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Abstract 

We report a theoretical investigation of the CH4 + Cl hydrogen abstraction reaction in the framework 

of empirical valence bond (EVB) theory. The main purpose of this study is to benchmark the EVB 

method against previous experimental and theoretical work. Analytical potential energy surfaces for 

the reaction have been developed on which quasi-classical trajectory calculations were carried out. 

The surfaces agree well with ab initio calculations at stationary points along the reaction path and 

dynamically relevant regions outside the reaction path. The analysis of dynamical data obtained using 

the EVB method, such as vibrational, rotational and angular distribution functions, shows that this 

method compares well to both experimental measurements and higher-level theoretical calculations, 

with the additional benefit of low computational cost. 

Introduction 

Theoretical and computational investigation of the mechanisms of chemical reactions is a rapidly 

evolving field that now spans a range of scales from elementary reactions of small molecules to 

biological catalysis. Since the classic work of Eyring and Polanyi,1-3 enormous progress has been made; 

the present day witnesses a rapid expansion in the chemical systems accessible to quantitative study, 

and considerable sophistication of the theoretical methods applied to the field of reaction dynamics.4-

5 One prerequisite of any meaningful dynamical study is an accurate knowledge of the forces acting in 

the reactive system, which still presents a considerable challenge even for elementary reactions. In 

most cases, this task amounts to constructing a potential energy surface (PES) of sufficient quality for 

accurate simulation of atomic motions.  

An ideal PES for dynamical calculations describes correctly the forces experienced in all of the atomic 

degrees of freedom.  Developing such a global PES requires many reliable electronic structure 

calculations, and high-level ab initio electronic structure theory methods are usually preferred. In 

practice, it is often prohibitively computationally expensive to obtain a global PES, save for systems 
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consisting of only a few atoms, using the current high level ab initio methods. Another crucial aspect 

of constructing PESs that are continuous functions of all atomic coordinates is that of the accurate 

representation and interpolation of the discrete ab initio energies obtained from electronic structure 

calculations. A popular approach is to fit the ab initio energies with a suitably chosen set of analytical 

functions.6-7  This method works best if only a few atoms are included in the system.  

Permutationally invariant polynomial fitting, developed by Bowman and co-workers,6, 8-10 takes into 

account the chemical identity of the atoms involved in the reaction, hence reducing the computational 

effort of fitting ab initio energy points. This method, coupled with state-of-the-art electronic structure 

energies, has been successfully applied to many reactions involving systems with 3 to 8 atoms.11-12 

This approach, however, requires many ab initio points, usually on the order of 10,000 to 50,000 

depending on the size of the system.   

Another popular approach to fit potential energy surfaces is to invoke accurate interpolation schemes 

without using fitted energy functions. The reproducing kernel Hilbert Space (RKHS) interpolation 

operates on a set of tabulated ab initio points. The computational demand usually scales with 10n, 

where n is the number of dimension, hence it is a practically feasible method for systems of 3-4 

atoms.13-14 The modified Shephard interpolation15-16  approximates the energy of a required geometry 

by a weighted combination of Taylor expansions from the vicinity of that point. The number of ab 

initio point required by this interpolation method scales better than the RKHS method with the size of 

the system. 

As the number of atoms increases, new methodologies can combat unfavourable scaling. It is 

sometimes feasible to divide the system into smaller subsystems, as in the fragment molecular orbital 

and systematic molecular fragmentation scheme of Collins et al.17-18 High level ab initio methods 

describe interactions within the subsystems while simpler functions determine forces between them.  

When the size of the system exceeds about ten atoms, constructing a fully ab initio global PES becomes 

practically impossible; each single-point calculation takes additional time, and each new degree of 
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freedom makes for larger geometry searches. Simulating larger systems, as in condensed-phase 

biochemistry studies, instead typically uses molecular mechanics force fields. These force fields are 

usually incapable of describing the forming and breaking of chemical bonds. To address this limitation, 

Warshel developed the empirical valence bond (EVB) method in which the PES regions corresponding 

to the reactants and product are approximated by molecular mechanics force fields, and the change 

in energy associated with the variation of connectivity is accounted for using coupling elements.19-20 

The EVB method was originally used to explain experimental observations in protein reactions, but 

was later extended to smaller reactive systems. A closely related method, the multiconfiguration 

molecular mechanics approach combines the EVB formalism with sophisticated interpolation 

algorithms.21 

Our current effort applies the EVB formalism to the reaction between methane and a chlorine atom, 

which has been extensively studied experimentally and theoretically using some of the techniques 

described above.22-24  This attention in part reflects the importance of the Cl + CH4 reaction in the 

chemistry of the Earth's atmosphere, but it also serves as a benchmark system for the dynamics of 

reactions of polyatomic molecules.  Since the measurement of the first state-resolved differential 

cross sections,25 which quantify product flux as a function of scattering angle, further experiments 

have explored the effects of collision energy on reaction cross sections and product scattering.26 

Reactive scattering dynamics have proven to be sensitive to the translation and internal excitation of 

the methane. The outcome of the reaction can be controlled by vibrational excitation of specific bonds 

or vibrational modes;27-29 for example, excitation of the symmetric stretch-bend combination 

promotes the reaction twenty times more efficiently than exciting the antisymmetric stretch-bend 

combination.30 However, Liu and coworkers showed that excitation of the CH stretch in the CD3H 

molecule facilitated the reaction to a lesser extent than increasing the collision energy by a 

corresponding amount.31 This observation is contrary to the predictions of the Polanyi rules. Czakó 

and Bowman showed that van der Waals forces between the two colliding fragments, which are 

absent in the Polanyi rules framework, account for this surprising result.32  The alignment of the 



4 
 

methane molecular framework can also drastically influence the product angular distribution and 

polarization.28, 33 

Despite its relatively small size, the explicit treatment of all twelve internal degrees of freedom of the 

PES on which the CH4 + Cl reaction occurs presents considerable challenges for both constructing the 

PES and running dynamical calculations. Reduced-dimensionality approaches have proved successful: 

three- and four-dimensional models were employed by Nyman and co-workers34-36 in which the 

reactive C—H—Cl coordinate (described by a London-Eyring-Polanyi-Sato (LEPS) potential), the 

umbrella motion of the CH3 group and the coupled motions of the CH4 reactant were taken into 

account. Quantum scattering calculations on these model PESs reproduced some of the experimental 

observations, such as the characteristics of the differential cross sections. Reduced dimensionality 

quantum scattering studies were also carried out by Clary and coworkers in which the two spin–orbit 

states of the system were considered.23-24, 37    

Treatment of all degrees of freedom of the reaction is feasible with classical scattering methods.  For 

example, Troya and coworkers used a full-dimensional semi-empirical PES to perform quasi-classical-

trajectory (QCT) calculations.38-39  The first global pre-calculated ab initio PES used in QCT calculations 

was reported by Castillo et al.40  Their approach used QCISD(T)/aug-cc-pVTZ//QCISD/cc-pVTZ 

calculations to determine the energies of the separated reactants and products and those of the pre- 

and post-reaction complexes. The other regions of the PES were calculated using the interpolation 

algorithms of Collins and co-workers.41-43 The most accurate global PES for this system is that 

computed by Czakó and Bowman.32, 44 In their study, high level, composite electronic energies were 

calculated at the E[UCCSD(T)/aug-cc-pVDZ] + E[AE-UMP2/aug-cc-pCVTZ] – E[UMP2/aug-cc-pVDZ] 

level. Focal-point analysis and implicit treatment of the spin-orbit interaction were also invoked to 

produce an accurate PES. The PES was subsequently fitted with permutationally invariant polynomials. 

The QCT calculations reproduced the experimental rotational distribution of the HCl within the 

uncertainties of the experiment. Moreover, Bowman and Czakó succeeded in explaining how the 
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excitation of various normal modes of the CH4 steers the outcome of the reaction, as observed 

experimentally by Liu and coworkers.27, 29 

On-the-fly direct dynamics calculations, an alternative to fitting a reactive PES, compute local 

information about the fully dimensional PES at each step of the trajectory. As a result, the reaction 

always stays on the exact ab initio PES. However, the energy and gradients have to be determined at 

each step, usually by low level electronic structure methods such as Hartree-Fock or density functional 

theory. Fully dimensional on-the-fly classical dynamics calculations were carried out for the CH4 + Cl 

reaction using a semi-empirical model Hamiltonian by Troya et al.38, 45 and using the Hartree–Fock /6-

31G level of theory by Rudić et al.46  A similar approach was adopted by Greaves et al. who investigated 

the transferability of model Hamiltonians between related reactions.39 

The purpose of the current study is to test the EVB description of a PES generated from high level ab 

initio electronic structure calculations.  The EVB fit to obtain a global PES requires fewer ab initio points 

than the alternative PES fitting methods described above.  By concentrating on a well-studied reaction, 

we examine whether the accuracy of the EVB fit is adequate to describe the reactive scattering 

dynamics.  The outcomes therefore have implications for application of the EVB method to reactions 

in larger systems.47-48  The paper is organized as follows. The details of the electronic structure 

calculations are first provided. The procedure to obtain molecular mechanics force field parameters 

and reactive EVB PES is then described, along with the details of the QCT calculations. The result of 

these calculations are analysed and compared to previous experimental and theoretical works. Finally, 

the value of extending the EVB method to other, more complicated, systems is considered.  

Methods 

Electronic Structure Calculations 

The reactant, product and transition state structures for the 𝐶𝐻4 + 𝐶𝑙 → 𝐶𝐻3 + 𝐻𝐶𝑙 reaction were 

optimized using restricted open shell second order Møller–Plesset perturbation theory (RMP2) 
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employing Pople’s 6-311G(d,p) basis set. Explicitly correlated coupled-cluster singles, doubles and 

perturbative triples (CCSD(T)-F12B)49  energies with the aug-cc-pVTZ50  basis set on the H and C atoms 

and aug-cc-pV(T+d)Z on the Cl atom (and appropriate auxiliary fitting basis sets) were calculated for 

these geometries. Using the explicitly correlated method, basis set superposition error is negligible,49 

hence further corrections for this effect were not carried out. Rigid scans were performed along 

relevant internal coordinates of the separated CH4, CH3 and HCl reactants and products to fit the 

molecular mechanics force field energy terms for these species. The energies along these scans were 

computed at the CCSD(T)-F12B/aug-cc-VTZ level of theory, starting from initial optimum structures 

obtained at the RMP2/6-311G(d,p) level. Spin-orbit interactions were neglected for all ab initio 

calculations; reaction of spin-orbit excited Cl(2P1/2) with methane requires a non-adiabatic transition 

from a repulsive PES to the ground-state Cl(2P3/2) + CH4 surface.22 The MOLPRO suite of codes was used 

to perform all of the electronic structure calculations.51  For testing purposes, vibrational frequencies 

were calculated for HCl, CH3, CH4 and the transition state at the CCSD(T)-F12B/aug-cc-pVTZ level at 

the geometries optimised at the same level using numerical gradients.  

Two sets of points on the overall reactive Cl + CH4 potential energy surface were generated to provide 

fitting sets for the EVB potential. In the first case, points were obtained on and around the minimum 

energy path to reaction. Fixed values of the Cl-H and H-C distances were chosen, then the remaining 

degrees of freedom were optimized, at the RMP2/6-311G(d,p) level of theory, within the C3v point 

group which resulted in roughly 300 ab initio points. The CCSD(T)-F12B/aug-cc-pVTZ energies at the 

structures obtained from this two-dimensional scan formed the basis for a first fitted EVB surface, 

which we label EVB(1). The second set of points comprised structures obtained by randomly sampling 

reactive trajectories.  For these additional geometries, CCSD(T)-F12B/aug-cc-pVTZ calculations were 

also performed, and the resulting set of energies was used to fit a second-generation EVB surface, that 

we label EVB(2). The details of the sampling are given in the next section. 
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Construction of the reactive EVB Potential 

The EVB framework divides configuration space into regions corresponding to the reactants, 

intermediates and products, which are each treated as diabatic states.19-20  Their potential energies 

are computed approximately using molecular mechanics force field expressions, based on sums of 

terms that depend on the value of chemically relevant descriptors such as bond stretches, angle 

bends, and dihedral torsions. These molecular mechanics potential energies constitute the diagonal 

elements of the EVB matrix. For a given structure, the first element V11 corresponds to the energy of 

the system, obtained using a force-field in which the atomic connectivity is that of the reactants, CH4 

+ Cl. For the same structure, the four diagonal elements V22,…,V55 are the energies computed using a 

product-like forcefield with CH3 + HCl connectivity. As there are four hydrogen atoms, there are four 

possible product connectivities and hence four different diagonal elements, though of course the 

same molecular mechanics parameters are used for each of them. The molecular mechanics energies 

for reactant and product connectivities refer to different energy scales. In order to make them 

comparable, an offset energy E0 is chosen such that the offset between the V11 and V22 diabatic 

potentials at the corresponding reactant and product optimum structures corresponds to the CCSD(T)-

F12B reaction energy. The off-diagonal elements Vab=Vba, a ≠ b, describe the coupling between the 

diabatic states. Given that we are interested in modelling the reaction Cl + CH4  HCl + CH3, and that 

hydrogen exchange between HCl and CH3 in the product channels is unlikely, we chose to set all off-

diagonal elements Vab, a, b >1, to zero. The adiabatic EVB energy at any geometry is obtained by solving 

the eigenvalue problem (1) and choosing the lowest energy eigenvalue. 

 

[
 
 
 
 
𝑉11 𝑉12 𝑉13 𝑉14 𝑉15

𝑉21 𝑉22 + 𝐸0 0 0 0
𝑉31 0 𝑉33 + 𝐸0 0 0
𝑉41 0 0 𝑉44 + 𝐸0 0
𝑉51 0 0 0 𝑉55 + 𝐸0]

 
 
 
 

𝑐 = 𝐸𝑐. 
(1)  

 

The EVB gradient is calculated according to  
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 ∇𝐸 = ∑ 𝑐𝑎𝑐𝑏∇𝑉𝑎𝑏𝑎𝑏 , 
(2)  

where c is the normalized eigenvector belonging to the lowest eigenenergy E.52 In the present study, 

new force fields were constructed for the reactants and products. The included energy terms account 

for the bonded and for the non-bonded interactions.  The molecular mechanics energy terms for 

bonded atoms were parameterized using the ab initio geometries and energies described above. We 

chose Morse potentials to describe the energy associated with the atom-atom stretching. Quartic 

bending terms account for bending motions, and Wilson-type improper torsions describe the out-of-

plane motion of the H-atoms of the methyl fragment.53 The stretch-bend interaction proved to be 

negligible, hence it is not included in the force fields. The four-parameter Buckingham-Corner 

potential function approximates the non-bonded interactions.54   

The coupling term that connects the reactant and product states can be chosen in several different 

ways, e.g. it can be a function of all the nuclear degrees of freedom.21, 55 We have however found that 

a simpler function, that depends only on a smaller number of internal coordinates relating to the 

atoms that change connectivity during the course of the reaction, provides a more than adequate 

accuracy for the fitted potential.47 The coupling term employed in this study is a two-dimensional 

Gaussian function that depends on the reactive C—H and H—Cl distances:  

 
𝑉𝑎𝑏(𝑟𝐶−𝐻 , 𝑟𝐻−𝐶𝑙) = 𝐴 exp [−

(𝑟𝐶−𝐻−𝑟𝐶−𝐻,0)
2

2𝜎𝐶−𝐻
2 −

(𝑟𝐻−𝐶𝑙−𝑟𝐻−𝐶𝑙,0)
2

2𝜎𝐻−𝐶𝑙
2 −

𝑐𝐶−𝐻−𝐶𝑙(𝑟𝐶−𝐻 − 𝑟𝐶−𝐻,0)(𝑟𝐻−𝐶𝑙 − 𝑟𝐻−𝐶𝑙,0)]. 

(3)  

A is the amplitude of the Gaussian function, and rCH, rHCl are the bond lengths.  The parameters rCH,0, 

rHCl,0 are the centers, and 2
CH, 2

HCl are the widths of the Gaussian function, respectively, whereas 

cCHCl relates to the angle between the main axis of the coupling term and the rCH vector. Sums of 

one-dimensional Gaussian functions were also tested as coupling elements, but the 2D functions of 

Eqn. (3) gave superior quality fits to the ab initio surface. In a similar way, we found in our study of the 
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F + CD3CN reaction that a two-dimensional Gaussian coupling function provides a better fit to the ab 

initio values.56  

The parameters of the individual energy terms of the CH4 and CH3 molecules were determined by 

fitting rigid ab initio scans along the appropriate internal coordinates. Using these preliminary energy 

terms, we propagated a molecular dynamics trajectory of each fragment to build a set of random CH4 

and CH3 geometries. The trajectories were initialised with CH4 molecules having their ZPE and with a 

collision energy of 28.0 kJ mol-1.  CCSD(T)-F12B energies were obtained at these structures in the range 

of 21 to 150 kJ mol-1, and used to perform a final fit of the internal force field parameters for the CH4 

and CH3 species. These parameters were held fixed during all of the subsequent fitting procedures. 

The HCl stretch parameters were obtained by fitting its CCSD(T)-F12B potential energy curve. 

There are four types of non-bonded interactions according to the chemical identity of the atoms in 

the reactive system, namely C—Cl, H—Cl, C—H, and H—H. The carbon, hydrogen and chlorine atoms 

were treated identically regardless of whether in a reactant or product species. For example, the 

interactions between the H atoms in CH4 and the Cl atom, and between the H atoms in the CH3 radical 

and the Cl atom in the HCl molecule were assumed to be identical. Initial parameters for the 

Buckingham-Corner potential were obtained by fitting ab initio energies of randomly arranged CH4 + 

H2, and CH4 + Cl2 geometries. 

Two reactive EVB potentials were constructed, EVB(1) and EVB(2). For EVB(1), fitting was performed 

to a set of CCSD(T) energies computed at structures with C3v symmetry. As mentioned above, these 

structures were obtained from 2-D scans in which the C-H and H-Cl distances were fixed, and the other 

coordinates optimized using the RMP2 method. Approximately 300 points of this type were used in 

the fit, ranging in energy from 0 to 150 kJ mol-1 relative to separated reactants. The fitting was 

performed using a modified form of the EVB eigenvalue equation (1), in which only one product 

connectivity was considered, so that the EVB matrix was only of 2x2 size. An EVB matrix of 5x5 with 

these parameters returns a PES almost identical to that from the 2x2 matrix. 
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A single 2D coupling term was used for the off-diagonal element. The parameters of the coupling term 

and those of the C—H, H—Cl, and C—Cl non-bonded terms were floated. Using a genetic algorithm to 

explore the fit parameters, we aimed to minimize the square of the difference between the ab initio 

and EVB energies. The energy of the separated reactants was taken as reference, or zero point of the 

PESs. The weights were the inverse square of the corresponding ab initio electronic structure energy. 

No ab initio points had an absolute value below 0.05 kJ mol-1 hence the fit was not overly biased 

towards points close to the asymptote.  

 
𝜒2 = ∑(

𝐸𝐸𝑉𝐵,𝑖 − 𝐸𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜,𝑖

𝐸𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜,𝑖
)

2

𝑖𝑓 |𝐸𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜,𝑖| > 𝐸𝑡ℎ𝑟𝑒𝑠ℎ 

𝑖

 
(4) 

 

A 5x5 EVB matrix of the form of Equation (1) was constructed with the optimized coupling and non-

bonding terms from the 2x2 EVB fit to obtain the EVB(1) surface.  It is important to note that although 

the structures used to fit the parameters for the non-bonding terms and the off-diagonal matrix 

elements of EVB(1) are all of C3v symmetry, this potential is able to describe non-symmetric structures 

also. 

A number of reactive trajectories, which sample non-C3v symmetries as described above, were run on 

this surface. Random points were selected from these trajectories for which 500 CCSD(T)-F12B/aug-

cc-VTZ energies were calculated and subsequently used to fit the EVB(2) potential.  In this case, a 5x5 

EVB matrix was used in the fitting process, and the H–Cl, H–C, C–Cl van der Waals and coupling 

parameters were floated. The values of EVB parameters obtained from the fits for both surfaces are 

reported in the Supporting Information.  

The quasi-classical trajectories were run with the VENUS suite of codes57  interfaced with an EVB 

module developed in our group. This module calculates the EVB energy and the analytical first 

derivatives. The second derivatives are calculated numerically when needed. The methane molecule 

had an initial internal energy corresponding to its zero-point energy (ZPE), which was distributed 
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among its normal modes via orthant sampling.58-59 The methane molecule was randomly oriented 

relative to the incoming Cl atom. The impact parameter was randomly sampled in the 0–5 Å interval. 

The initial Clmethane separation was set to 5 Å. A time-step of 0.1 fs ensured good energy 

convergence during the entire course of propagation, which was typically about 700 fs. Specifically, 

the total (potential plus kinetic) energy was monitored, taking the zero of potential energy as the 

optimum energy of the separated reactants with respect to the energy of the entrance channel. This 

was conserved to better than 0.01%, or approx. 0.16 kJ mol-1.  Only those reactive trajectories were 

accepted where both products had at least their ZPE in vibrational energy. We used a histogram 

binning method to obtain rotational and vibrational quantum numbers to allow ready comparisons 

with the work of Czakó and Bowman.32  

Results and Discussion 

The computed energetics of stationary points along the reaction pathway are summarized in Figure 1. 

The CCSD(T)-F12B/aug-cc-pVTZ//RMP2/6-311G(d,p) reaction energy is 21.4 kJ mol-1 (5.1 kcal mol-1) 

which is slightly lower than the value of 25.2 kJ mol-1 (6.0 kcal mol-1) reported by Czakó and Bowman.32, 

44 Here, and below, we provide energies in kcal mol-1 in parentheses where appropriate to facilitate 

comparison with the results of this prior study. The transition state lies above the CH4 + Cl entrance 

channel by 29.8 kJ mol-1 (7.1 kcal mol-1), and its geometric parameters are reported in Table 1.  Again, 

the corresponding TS energy of the accurate surface of Czakó and Bowman is higher, at 31.9 kJ mol-1 

(7.6 kcal mol-1).32 These differences are in large part due to our neglect of spin-orbit interactions which 

lower the energy of the entrance channel by 3.4 kJ mol-1 (0.8 kcal mol-1).22, 32 The methane and Cl atom 

form a weakly bound pre-reaction complex, the ab-initio well depth of which is 1.7 kJ mol-1. A feature 

corresponding to the post-reaction complex between the methyl radical and the HCl molecule is found 

at an energy of 11.8 kJ mol-1 relative to reactants (or 9.7 kJ mol-1 below the products), which is lower 

than the value established by Czakó and Bowman by 4.2 kJ mol-1 (1.0 kcal mol-1). In general, the 

CCSD(T)-F12B/aug-cc-pVTZ//RMP2/6-311G(d,p) PES compares well to the best of the known PESs. 
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We used 300 C3v ab initio points to fit the EVB(1) surface and a separate set of 500 randomly selected 

geometry  points from reactive trajectories for the EVB(2) surface. The mean unsigned fitting errors 

were 1.3 kJ mol-1 for EVB(1) and 2.6 kJ mol-1 for EVB(2) in the 0150 kJ mol-1 energy range.  The 

corresponding error for the EVB(1) fit when compared to the ab initio energy points used to fit the 

EVB(2) surface is 4.2 kJ mol-1, and (coincidentally) the same mean unsigned error is obtained in the 

reverse comparison of the EVB(2) fit with the ab initio energy points used to construct the EVB(1) 

surface.  

Table 1: Ab Initio RMP2/6-311G(d,p), EVB(1) and EVB(2) Transition State and Exit Channel Complex Geometries.(a) 

 Transition State Exit Channel Complex 

  ab initio EVB(1) EVB(2) C&B(g) EVB(1) EVB(2) C&B(g) 

RCl–H / Å 1.414 1.462 1.452 1.437 1.291 1.282 1.282 

RC–H / Å (b) 1.433 1.351 1.396 1.403 2.195 2.220 2.274 

RC–H(m) / Å  (c) 1.085 1.085 1.085 1.083 1.080 1.080 1.081 

/ degrees(d) 180.0 180.0 180.0     

/ degrees(e) 100.8 102.5 104.0 101.0    

/ degrees(f) 116.6 115.4 114.4     

(a)  See the insert to Fig. 1 for a representation of the geometric parameters.  
(b) C-H distance of the breaking bond. 
(c) C-H distance in the methyl moiety. 

(d)  is the angle between the breaking C-H bond and the forming H-Cl bond. 

(e)  is the angle between a methyl C-H bond and the breaking C-H bond. 

(f)  is the angle between two C-H bonds in the methyl moiety. 
(g)  PES of Czakó and Bowman from Ref. [44] and Supporting Online Material for Ref. [32]. 

 

The EVB fit outcomes are compared with the ab initio energies of stationary points in Figure 1. The 

energy level of the reactants defines the zero of the energy profiles. The EVB and ab initio reaction 

energies are identical per definitionem. The transition state structures (see Table 1, with parameters 

defined in Fig. 1) and energies E‡ of EVB(1) and EVB(2), deduced by locating the saddle points on the 

surfaces, compare well with those obtained from our current electronic structure calculations and 

with the TS on the Czakó and Bowman PES.  There is also good agreement between our calculations 

and those of Czakó and Bowman for the geometry of the exit-channel complex.  The TS is slightly 

earlier along the reaction pathway in the EVB surfaces than in our ab initio calculation.   



13 
 

Energies of the stationary points are obtained as follows on the EVB surfaces.  For EVB(1),  E‡ is 29.4 

kJ mol-1 (7.0 kcal mol-1), for EVB(2) E‡ is slightly higher at 31.9 kJ mol-1 (7.6 kcal mol-1), and the ab initio 

result is 29.8 kJ mol-1 (7.1 kcal mol-1). The pre-reaction complex has a well depth of -1.76 kJ mol-1 (-

0.42 kcal mol-1) for EVB (1) and -4.2 kJ mol-1 (-1.01 kcal mol-1) for EVB(2). The ab initio exit-channel 

energy well at 11.7 kJ mol-1 (2.8 kcal mol-1), is well matched by the EVB(1) value of 11.7 kJ mol-1. The 

EVB(2) surface, however, predicts the complex has an energy of 15.9 kJ mol-1 (3.8 kcal mol-1). The 

inclusion of more points in the ab initio PES around the transition state and exit channel region is 

expected to improve the goodness of the EVB(2) fit, though it would lead to a biased sampling. 

Increasing the number of ab initio points equally sampled from all possible geometries would 

considerably increase the computational effort of the electronic structure calculations. 

 

Figure 1:  Representation of the energies and structures of stationary points along the reaction pathway for Cl + CH4  

HCl + CH3.  Energies (in kJ mol-1) of these structures are shown for the CCSD(T)-F12B/aug-cc-pVTZ//RMP2/6-311G(d,p)  ab 

initio calculations (black) described in the text, and the EVB(1) and EVB(2) PES fits (red and blue respectively), and are 

specified relative to the energy of separated Cl and CH4 reactants.  The energies do not include zero-point vibrational 

energy corrections. The boxed insert shows the angle and bond labels used to specify stationary point structures.  

 

Moving beyond the static properties, we also assess the molecular frequencies, which are a dynamical 

characteristic of the fitted PESs. The reactant, product and TS frequencies are compared in Tables 2-

3. The EVB(1) and EVB(2) frequencies of the CH4, CH3 and HCl molecules are identical, due to the 

construction method of the force fields. The EVB and electronic structure values are in good 



14 
 

agreement: for example, the average deviation between the EVB and ab initio CCSD(T)-F12B/aug-cc-

pVTZ//RMP2/6-311G(d,p) TS frequencies is 5% for EVB(1) and 4% for EVB(2); the agreement is 

marginally (~1%) poorer when the EVB frequencies are compared to CCSD(T)/aug-cc-pVTZ calculated 

values from Ref. [39]. 

 

Table 2: The CCSD(T)-F12B/aug-cc-pVTZ Ab Initio and EVB Frequencies of HCl, CH4  and  CH3 Specified in cm-1.  

  Normal mode ab initio EVB Experiment(a) 

HCl v1 2996 3001 2885 

CH4 v1 3033 3032 2917 

 v2 1569 1545 1534 

 v3 3155 3204 3019 

  v4 1345 1380 1306 

CH3 v1 3121 3089 3004 

 v2 509 557 606 

 v3 3121 3089 3161 

  v4 1422 1405 1402(b) 
(a)  Values are taken from the NIST Chemistry Webbook60 
(b)  Value for methyl radicals in an H2 matrix 

 
 
Table 3: Comparison of Ab Initio (CCSD(T)-F12B/aug-cc-pVTZ//RMP2/6-311G(d,p) and CCSD(T)/aug-cc-pVTZ), EVB(1) and 
EVB(2) Frequencies (Specified in cm-1) at the Transition State. 

Frequency 

CCSD(T)-
F12B/aug-

cc-pVTZ 

CCSD(T)/aug-
cc-pVTZ(a) 

EVB(1) EVB(2) 

imaginary 1119 973 1190 1251 

1 358 350 293 367 

2 358 350 293 367 

3 498 520 466 425 

4 933 886 902 913 

5 933 886 902 913 

6 1194 1176 1224 1139 

7 1433 1407 1421 1410 

8 1433 1407 1421 1410 

9 3087 3069 3081 3079 

10 3249 3238 3240 3244 

11 3249 3238 3240 3244 
 (a)  From Ref. [39]. 
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The zero point energies (ZPE) of the reactants, products, the TS and the ZPE corrected reaction energy 

and barrier height are shown in Table 4. With inclusion of ZPE, the corrected reaction energy is -2.5 kJ 

mol-1, which with spin-orbit correction would become +0.8 kJ mol-1. In comparison, measured heats 

of formation of reactants and products combine to give rH0K = + 4.6 kJ mol-1 (1.1 kcal mol-1).32 The 

corrected barrier heights are 9.2 kJ mol-1 and 11.7 kJ mol-1 for the EVB(1) and EVB(2) surfaces, 

respectively.  The total available energy for the products, when the ZPE is taken into account, is the 

sum of the corrected reaction energy and the collision energy.  At the experimental collision energy 

of 15.5 kJ mol-1 (3.7 kcal mol-1),22 only 19.7 kJ mol-1 is therefore available to be distributed among the 

internal and relative degrees of freedom of the products. As a consequence, many of the products 

appear with less than the quantum-mechanically required zero-point vibrational energy. Of the 

20,000,000 trajectories we propagate for each surface, 200,000 are reactive, but only 458 on the 

EVB(1) and 922 on the EVB(2) surface satisfied our zero-point energy criterion. The remainder were 

rejected. To test the statistical reliability of these trajectories, integral and differential cross sections 

were calculated using only the half the successful number and compared to the results from the full 

set. The two sets of results were practically identical. 

Table 4: The Zero Point Energies for the Reactants, Products and Transitions State, and Zero Point Energy Corrected 
Reaction Energy (E0) and Barrier Height (E‡), all Specified in kJ mol-1.(a)  

  Ab initio (b) EVB(1) EVB(2) 

EZPE(reactants) 118 (28.1) 119 (28.4) 119 (28.4) 

EZPE(products) 94.0 (22.4) 96.0 (22.9) 96.0 (22.9) 

EZPE(TS) 101 (24.2) 98.6 (23.5) 98.7 (23.6) 

E0(ZPE corrected) -2.5 (-0.6) -1.5 (-0.4) -1.5 (-0.4) 

E‡(ZPE corrected) 13.2 (3.1) 9.2 (2.2) 11.7 (2.8) 

 (a) Values in parentheses are specified in kcal mol-1. 
(b)  CCSD(T)-F12B/aug-cc-pVTZ//RMP2/6-311G(d,p) calculations. 

 

Analysis of trajectories to obtain HCl vibrational distributions confirms that the HCl(v=0) final state is 

exclusively populated at a collision energy of 15.5 kJ mol-1. Even at the higher collision energy we 

simulate, Ecoll = 42.0 kJ mol-1, the HCl(v=1) products at 36.0 kJ mol-1 are only just accessible for the 
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products. At this higher collision energy of 42.0 kJ mol-1, about 13% percent of the vibrational 

population of HCl is in the first excited state.  

The HCl(v=0) relative rotational populations obtained from the EVB(1) and EVB(2) surfaces are shown 

in Figure 2. At Ecoll = 15.5 kJ mol-1 (Fig. 2(a)), the EVB(1) distribution is slightly broader than that 

resulting from the EVB(2) surface, but the two are otherwise similar. Both reproduce the 

characteristics of the experimentally observed cold distributions.61 The most probable experimental j 

value is unity, whereas the present calculation predicts a somewhat hotter j=2-3 for the peak of the 

distribution. This discrepancy is small in energy terms (~1 kJ mol-1) and can be explained by inspecting 

the topography of the exit channel. The wall of the exit channel is steeper with respect to the C—H—

Cl bending coordinate on the EVB surfaces than on the ab initio PES and in the real system, hence the 

departing HCl molecule experiences a greater torque that results in a hotter rotational distribution. In 

addition, this wall is steeper on the EVB(2) than the EVB(1) surface, shifting the rotational distribution 

at Ecoll = 42.0 kJ mol-1 (Fig. 2(b)) towards higher j values.  Computation of additional ab initio energies 

at geometries corresponding to this exit channel region of the PES and a refit of the EVB function 

parameters might improve the agreement between our trajectory calculation outcomes and the 

experimental measurements of HCl rotational energies.  Nevertheless, our existing fits provide a 

satisfactory account of this aspect of the reaction dynamics for a modest computational investment 

in electronic structure calculations.  
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Figure 2: Calculated final rotational distributions of HCl from the CH4(v=0) + Cl  CH3(v=0) + HCl(v=0) reaction at a collision 
energy of (a) 15.5 kJ mol-1 and (b) 42.0 kJ mol-1. The distributions were computed using the EVB (1) (black solid squares) and 
EVB (2) (red solid circles) PESs, and are compared to experimental measurements [Ref. 61]at the lower collision energy (blue 
triangles). 

 

Differential cross sections, which relate reactive probability to product scattering angle, are shown in 

Figure  for the two EVB surfaces and for experimental results (which probed CH3(v=0) and averaged 

over HCl(v=0) rotational levels).26 The computed differential cross sections are shown at two collisions 

energies, 15.5 kJ mol-1 (Fig. 3(a)) and 42.0 kJ mol-1 (Fig. 3(b)).  The EVB surfaces show that HCl(v=0) 

products are predominantly backward scattered, which is in good agreement with experiment at the 

lower collision energy.26 There is only about 5.9 kJ mol-1 and 3.8 kJ mol-1 excess energy above the zero 

point energy corrected barrier at Ecoll = 15.5 kJ mol-1 on the EVB(1) and EVB(2) surfaces, respectively. 

Lacking much energy to spare, surmounting the reaction barrier requires the initial relative linear 

momentum of the collision partners to be aligned along the reactive C—H bond vector (the reaction 



18 
 

coordinate). As a consequence of the linear transition state, the relative momentum of the products 

will likely be oriented antiparallel to that of the reactants, resulting in the backwards scattering shown 

in Fig. 3(a).  

 

Figure 3: Comparison of computed and experimental CH4 + Cl  CH3(v=0)+ HCl(v=0) differential cross sections in two collision 
energy regimes. The EVB(1) (black solid line) and EVB(2) (red dashed line) angular distribution functions from the current work 
are compared with experimental data and the QCT calculations of Czakó and Bowman (denoted PIPF for permutation 
invariant polynomial fitting) adapted from Ref.[26]. Panel (a) compares the distributions computed on the EVB(1) and EVB(2) 
PESs at a collision energy of 15.5 kJ mol-1 with the Czakó and Bowman calculations and experimental data at Ecoll = 17.6 kJ 
mol-1. The EVB-based trajectory calculations in panel (b) were conducted at a collision energy of 42.0 kJ mol-1 and are 
compared with the Czakó and Bowman calculations and experimental data at Ecoll = 40.6 kJ mol-1.  

 

If the projection of the linear momentum onto the reaction coordinate is small, the system cannot 

climb up the steep potential energy wall to the TS, and is repelled without reaction having occurred. 

The EVB(1) DCS is more sideways scattered than that for EVB(2) which can be attributed to the lower 

TS energy and the shallower gradient of the exit channel wall.   
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The differential cross section is generally a sensitive probe of the forces acting on the system during 

the course of the reaction. Therefore, in order to assess the influence of the topography of the PES, 

DCSs were also calculated for both surfaces at a collision energy of 42.0 kJ mol-1 (Fig. 3(b)). At this 

higher collision energy, the HCl is sideways and backward scattered. There is a sufficient amount of 

linear momentum aligned along the reaction coordinate to surmount the barrier, even if its main 

component is not aligned along this direction. Hence, the final velocity of the HCl atom becomes more 

parallel to the initial velocity of the Cl atom. This result is in qualitative accordance with the 

experimental observations of Liu and coworkers.26 However, experimental DCS are markedly more 

sideways and forward scattered than those reported in this work. The DCSs of Czakó and Bowman also 

predict more backwards scattering than the experimental measurements,32 and the agreement is 

good between ours and their calculated distributions. The discrepancy between the QCT calculations 

and experimental measurements of the DCS is intriguing, and cannot be attributed to the effects of 

spin-orbit coupling because the PES of Czakó and Bowman incorporated this interaction.  Perhaps a 

quantum mechanical effect not captured by the QCT calculations, such as tunnelling or a scattering 

resonance, is contributing to the experimental result.  

 

Conclusions 

The CH4 + Cl CH3 + HCl hydrogen-abstraction reaction represents a challenging test case for the EVB 

method of describing a potential energy surface.  The EVB formalism provides a computationally 

inexpensive framework to construct reactive PESs and perform classical dynamics calculations and our 

results suggest that it works well for this benchmark reaction. The potential energy surfaces obtained 

here are not as accurate as the best global fit potential energy surface reported in the literature, either 

in terms of root mean square error compared to the ab initio points, or in terms of the predicted 

dynamical behaviour in comparison to experiment. However, these new surfaces are obtained with 
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much less input from ab initio computation, relying instead on a good zeroth-order description of the 

reactants and products through the use of a molecular-mechanics type force-field. 

High level ab initio calculations were carried out to determine the topography of the PES. Further ab 

initio points were used to parametrise the molecular mechanics force fields for degrees of freedom 

other than the reaction coordinate. Two reactive EVB PESs were generated, one by fitting to ab initio 

points sampled from C3v geometries, the other including only energies computed for unconstrained 

geometries selected from trajectories. The properties of the stationary points of the EVB surfaces 

compare well with those obtained from the electronic structure calculations. Quasi-classical trajectory 

calculations were performed on both surfaces at collisions energies of 15.5 kJ mol-1 and 42.0 kJ mol-1. 

The resultant rotational distributions were in reasonable agreement with the experimental data. 

Differential cross sections were also calculated that show the general characteristics of the 

experimentally observed scattering distributions, and which agree well with QCT calculations on a 

previously reported PES derived from a much larger set of ab initio energy points.32 

The advantages of the EVB method are twofold. First, it provides a way to treat explicitly all degrees 

of freedom of the reactive system in a computationally undemanding way. This enhancement is 

achieved by using molecular mechanics forces. The consequent loss of accuracy can be ameliorated 

by refitting all, or the most important, energy terms in the force field. Second, the method allows us 

to construct various EVB PESs by including or excluding different reactant, product or intermediate 

diabatic PESs when constructing the EVB matrix. Although not used here, this flexibility can be 

exploited to gain insights on the effects of different parts of the PES on the dynamics of more 

complicated reactions. We now plan to harness these features of the EVB method to investigate other 

reactions, such as those between unsaturated hydrocarbons and halogens or pseudo-halogens (such 

as the CN radical) where direct abstraction and addition/elimination pathways compete. 
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