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Abstract

In this paper we demonstrate techniques for increasing the node-level
parallelism of a deterministic discrete ordinates neutral particle trans-
port algorithm on a structured mesh to exploit many-core technologies.
Transport calculations form a large part of the computational workload of
physical simulations and so good performance is vital for the simulations
to complete in reasonable time. We will demonstrate our approach utiliz-
ing the SNAP mini-app, which gives a simplified implementation of the
full transport algorithm but remains similar enough to the real algorithm
to act as a useful proxy for research purposes.

We present an OpenCL implementation of our improved algorithm
which achieves a speedup of up to 2.5× on a many-core GPGPU device
compared to a state-of-the-art multi-core node for the transport sweep,
and up to 4× compared to the multi-core CPUs in the largest GPU en-
abled supercomputer; the first time this scale of speedup has been achieved
for algorithms of this class. We then discuss ways to express our scheme
in OpenMP 4.0 and demonstrate the performance on an Intel Knights
Corner Xeon Phi compared to the original scheme.
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1 Introduction

Deterministic discrete ordinates transport models the movement and interac-
tion of neutral particles through a mesh of media with varying properties. The
interactions consist of fission, absorption and scattering; as the particles move
within the material, they may collide with the material atoms and change di-
rection (elastic) and/or energy (inelastic). They may also be absorbed by an
atom which in turn may cause fission which results in the loss or gain of neutral
particles respectively. It is the net balance of neutral particles that is governed
by the Boltzmann transport equation [15].

Transport simulations consume 50–80% of time on the United States De-
partment of Energy High Performance Computing systems [13]. It is therefore
critical that transport codes perform well on both current and future architec-
tures. Recently it has been shown that transport codes should scale well at
large node counts [4, 12, 1]. However it is the on-node performance that will
govern the speed at which the data for communication to neighbor nodes is
made available. The current trend towards Exascale computing is to leverage
the increased rate of floating point operations, memory bandwidth and perfor-
mance per watt of many-core accelerator devices, such as GPUs or Intel’s Xeon
Phi.

Deterministic transport is a memory bandwidth bound problem with a com-
putational intensity of 26/(8× 15) = 0.22 floating point operations per byte of
data loaded in the sweep kernel [23]. Therefore the speed at which the data can
be loaded from memory will be the dominant factor of the computational solve.

We present a novel node-level implementation of a structured grid deter-
ministic transport mini-app, which leverages the parallelism in the algorithm
to enable better performance on many-core devices than previous approaches.
This knowledge is used to design an implementation of the SNAP mini-app
which can effectively exploit many-core technologies.

1.1 Contributions

The contributions of the work presented in this paper include:

1. We have developed techniques which express a higher degree of parallelism
in the discrete ordinate transport algorithm than the state-of-the-art.

2. We have developed an OpenCL implementation of the deterministic dis-
crete ordinates transport mini-app from Los Alamos National Laboratory:
SNAP.

3. We present results comparing our improved scheme versus the state-of-
the-art, exploiting OpenCL’s cross-platform capability to show data from
a diverse range of hardware. Our new scheme delivers a 44% performance
increase over the state of the art on the same hardware.
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4. We present an OpenMP 4.0 implementation of our improved scheme using
the target directives to offload computation to an Intel Knights Corner
Xeon Phi.

The rest of the paper is structured as follows. We begin with a short discus-
sion of related work in Section 2. We present an introduction to deterministic
transport and the SNAP mini-app in Section 3. In Section 4 we describe the
hardware inspired methodology behind our design and details of the OpenCL
implementation. The performance of our OpenCL implementation on a variety
of accelerator devices is detailed in Section 5 and our version utilizing OpenMP
4.0 is shown in Section 6. Section 7 concludes and discusses avenues for future
work.

2 Related Work

There has been some recent work on porting related wavefront applications to
GPGPUs [18, 21, 20], however this was based on the much simpler computa-
tional workload of the Lower-Upper Gauss-Seidel solver (LU) benchmark [3].
The LU benchmark does not have as many problem dimensions as deterministic
transport — only the three spatial dimensions are available for parallelization.
For both the LU benchmark and transport, O(N2) cells of an N3 grid can be
processed in parallel. The number of cells in the plane, or wavefront, increases
according to a sequence of triangle numbers in a cube shaped grid until a vertex
is reached. As such, if only spatial parallelism is employed, a many-core device
remains underutilized until the size of the wavefront saturates the device with
useful compute.

A direct port of the SNAP mini-app using the CUDA framework by P. Wang
et al. exists and uses a similar parallelization scheme to the original code [22]:
energy groups are batched together and each cell is allocated to a thread-block
with angles assigned to threads. Some device-specific tricks are employed to syn-
chronize between wavefronts without host interaction [24], however this limits
the number of concurrent cells to the number of thread-blocks on the device thus
limiting the concurrency. Testing of this implementation on an NVIDIA K40
GPU show that this port only achieves similar performance to our benchmark
CPU, even though the algorithm is memory bandwidth bound, and the GPU
has 1.6× the memory bandwidth as measured using the STREAM benchmark
on both.

The Denovo discrete ordinates transport code for reactor assembly calcula-
tions has been parallelized using CUDA [9]. Angles are mapped to threads, and
the energy groups are fully decoupled giving a thread count equal to the product
of angles and energy groups. Sub-blocks of cells are mapped to thread-blocks
and KBA-style sweeps with the required synchronization are used within blocks.
The paper states a speed up of 2× when compared to 8 of the 16 cores of their
test system CPU nodes (Titan). Only half of the cores were used due to the
lack of RAM on the host system for the size of MPI tasks used. The quoted
speedup is in reality approximately parity speedup when compared against a
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full node. By comparison, our implementation of the SNAP mini-app obtains
approximately 4× speedup on an NVIDIA K20 GPU compared to a full 16 core
node of Titan running the original SNAP mini-app (see Table 3 later for more
details).

The performance of a shared memory node has also been investigated [17].
Intel Thread Building Block (TBB) tasks were used to maintain a task depen-
dency graph of cells within a wavefront. Automatic compiler vectorization of
angles within the octant was also used. This approach shows good strong scal-
ing for within node performance, implying that intra-node spatial parallelism is
important to exploit in addition to the inter-node spatial decomposition.

3 SNAP: Sn Application Proxy

The Sn (Discrete Ordinates) Application Proxy (SNAP) [25] is a proxy appli-
cation from Los Alamos National Laboratory based on their code PARTISN.
The computation in the mini-app mimics the 3D deterministic Sn transport
equation. The transport equation (1) operates over seven dimensions: time,
three-dimensional space, two angular (Sn discretization) and groups of energy.
The net movement of neutral particles in a media of varying properties in these
dimensions is called the angular flux ψ. Reduction over the angular dimension
yields the scalar flux φ.

[
1

v

∂

∂t
+ Ω̂ · ~∇+ σ(~r,E)

]
ψ(~r, Ω̂, E, t) = (1a)

qex(~r, Ω̂, E, t) + (1b)∫
dE′

∫
dΩ′σs(~r,E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E′, t) + (1c)

χ(E)

∫
dE′vσ(~r,E′)

∫
dΩ′ψ(~r, Ω̂′, E′, t) (1d)

SNAP is designed to perform both time-dependent and time-independent
deterministic transport solves. For the purposes of this paper we consider a
time-dependent solution and therefore require storage of the angular flux which
imposes a significant memory requirement, a characteristic which may be an
issue for systems with discrete accelerators.

3.1 SNAP iteration structure

For every time-step we calculate the angular flux. Within the time-step loop,
there is a double nested iteration structure for the numerical solve known as
‘iteration on the scattering source’ [15].

Let ψl give the angular flux value for iteration l. The iteration relationship
is formed by replacing the angular flux ψ in (1a) by ψl+1, and in (1b), (1c) and
(1d) by ψl. The right-hand side is termed the scattering source and the left-hand
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for Time-steps do
for Outer iterations do

Update source: fission term
for Inner iterations do

Update source: external and scattering terms
Perform a sweep

. i.e. invert collision-streaming operator
Check inner convergence of ψ

end for
Check outer convergence ψ

end for
end for

Figure 1: Transport equation iteration overview

side the streaming-collision operator. This allows an update to the guess of the
angular flux in terms of previous results. An initial guess of the solution is taken,
ψ0 = 0. ψ1 can then be calculated by inverting the streaming-collision operator.
This inversion requires a sweep across the grid in all directions (originating at
the four corners of a square in 2D, 8 points of a cube in 3D). This update-
invert process, called inner iterations, repeats until the value of ψ converges.
During each inner iteration, only the external source (1b) and group-to-group
scattering (1c) terms are updated with the new value of the angular flux.

The converged value of ψ found from the inner iterations is then used as a
new initial guess which is more accurate than the original. At this stage the fis-
sion term (1d) in the scattering source is updated with the converged ψ from the
inners. Note that the scattering source depends on ψ for the fission and scatter-
ing terms. Convergence at this level is checked, forming outer iterations which
take into account all source terms. The whole procedure can be summarized by
the algorithm in Fig. 1.

During the calculation, nonphysical negative values of the angular flux may
occur due to the numerical scheme. It is important to correct these values in
a process called negative flux fix-up. This involves setting negative fluxes to
zero and recalculating the central flux value. The edge flux values are then
recalculated to check they do not turn negative as a result of the recalculated
central flux. This process is repeated until all the values are positive. This
procedure cannot be post processed due to the data dependency.

3.2 Data dependency of the sweep

The data dependency illustrated in Fig. 2 given by the finite difference spatial
discretization forms a wavefront (hyperplane) consisting of cells available to
compute given availability of the values already calculated. This is illustrated
in Fig. 3, where cells of the same color are in the same wavefront. If two cells
share a face they are neighbors. For a given cell, neighboring cells in the opposite
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Figure 2: Data dependency of the sweep algorithm
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Figure 3: Wavefront sweep across a 2D grid

direction to the sweep are called upwind neighbors. Neighboring cells which rely
on a given cell’s value are called downwind neighbors. A value in a cell can only
be calculated if all of its upwind neighbors have already been calculated.

Cells of equal co-ordinate sum are in the same wavefront. For example, the
cell (i, j, k) belongs to wavefront i + j + k = c. In a cube with sides of length
N , there are 3N − 2 wavefronts. In general the maximum number of cells in
the wavefront is the product of the two largest spatial dimensions. For the cube
with sides of length N wavefronts contain O(N2) cells with the upper bound
being obtained once. Note that this wavefront pattern gives rise to potential for
concurrency in the spatial dimensions of cells within a wavefront.

3.3 The original parallelization scheme

SNAP is written in Fortran 90/95 and parallelized with the OpenMP [8] and
MPI [10] APIs. A 2D decomposition of the 3D mesh according to the KBA
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Octant 2

Octant 1

Figure 4: Serial sweep of the grid in original code

scheme is used [14]. The modification of decoupling angles and energy groups is
employed so that angles within an octant are considered as a single vectorized
batch rather than overlapped in multiple sweeps of individual angles [5].

SNAP uses OpenMP threads to run in parallel over energy groups and
automatic compiler vectorization over angles within an octant (resulting in
SSE/AVX SIMD instructions depending on the target CPU architecture). The
energy groups are divided into bins and each OpenMP thread is allocated one
bin.

The spatial domain is split using MPI, but the sweeps within each MPI task
are conducted in serial, as shown in Fig. 4. Each sweep traverses the full grid
in an octant direction and computes the angular flux in every cell for all energy
groups for all angles within the octant. This is then repeated for each octant in
turn.

4 Concurrency For Many-core

We present a new way to express the maximum potential for parallelism in
the transport sweep algorithm. Our new approach exposes more exploitable
parallelism for many-core technologies.

Applications which exhibit a wavefront sweep across the grid naturally allow
for parallelization over the cells within the wavefront, as shown in Fig. 5. Note
that a wavefront must finish before the next wavefront can begin due to the data
dependency discussed in Section 3.2. This is an improvement on the original
code which exhibits a serial sweep, as in Fig. 4, without the use of nested
OpenMP threads for spatial concurrency. In testing we found that this nested
behavior performed poorly increasing the single sweep run time by about 50% on
a dual socket Xeon CPU; note that we spawn 16 threads in total (one per core)
to prevent over-subscription of threads to cores which reduces the performance

7



Octant 2

Octant 1

0

1

2

3

0123

Figure 5: Parallel sweep of the grid

further.
We build on this natural spatial parallelism for all wavefront algorithms by

using knowledge of the Sn transport algorithm itself. Additionally Sn trans-
port allows for parallelization of angles within an octant (in general this is true
in a structured grid, however this might change based on types of symmetric
boundary conditions) and of energy groups (at the cost of potentially increased
iteration counts [18]). Pipelining of the octants is also possible for certain bound-
ary conditions. For example, in the case of only vacuum boundaries, all eight
octants may be started simultaneously. We do not take this final pipelining into
account to allow for reflective boundary conditions in the future where it would
become unavailable.

The intuition behind our approach to improve upon the natural spatial par-
allelism with the details of deterministic transport is to leverage as many di-
mensions of parallelism as possible in order for the sweep to perform well on a
many-core device and to exploit coalesced memory reads and writes as much as
possible. The level of parallelism in specific transport problems may be reduced
due to angular dependency, or complex un-structured grids. It is important
that in this simple structured case of maximum potential concurrency that the
parallelism is fully exploited.

We therefore take a single angular flux calculation for a given cell (i, j, k),
angle a in octant o and energy group g, ψ(a, g, i, j, k, o) as our unit of work.
Here a cell consists of the angles in the octant organized in energy groups.

Note that the original SNAP threads over the energy groups. The coupling
of energy groups in the original code is flexible as the binning depends on the
available threads, and so energy groups can be considered fully decoupled.

At any given point in the wavefront sweep we have

Nangles in octant ×Nenergy (2)

8



units of work per cell. We also have at most

O

(
NxNyNz

max {Nx, Ny, Nz}

)
(3)

concurrent cells in each wavefront; the product of the smallest two dimensions.
We batch all of this work together for each wavefront plane for concurrent
execution on a many-core device. This means we launch work proportional to
the product of (2) and (3).

With this approach it is possible to provide enough work for a many-core
device even for the first wavefront consisting of a single cell. Take an example
problem with 50 energy groups and discrete ordinates set S32 which results in
136 angles per octant. This means we have 136 × 50 = 6, 800 units of work
per cell. The NVIDIA K40 GPU has 2, 880 processing elements (CUDA cores),
resulting in even the first cell/wavefront nearly saturating the compute device
with enough work. Cells within the wavefront are also included in the available
work, and so it is clear that as we progress across the grid the device is given
sufficient work to schedule for good performance. This is in contrast to the
previous approaches, which do not exploit all dimensions of available parallelism.

Another approach could be to construct a dependency graph where each
graph node is a cell. We specify a dependency for each cell on its upwind
neighbors. We use the same unit of work as above for concurrent work within
the cell. If a particular cell took longer to compute, due to negative flux fix-up for
example, the other cells within the wavefront could continue marching through
the grid without waiting for the expensive fix-up to occur. While this approach
might at first seem attractive, we discuss its drawbacks in Section 4.2.2.

In order to calculate the scalar flux from the angular flux we must perform a
reduction over all angles within each cell and energy group. The reductions are
only within a cell and energy group and so there are many independent reduc-
tions, rather than one large reduction over the whole grid to a single number
as is typical for other Boltzmann equations. Remember that the scalar flux is
defined in terms of three spatial and one energy group dimension, per time-step.
The reduction must occur for every inner as the result is required for the source
updates and convergence tests.

We use the OpenCL framework to implement a port of the SNAP mini-
app to test this parallelization scheme. OpenCL gives us the ability to express
all the elements in our scheme, including out-of-order execution models and
task dependency graphs for the task-based approach suggested. Additionally,
OpenCL allows for cross-platform testing of this approach for a variety of multi-
and many-core devices.

4.1 OpenCL

OpenCL [19] is a parallel programming framework for heterogeneous platforms.
The basic model consists of a host and one or more multi-/many-core devices
such as a GPU, CPU, FPGA, etc. The host CPU and device have separate
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memory regions and the location of data in this memory hierarchy must be
explicitly managed by the programmer.

The unit of work for compute, called work-items, are defined in a kernel.
The work-items are mapped onto the vector-lanes of the device architecture.
In general these lanes are called processing elements, and operate in lock-step
groups called compute units.

An N-Dimensional Range (NDRange) defines the problem size (number of
work-items) when the kernel is launched, and, if required, so too is the work-
group size — a work-group is a collection of work-items. Synchronization of
work-items is only possible within a work-group on the device and between
work-groups via the host at the end of kernels. In a CPU, each work-group
would be assigned to a core, and the work-items a vector lane within that core.
The kernel is enqueued on (offloaded to) the device as a whole and the OpenCL
runtime schedules the computation of work-groups onto compute units. The
host controls the compute offload and memory transfer via a command queue.

OpenCL therefore allows the programmer to prescribe a very fine grained
parallel programming notation of concurrent work. It is through OpenCL that
we can express the parallel workload to leverage performance from many-core
architectures for deterministic transport.

4.2 Implementation details

SNAP itself is written in Fortran 90/95, and our new OpenCL implementation
has been written in C. The iteration loops and reductions have also been ported
to C, along with the source update and initialization routines. This means that
the data can remain resident on the device for the full simulation, avoiding
expensive host to device data transfers in the innermost loops.

Initializing data in this way has the benefit that we can choose the data lay-
out to match the parallelization scheme and initialize the memory directly on the
device. It should be noted that the memory layout chosen differs from the origi-
nal Fortran, which defines the layout of the angular flux as angle/x/y/z/octant/energy
group; angles have unit stride, and energy groups have the largest stride. In our
new implementation we adopt the layout: angle/energy group/x/y/z/octant.
This results in angles having unit stride, and octants with the largest stride.
Our new layout means that we can achieve coalesced memory reads in our inner
most vector unit over angles/energy groups.

The OpenCL implementation is added into the original version of the code,
meaning both versions run in sequence, so that the results can be compared
element-wise to ensure both implementations obtain the same results. At present
the implementation is for a single device (one MPI task).

4.2.1 Octant sweep implementation

We assign each angular flux calculation for a given cell (the unit of work) to
a work-item. The kernel defines the number of work-items launched on the
device and we consider this in two-dimensions. The first describes the number
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of angle/energy group units in a single cell; the cross product of angles and
energy groups. The second describes the number of cells within the wavefront.
The mapping of cell index to wavefront number is computed in advance for one
sweep direction and offsets are calculated in the kernel to access the correct cell
index for the current sweep direction. We do not specify a work-group size for
this kernel.

4.2.2 Cell dependency graph version

A full dependency graph of cells was built using OpenCL events and an out-
of-order command queue. We define the kernel as all of the angular flux cal-
culations for a single cell. We specify a dependency on each cell/kernel to the
upwind cells, hence constructing a dependency graph in the OpenCL runtime.

We discovered that this DAG-like scheme resulted in lower performance, due
to less work being scheduled at a time (less than the full wavefront that would
be possible), coupled with an increase in the number of kernel enqueues and a
high number of OpenCL events for the run-time to track and manage (one event
per cell). If the performance of handling events and out-of-order queues in the
OpenCL runtime were improved, perhaps with the advent of drivers optimized
with HSA [11], then it would be possible to increase the available parallelism
to any cell with satisfied upwind dependency, rather than just those cells in a
wavefront. Until run-times have significantly improved to support these finer-
grained, asynchronous styles of parallelism, these approaches will not perform
as well as the simpler, batch parallel approach.

4.2.3 Reduction implementation

In the OpenCL implementation, the reduction is designed with angles within a
single cell and a single energy group assigned to work-items within one work-
group. The reduction of angles over octants is performed in serial by each
work-item summing the eight values and storing the value into local memory, a
special part of the OpenCL memory hierarchy designed for fast access by work-
items in the same work-group. This kernel is run as a post-processing step after
all the octant sweeps have completed, so the mapping of work-group number to
cell index is straightforward.

The reduction is then a commutative tree-based reduction within a work-
group in local memory [2]. Note that this requires the work-group to be a
power-of-two sized, and the number of angles in an octant may not be. We
therefore set the work-group size to the closest power to two greater than or
equal to the number of angles, and perform any extra angles in a serial reduction
step similar to the summation of the octants.

This reduction scheme performs poorly on a CPU as it does not vectorize,
so a simpler reduction was implemented for CPUs which does auto-vectorize.
We assign a work-item to each cell, each performing the reduction in serial.
Threads (work-groups) then have good data locality within their cache and have
a large stride between them to avoid cache-thrashing. The memory access of this
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reduction on the CPU will not be coalesced, and so vector gather instructions
will be issued. However it performs well enough for our focus on the sweep.

The reduction must occur every inner iteration as the resulting scalar flux
is used for both the inner and outer convergence tests and source updates. A
similar reduction is implemented for the scalar flux moments reduction array
present in SNAP. These two reductions are considered as a single unit in all
timing results.

The tree-based reduction scheme may be combined into the sweep kernel di-
rectly by ensuring the same work-group conditions, avoiding loading the (large)
angular flux twice.

5 OpenCL Results

Timing results for the OpenCL implementation of our improved version of SNAP
are presented for both the eight octant sweep and the scalar flux reduction
parts of our algorithm, across a range of devices. This performance is compared
against a baseline result from a high-end 32-core dual-socket CPU system. We
also show the memory bandwidth achieved by the sweep kernel. Memory band-
width is the preferred performance metric for this memory bandwidth bound
problem.

Additionally, a longer simulation is tested demonstrating the total time to
solution of the OpenCL implementation, which includes the source updates as
well as the sweep itself.

Note that there has been no manual performance tuning of the simulation for
the different architectures, i.e. exactly the same code is executed on all devices,
in order to evaluate the performance portability of the OpenCL implementation.
In particular, the default run-time decided local work-group size was used for the
sweep kernel. For the reduction we enforce a 1D power-of-two sized work-group
to ensure the reduction works correctly.

5.1 Experimental platforms

In order to test the effectiveness of this parallelization scheme it is necessary to
test on a wide variety of many-core devices. For the ones used in this test, see
Table 1. STREAM [16] benchmark runs on the CPUs were performed using an
appropriate array size for the device cache according to the benchmark rules,
and results for the GPUs were gained by using GPU-STREAM [6] The systems
the devices are installed within are detailed in Table 2. The chosen devices
represent the current state-of-the-art of available HPC accelerator devices.

5.2 Sweep performance

The performance of the sweep was tested independently of the iteration struc-
ture. The sweep routine typically dominates the runtime of transport solvers
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Table 1: Specifications of target devices used for testing

Platform RAM (GBytes) Memory B/W (GBytes/s) STREAM benchmark (GBytes/s) D.P. TFLOP/s

Intel Xeon E5-2670 ×2 64 52.2 × 2 = 104.4 76 0.33

Intel Xeon E5-2698 v3 ×2 128 68 × 2 = 136 118 1.18

AMD Opteron Processor 6274 32 51.2 32 0.14

Intel Xeon Phi Co-processor SE10P 8 320 137 1.07

NVIDIA Tesla K40 12.288 288 (ECC off) 194 (ECC on) 1.43

NVIDIA Tesla K20c 5.12 208 (ECC off) 152 (ECC on) 1.17

AMD FirePro S9150 16 320 (ECC off) 273 (ECC off) 2.53

Table 2: Benchmark system specifications

Test system 1 Test system 2 Test system 3

Device(s) None Xeon Phi NVIDIA and AMD GPUs

CPU Model Intel Xeon E5-2698 v3 (×2) Intel Xeon E5-2670 (×2) Intel Core i5-3550 (×1)

CPU Specs Haswell, 16 cores (×2), 2.3 GHz 8 cores (×2), 2.6 GHz 4 cores (×1), 3.3 GHz

Memory 128 GB 64 GB 16/32 GB

OS SUSE Linux Enterprise Server 11 Scientific Linux release 6.4 Ubuntu 14.04.1 LTS

Compiler/Driver Cray 8.4.1 Intel 15.0.2 / NVIDIA 331.75 GNU 4.8.2 / NVIDIA 49.12 and AMD 1573.4
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Table 3: Solve time for a single sweep and reductions

Code Device Time (s)

Original E5-2698 v3 0.37

E5-2670 0.50

Xeon Phi 0.68

Opteron 6274 1.24

P. Wang et al. K40 0.32

K20c 0.44

OpenCL K40 0.24

K20c 0.30

S9150 0.15

E5-2670 0.68

Xeon Phi 2.68

and so the performance of the solve is crucial. The following problem size was
used:

• Grid size: 16× 16× 16

• 50 energy groups

• S32: 136 angles per octant

• Expansion order of 2 in the scalar flux moments

This results in a memory requirement of 3.6 GBytes for both copies of the
angular flux. These parameters have been chosen to reflect typical problem
characteristics (per node), while fitting within the memories of all the devices
under test.

We time eight complete octant sweeps across the grid — one inner iteration
without the source update. Remember that the octants are computed in turn
and are not pipelined. Table 3 shows the sweep timing including the reduction
of the angular flux to the scalar flux and scalar flux moments.

Fig. 6 shows the speedup obtained for a single device across a variety of
architectures compared with the original code running on 2 × 16 core Haswell
CPUs in Test system 1 with 32 OpenMP threads (one per core). We were
not able to run the OpenCL version of the code on the CPUs for a comparison
because of the lack of the Intel OpenCL runtime on Test system 1. The NVIDIA
K40 device has approximately twice the memory bandwidth (and similar D.P.
FLOP/s) to the baseline CPUs in Test system 1, and achieves a speedup of
1.52×. The AMD FirePro S9150 has around 2.8× times the memory bandwidth
of the CPUs and a comparable speedup of 2.8× is obtained. To the best of our
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Figure 6: Speedup of Single sweep performance from the reference timing

knowledge, this is by far the largest speedup ever reported for SNAP or similar
transport codes, when comparing against a highly optimized host code running
on a leading edge multi-core system (32-cores of Haswell in this instance).

The sweep (excluding the reduction) in the OpenCL version on the E5-2670
CPUs runs around 15% slower than the original SNAP Fortran code. After
profiling the OpenCL code on the CPU, it became apparent that there was a
high cache miss rate, due to the data being in the wrong NUMA region. The
Intel OpenCL runtime is implemented with TBB and work-groups are scheduled
on sockets in a non-deterministic way meaning that data may be allocated in
the wrong NUMA region.

The lack of performance on the Xeon Phi (Knights Corner) with our version
is likely due to the runtime choosing poor work-group sizes and other OpenCL
support issues on this device; the original implementation performs much bet-
ter. The number of available threads in the original implementation is limited
to the number of energy groups in the problem, and so the original implemen-
tation does not use all of the 60 available threads. Many-core architectures
in general are increasing in the number of threads (specifically the maximum
number of parallel execution units) and an algorithmic limit such as this may
not be future-proof. The Xeon Phi appears to have a policy to generate around
1000 work-groups from the NDRange specified. This results in only a few work-
items per work-group for the first few wavefronts. For larger wavefronts the
numbers chosen by the run-time itself are not multiples of eight which is incon-
gruous with the hardware vector width of up to 512 bits. See Section 6.3 for an
implementation of the improved concurrency scheme in OpenMP 4.0.

5.2.1 Larger grid size

The grid size chosen for the results presented in Sec. 5.2 allows a wide range of
GPUs to be tested, however may be considered small in comparison to physi-
cally relevant problems. We are limited by the memory capacity of the GPUs,
however several devices in our collection have larger memory sizes. We therefore

15



Table 4: Single sweep and reduction timings for 243 grid

Code Device Time (s) Speedup

Original E5-2698 v3 1.25 1.0

E5-2670 1.60 -

P. Wang et al. K40 1.25 1.0

K20c 2.35 0.53

OpenCL S9150 0.46 2.72

also tried using a larger grid size of 24×24×24, with the same number of energy
groups and angles as above, for the devices in Table 1 that had enough enough
memory to meet the 12.1 GBytes required for this problem size.

The timings for the various implementations for this larger grid size can be
compared in Table 4. The AMD FirePro S9150 completed a single sweep and
scalar flux reduction in 0.46s. Test system 1 running the original Fortran code
completed the sweep in 1.25s. This leads to a speedup of 2.72x of device to
multi-core node.

The P. Wang et al. version utilizes the shared virtual memory address space
between device and host which is available in the version of CUDA on Test
system 3, and we were able to collect timings for this implementation. The
Xeon Phi does not have enough memory for this problem size. The NVIDIA
GPUs do not have enough memory for our memory-resident scheme in OpenCL;
using Shared Virtual Memory to mitigate this as done by P. Wang et al. was
not supported by the NVIDIA OpenCL driver.

A typical transport simulation could be set up with around O(105) cells per
node. The memory footprint can be calculated by multiplying the number of
cells by the number of angles (O(103)) and energy groups (O(10)). This results
in O(109) double precision values per node; a footprint of O(10) GBytes for each
copy of the angular flux (two copies are required). It is clear that for currently
available GPUs, the amount of on-board RAM is lacking for production scale
grid sizes, where it will not be possible to store both copies of the complete
angular flux on the device along with the other data required.

The negative flux fix-up code within the kernel means we have private mem-
ory intensive kernels resulting in large register usage. The occupancy of the
sweep kernel rises from 30% to 70% on the S9150 when the fix-up code is re-
moved, demonstrating that the fix-up code was indeed responsible for much of
the register pressure and resulting performance degradation. In the first inner
iteration for this problem size, the negative flux fix-up is never called in the
original code, and so the results remain the same even if we remove the fix-up
for this iteration. Doing so results in a 10ms reduction in the stated runtime.
Because this optimization does not work in the general case where fix-ups would
be required, we left fix-up enabled in the version of the code used in the rest of
this paper.
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Figure 7: Sustained percentage of STREAM memory bandwidth for a single
sweep and reduction

5.2.2 Memory bandwidth calculations

We can calculate the number of memory reads and writes of each sweep kernel
in order to estimate the sustained memory bandwidth achieved. In the sweep
operation there is reuse of data shared between work-items such as various
coefficients. We assume a perfect cache model where each byte of data needs
only to be read once per kernel.

We define the number of reads and writes in a kernel (which is a wavefront)
as

aNcells + b

where a is the number of reads and writes which depend on the cell index, b is
the number of reads and writes which are shared between cells in the wavefront,
and Ncells is the number of cells in the wavefront.

By counting data reads and writes in the kernel source code we observe
a = 61, 400 and b = 866, all to double precision (8 byte) data. By going
through the number of cells in each wavefront in each of the eight octant sweeps
we calculate the sweep operation reads and writes total ∼15 GBytes. We assume
this is the same value for the original Fortran implementation of SNAP. Using
the CodeXL profiler on the S9150 runs, we see 13.03 GBytes of data movement,
also taking into account cache effects.

The achieved sustained bandwidth b can be calculated by dividing the total
memory read/written by the total runtime. The percentage of achieved band-
width for the device as measured by the STREAM benchmark (with ECC on
as appropriate) β can be calculated as b/β × 100%. The sustained percentage
of STREAM bandwidth obtained for the sweeps (excluding the reduction time
in contrary to Table 3) for the various devices is shown in Fig. 7.

Our OpenCL implementation achieves a similar fraction of memory band-
width on the E5-2670 CPU to the original version of the code. The slight drop
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is likely to do with the same issues with NUMA cache misses as discussed above.
The GPUs demonstrate that we are leveraging a greater percentage of the

available memory bandwidth than the original implementation, and in particular
our scheme is performing considerably better than the P. Wang et al. scheme.
Both the original and CUDA versions implement the same parallelism scheme
and so we can conclude that the scheme presented in this paper leverages more of
the available memory bandwidth than the original scheme. We also observe that
our OpenCL implementation exhibits good performance portability, achieving
very similar fractions of STREAM memory bandwidth across multiple GPUs
from NVIDIA and AMD, and even a similar fraction on the CPU.

5.3 Performance of solve until convergence

In addition to looking at the performance of the sweep routine alone, we also
consider the total application performance where the other, simple, routines are
ported to the many-core device. This work does not include multi-node runs
which would introduce the overhead of MPI communications and so may not
be totally representative of a large scale simulation. This experiment will check
that offloading the sweep routine to the device in the context of the other parts
of the application is appropriate.

We take the above problem and run 14 time-steps, allowing up to five inner
iterations per outer iteration, and up to 100 outer iterations per time-step. This
allows us to see the performance of converging multiple timesteps while requir-
ing the simulation to complete in reasonable time. The inner and outer source
updates and recalculation of the denominator term and cross section expansion
are performed directly on the OpenCL device allowing the data to remain resi-
dent on the device throughout the run as far as possible. The convergence test
is completed by copying the scalar flux from the device to the host and checking
convergence in serial on the host. This is to remove the need for an additional
reduction on the device. The size of the data copied is approximately 1.5 MB
for this problem size and the timing of both the copy and the convergence test
is insignificant to the runtime. Table 5 shows the timings for this experiment.

The inner convergence test in the original SNAP code compares convergence
of the scalar flux for batches of energy groups. The next inner iteration runs for
the un-converged groups, and due to a reduced workload results in a faster time.
Removing energy groups in this manner would not be possible if convergence
of the angular flux was required. Note too that removing energy groups from
the pool of available work will reduce the potential concurrency. The total work
load for the OpenCL implementation remains constant for every inner iteration:
all energy groups, all angles, all cells. As the convergence test is on the reduced
scalar flux, the angular flux will not have converged to within the same tolerance
and so the value for the angular flux will differ as some energy groups will be
further converged than others, however the scalar flux will remain converged. If
the original code is updated to always perform an inner iteration for all energy
groups, as would be necessary on most many-core devices, our implementation
achieves speedups to solution consistent with those for a single sweep.
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Table 5: Solve time for 14 time-steps

Code Device Time (s) Speedup

Original E5-2698 v3 60.0 1.0

E5-2670 87.5 -

Xeon Phi 159.0 -

P. Wang et al. K40 65.1 0.92

K20c 89.1 0.67

OpenCL K40 57.5 1.04

K20c 56.8 1.06

S9150 37.5 1.60

E5-2670 155.38 -

Xeon Phi 645.23 -

Table 6: Solve time for 14 time-steps calculating all energy groups for every
inner iteration

Code Device Time (s) Speedup

Original E5-2698 v3 91.3 1.0

OpenCL K40 57.5 1.59

(same timings K20c 56.8 1.61

as Table 5) S9150 37.5 2.43
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6 An OpenMP 4.0 Approach

As shown in Section 5, we observe that the OpenCL implementation does not
perform well on the Xeon Phi. The approach however exposes more parallelism
than the original implementation and so should be able to utilize all the cores
in the device. The original scheme only allows for one thread per energy group
— this yields tens of threads for a device which is designed to perform well
with hundreds. Whilst the original scheme did use nested OpenMP threads to
increase the thread count, this did not produce any improvement in performance
in testing. We now present an OpenMP 4.0 implementation that mimics our
concurrency scheme as implemented in OpenCL, and show the performance on
a Knights Corner Xeon Phi co-processor.

6.1 OpenMP

OpenMP [8] is a parallel programming API which follows the fork-join model.
The body of work inside a loop is executed once for every iteration of the
loop. The iterations, if independent, can be distributed across multiple threads
in a shared memory system. The shared memory allows data to be accessed
by all the threads and so no explicit communication is required between them.
OpenMP describes a way through the use of #pragma compiler directives for the
programmer to state that threads should be spawned and that the work inside
the loop construct be spread over many threads. This concept is also extended
to define independent tasks which can be allocated to available threads. It is
usual to assign a thread to a single core.

OpenMP 4.0 extends this model to facilitate offloading work to an attached
compute device. The work to be offloaded to the device is annotated with the
target directive. The code written inside this body is then run on the device
and the host waits until control is returned to it at the end of the target region.
The usual work-sharing constructs are applied to loops within the target region
to split the work across the computational units of the device.

Memory management is by default handled automatically by the implemen-
tation according to the memory model: the device inherits all the memory just
as cores in a ‘regular’ CPU share memory. Clauses to the target directive can
help reduce the number of data transfers by specifying whether the device access
in the region is read-only, write-only or read-write.

6.2 Implementation variations

OpenMP 4.0 is used to implement our improved concurrency scheme as de-
scribed in Section 4. However given the differences in the OpenMP 4.0 and
OpenCL programming models, in particular differences in the host side con-
trol of the device, some implementation choices are available in expressing the
parallelism in this API.

Note that we minimize the movement of memory between device and host
by using a target data directive to initialize the device data environment so
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that the data remains resident on the device for the duration of the simulation
and is not automatically copied (mapped) back to the host at the end of each
target region. This is much the same as our OpenCL implementation whereby
buffers are created and initialized on the device and are explicitly copied back
only as required.

The locations of the target regions are critical to the performance of the
OpenMP implementation of our concurrent scheme, as we will show in Sec-
tion 6.3. The natural approach is to replace the OpenCL kernel enqueues with
loops, and place the OpenMP directive #pragma omp target parallel for

as appropriate, mirroring our OpenCL structure, to offload the routine to the
device and share the work of the loop in the same manner.

This approach results in the runtime implicitly performing a currently un-
avoidable host-device synchronization at the end of each of the parallel regions.
Whilst no memory is copied, this synchronization does not occur in the OpenCL
version as kernel enqueues are a non-blocking operation. OpenMP 4.0 does al-
low the target regions to be launched as tasks, and in the forthcoming OpenMP
4.5 specification target regions can be made tasks implicitly via clauses.

It is possible to place the equivalent of all the OpenCL ‘kernel’ code within
one OpenMP 4.0 target region, resulting in a target region outside the time-
step loop. This approach is similar to running in ‘native mode’ on the Xeon
Phi, where the device is run without a host. Note however that it will not
be possible to call MPI, for example, from within a target region, a severe
limitation for real transport codes which run across many nodes to achieve the
required performance.

A compromise between the two approaches (many target regions vs. one
target region) is possible. Where a kernel is called multiple times via a loop
construct, a target region can be placed before this loop, reducing the number
of target regions, and consequently also reducing synchronization points. The
work-sharing directive is left until the kernel loop itself, meaning that the device
is still required to perform some single thread serial control flow code. In our im-
plementation, by placing the target region outside the octant loop, all the sweep
kernels can be enqueued without host interaction. The data dependency of the
plane ordering is maintained due to the device-side synchronization guaranteed
by the OpenMP 4.0 specification and the end of parallel regions. Because this
approach uses multiple target regions, it is still possible to use it in combination
with MPI for multi-node implementations.

Note that in a multi-node implementation, the code within a target region
will not be able to make calls to the inter-node communication library such
as MPI; this is reserved for the host to perform much in the same was as in
OpenCL.

In the future, large systems constructed from many Xeon Phis operating in
a self-hosted manner; i.e. there will be no controlling CPU with the Xeon Phi
attached as a co-processor. Therefore the OpenMP 4.0 offload programming
model using target regions will not be the method of programming these devices
and the code will need to be developed as a native application similar to the
approach taken by our ‘single target’ implementation.
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6.3 Results

We implement all three approaches discussed in the previous section in OpenMP
4.0 targeting a Xeon Phi: many target regions, one target region, and reduced
target regions. We compare their performance to the original implementation
of SNAP, and to our OpenCL version, in Figure 8. The reduction timings are
highlighted on the bars separately for the OpenCL and OpenMP 4.0 versions as
this part of the code runs after the sweeps, as discussed in Section 4. Because
of the concurrency scheme implemented in the original version of SNAP, the
reduction can be performed as part of the sweep routine and so timings are
shown for the combined sweep and reduction in this case. It is instructive
however to separate the sweep and scalar flux reductions in this manner for
the OpenMP and OpenCL implementations. We observe that the reduction
timings are consistent across the different OpenMP 4.0 implementations and
the performance difference between the three OpenMP 4.0 versions is solely
attributable to changes to the target regions surrounding the sweep routine.

All of the OpenMP 4.0 variations perform better than our OpenCL im-
plementation on the Xeon Phi, even though they all use the same parallelism
improved scheme. We previously explained that much of this difference is at-
tributed to the sub-optimal, NUMA oblivious, TBB-based implementation of
the OpenCL run-time on the Xeon Phi.

The bar labelled ‘multi-target’ shows the large penalty for synchronizing
with the host after every kernel call. We can improve this by moving all the
code into a singe target region (labelled ‘single target’) however this approach
will not be performance portable when OpenMP 4.x compilers targeting GPUs
are released due to the requirement to execute control code on the device. The
compromise discussed above is shown as ‘target per sweep’ where there is a
single target for the sweep, but synchronization occurs between the host and
device before the reduction and the other offloaded routines, such as source
updates. Note that the fastest sweep time occurs when there is only a single
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Figure 9: Achieved memory bandwidth of the sweep on Knights Corner Xeon
Phi

target region, but limiting the target regions to just a few cases, one per inner
for the sweep rather than one per plane, still provides close to best performance
while maintaining the host-device relationship in the offload model.

The KNC-based Xeon Phi in our experiments has 60 compute cores (plus
one to run the hosted operating system) and each is equipped to handle four
hardware threads. This gives us a total of 240 available hardware threads. The
original implementation only allows for one thread per energy group, resulting
in tens of threads. Both our OpenCL and OpenMP 4.0 implementations utilize
all 240 threads available without the need to resort to nested parallelism and
the associated overheads.

As the transport sweep is memory bandwidth bound, the achieved memory
bandwidth of an implementation demonstrates the effective use of the hardware
by the implementation. As shown in Fig. 9 where we have taken the ‘target per
sweep’ version as our OpenMP 4.0 implementation, the percentage of achievable
bandwidth is higher with our concurrency scheme. Again note that the concur-
rency is the same in the OpenCL and OpenMP 4.0 implementations and so the
performance difference must lie in the implementation of the different APIs.

From these results we conclude that our new approach to concurrency, as
detailed in Section 4, does indeed enable the use of many-core devices to increase
the performance of the transport sweep over the original concurrency scheme.

6.3.1 Performance portability of our approach

A native OpenMP implementation which uses the same parallelism scheme
whereby the compiler pragmas are simply parallel for instead of target

teams distribute can be simply generated. The use of collapse clauses en-
ables the same concurrency to be expressed.
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The single sweep and reduction time on the E5-2698 Haswell CPU for this
native approach with the new implementation is 1.2 seconds. This is much
slower than the original implementation which achieves 0.37 seconds. The con-
currency scheme presented here however has memory access patterns that are
no longer be stride one. Additionally, the data layout puts energy groups close
together, and so for wavefront planes with small numbers of cells the threads
are going to be updating elements of the angular flux array which reside close
in memory, which will cause an element of cache thrashing.

A performance portable implementation of the transport sweep is therefore a
major challenge as difference architectures require different loop and data order-
ings, and different concurrency schemes. The original scheme is optimized well
for CPU architectures, and more parallelism is required for running on GPUs.
However we can see that the way this parallelism is found is not appropriate for
cache based CPU architectures.

7 Conclusion

Deterministic transport is a memory bandwidth bound problem, and whilst
many-core devices can offer increased memory bandwidth, they require highly
parallel workloads to be effective. Through unlocking more of the parallelism
inherent in Sn transport it has been possible to achieve fast sweeps on many-
core devices. Indeed we have achieved up to 2.5× speedup when compared to
a state-of-the-art multi-core node for the 163 problem size, and around 2.8× on
a 243 problem. This speedup is in line with the increase in memory bandwidth
of the device and is significantly better than previous results reported in the
literature.

Our approach is also shown to be sound for the Xeon Phi style many-core
architecture as demonstrated by the OpenMP 4.0 implementation of our scheme.

If SNAP is a good proxy application of a production code such as PARTISN,
then the authors believe that it would be straightforward to integrate the par-
allelization scheme presented here into the production code. The main concern
would be using the presented memory layout throughout the production code to
avoid wasteful memory transposes.

Our new implementation harnessed both the natural spatial parallelism of
cells within a wavefront, as well as within cell parallelism in the transport equa-
tion. Taking advantage of the potential to parallelize over energy groups as well
as angles within an octant was important in increasing the amount of available
work to saturate the available processing elements on the device.

7.1 Future work

We intend to investigate schemes to leverage the heterogeneous memory hierar-
chy of nodes with O(100) GBytes of host DRAM, coupled with O(10) GBytes of
high bandwidth device memory, to enable real-world problem sizes to be solved
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much more quickly than has previously been possible. This approach is prefer-
able to using a many more nodes of a much smaller memory size, just to be able
to store the working data set.

We have also investigated spatial domain decomposition schemes via MPI [7].
We showed that our on-node implementation is performant at scale using exist-
ing MPI schedules.
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