

Now suppose that in this case the agent believes that ǫ and ǫ are independent variables

both with triangular distributions centered around 160cm and 180cm respectively. More

specifically; f(ǫ, ǫ) = f1(ǫ)× f2(ǫ) where

f1(ǫ) =











ǫ−150
100 : ǫ ∈ [150, 160)

160−ǫ
100 : ǫ ∈ [160, 170]

0 : otherwise

and f2(ǫ) =











ǫ−170
100 : ǫ ∈ [170, 180)

190−ǫ
100 : ǫ ∈ [180, 190]

0 : otherwise

Now consider the propositions p1, . . . , p4 generated by the four heights h1, . . . , h4 as

described in example 9. Each extension [0, ǫ] in the set of admissible extensions of short,

{[0, ǫ] : ǫ ≤ ǫ ≤ ǫ}, identifies one of the valuations v1, . . . , v5 given in table 1. Hence,

an imprecise definition of short based on lower and upper thresholds naturally identifies

a set of these valuations i.e. an imprecise valuation. Table 3 shows all the imprecise

valuations generated in this manner together with their associated probability. Also shown

is the output from applying the strategy s, as defined in example 9, in each case.

The practical difficulties of determining a joint distribution on V × S, as discussed in

section 4, also apply to joint distributions on IV × S. Interestingly, there is a parallel

solution in which the distribution on IV is evaluated by assuming independence between

propositional variables. As shown in Aguirre et al. [1] such an independence assumption

means that the full distribution on IV can be determined from only µ(pi) and µ(pi) for

i = 1, . . . , n.
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Figure 2: Plot showing the four heights h1, . . . , h4 together with the lower and upper
membership functions for short.

6.1 Assertions in the MEL Meta-language

An alternative approach to the problem of assertion given imprecise valuations, is to

introduce a meta-language in which agents can explicitly make either strong or weak

assertions as appropriate. For example, given an individual with a certain very low height

h, an agent might choose to make a strong assertion describing them as perhaps definitely

short or absolutely short. If, on the other hand, h is a borderline case of predicate short

then the agent might instead choose weaker assertions such as possibly short or shortish

etc. In this sub-section we use a simple meta-language called MEL [3]. The MEL language

includes two modal operators ♦ and � so that for any propositional sentence θ ∈ SL, ♦θ

and �θ denote weak and strong versions of the assertion θ respectively. More formally,

MEL is defined as follows:

A MEL (Meta-epistemic logic) language [3] for reasoning about incomplete knowledge

is defined as a meta-language of L, denoted ML, as follows. We consider a set of meta-

level propositions of the form MP = {�θ,♦θ : θ ∈ SL}. The sentences of ML, denoted

SML, are then defined recursively as follows:

• MP ⊆ SML.

• If Θ,Φ ∈ SML then ¬Θ, Θ ∧ Φ, Θ ∨ Φ ∈ SML.



Definition 18. Valuations on ML (Meta-valuations)

Given an imprecise valuation Π ∈ IV on L we define a meta-level valuation v∗ : SML →

{0, 1} as follows:

• For θ ∈ SL, v∗(�θ) = v(θ) and v∗(♦θ) = v(θ)

• For Θ,Φ ∈ SML, v∗(¬Θ) = 1− v∗(Θ), v∗(Θ ∧ Φ) = min(v∗(Θ), v∗(Φ)) and

v∗(Θ ∨ Φ) = max(v∗(Θ), v∗(Φ))

Let MV denote the set of meta-valuations on ML.

We now identify a finite set of possible meta-assertions denoted AML ⊆ SML.

Definition 19. Meta-level strategies

A meta-level strategy is a function s∗ : MV → 2AML − {∅}, such that s∗(v) ⊆ AML(v∗)

where AML(v∗) = {Θ ∈ AML : v∗(Θ) = 1}. Let MS denote the set of meta-level

strategies.

Now definition 7 can be adapted in a straightforward manner so as to generate a mass

function on 2AML given a probability distribution on MV×MS. In addition, given such a

mass function on possible meta-level assertions together with a prior distribution on AML

then a straightforward adaptation of definition 10 will allow us to determine a posterior

distribution on assertions.

Example 20. Consider the imprecise definition of short described in example 17, and let L

have the propositional variables P = {p1, . . . , p4} as given in examples 13 and 17. Let ML

be the corresponding MEL language and take AML = {�l,♦l : l ∈ LL}. Furthermore, let

s∗ be the meta-strategy given by:

s∗(v∗) = {♦pj,�pr,♦¬pk,�¬ps} where j = max{i : v∗(♦pi) = 1},

r = max{i : v∗(�pi) = 1}, k = min{i : v∗(♦¬pi) = 1} and s = min{i : v∗(�¬pi) = 1}

The motivation behind this meta-strategy is to be as informative as possible both with

respect to weak and strong assertions. Now given the imprecise valuations Π1, . . . ,Π9

shown in table 3 we let v∗i be the corresponding meta-valuation defined by Πi for i =

1, . . . , 9. Assuming the same semantic uncertainty about the definition of short as in

example 17 we take w(v∗i ) = w(Πi) for i = 1, . . . , n as given in table 3. We also assume that

the agent is certain about the meta-strategy s∗ as defined above so that w(v∗i , s
∗) = w(v∗i )

for i = 1, . . . , n. Table 4 shows the meta-valuations v∗i : i = 1, . . . , 9 together with the

associated maximal assertion sets and the value of s∗(v∗i ). Hence, given w on MV ×MS



Π w(v∗) AML(v∗) s∗(v∗)

Π1 0.015625 {♦p1,♦p2,♦¬p1,♦¬p2,�¬p3,♦¬p3,�¬p4,♦¬p4} {♦p2,♦¬p1,�¬p3}

Π2 0.09375 {♦p1,♦p2,♦p3,♦¬p1,♦¬p2,♦¬p3,�¬p4,♦¬p4} {♦p3,♦¬p1,�¬p4}

Π3 0.015625 {♦p1,♦p2,♦p3,♦p4,♦¬p1,♦¬p2,♦¬p3,♦¬p4} {♦p4,♦¬p1}

Π4 0.09375 {�p1♦p1,♦p2,♦¬p2,�¬p3,♦¬p3,�¬p4,♦¬p4} {♦p2,�p1,♦¬p2,�¬p3}

Π5 0.5625 {�p1,♦p1,♦p3,♦¬p2,♦¬p3,�¬p4,♦¬p4} {♦p3,�p1,♦¬p2,�¬p4}

Π6 0.09375 {�p1,♦p1,♦p2,♦p3,♦p4,♦¬p2,♦¬p3,♦¬p4} {♦p4,�p1,♦¬p2}

Π7 0.015625 {�p1,♦p1,�p2,♦p2,�¬p3,♦¬p3,�¬p4,♦¬p4} {♦p2,�p2,♦¬p3,�¬p3}

Π8 0.09375 {�p1,♦p1,�p2,♦p2,♦p3,♦¬p3,�¬p4,♦¬p4} {�p1,�p2,�¬p4}

Π9 0.015625 {�p1,♦p1,�p2,♦p2,♦p3,♦p4,♦¬p3,♦¬p4} {♦p4,�p2,♦¬p3}

Table 4: Table showing the possible meta-valuations generated by the lower and upper
membership functions for the predicate short.

as above we generate the following mass function:

m := {♦p2,♦¬p1,�¬p3} : 0.015625, {♦p3,♦¬p1,�¬p4} : 0.09375,

{♦p4,♦¬p1} : 0.015625, {♦p2,�p1,♦¬p2,�¬p3} : 0.09375,

{♦p3,�p1,♦¬p2,�¬p4} : 0.5625, {♦p4,�p1,♦¬p2} : 0.09375,

{♦p2,�p2,♦¬p3,�¬p3} : 0.015625, {♦p3 ,�p2,♦¬p3,�¬p4} : 0.09375,

{♦p4,�p2,♦¬p3} : 0.015625

Now suppose that we have a prior probability distribution on AML of the form:

∀l ∈ LL, P (♦l) =
α

2n
and P (�l) =

1− α

2n
for α ∈ [0, 1]

In this case the resulting posterior distribution generated from the above mass function

gives equal maximum probability to ♦p3 and ♦¬p2 if α ≥ 1
2 and to �p1 and �¬p4 if

α ≤ 1
2 .

7 Conclusions

In this paper we have proposed a Dempster-Shafer theory based model of assertion for

a propositional logic language. Fundamental to our approach is the idea of imprecise

assertion strategies which, for a given state of the world, identify a set of possibly optimal

assertions. An extended version of the theory then allows for imprecise valuations in

addition to imprecise strategies. Two natural extensions of this kind have been proposed;

one in which assertions are still taken to be propositional sentences and imprecise strategies

are simply extended to sets of valuations, and a second in which assertions have a weak

or stronger modifier associated with them and as such correspond to sentences from the

MEL meta-language.

As a theme throughout the paper, we have considered how the proposed assertion

model can be applied in order to choose between a number of different vague descriptions.



In the case of precise valuations this requires adopting an epistemic approach to vagueness

similar to that advocated by Williamson [29]. For imprecise valuations a hybrid approach

is required, combining epistemic uncertainty with an underlying supervaluationist truth

model. For both approaches we have presented simple examples which are suggestive

of how assertion models can be applied to vague propositions, and of what an assertion

strategy can look like in this context.

The proposed Dempster-Shafer assertion model is potentially well suited for AI systems

which need to generate high-level descriptions of the current state of the world. These

include some natural language generation systems and multi-agent communication systems

as described in the introduction. More generally, however, an agent’s assertions must be

seen as forming part of an ongoing dialogue in which context and previous assertions will

have a significant impact on the choice of what to say next. In this more general setting

an adaptive model is required in which, for example, some treatment of conditioning is

given for probabilities defined over a joint space of truth-models and assertion strategies.
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