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Correcting for bias in the selection and
validation of informative diagnostic tests
David S. Robertson,a*† A. Toby Prevostb and Jack Bowdena

When developing a new diagnostic test for a disease, there are often multiple candidate classifiers to choose from,
and it is unclear if any will offer an improvement in performance compared with current technology. A two-stage
design can be used to select a promising classifier (if one exists) in stage one for definitive validation in stage two.
However, estimating the true properties of the chosen classifier is complicated by the first stage selection rules. In
particular, the usual maximum likelihood estimator (MLE) that combines data from both stages will be biased
high. Consequently, confidence intervals and p-values flowing from the MLE will also be incorrect. Building on
the results of Pepe et al. (SIM 28:762–779), we derive the most efficient conditionally unbiased estimator and
exact confidence intervals for a classifier’s sensitivity in a two-stage design with arbitrary selection rules; the
condition being that the trial proceeds to the validation stage. We apply our estimation strategy to data from a
recent family history screening tool validation study by Walter et al. (BJGP 63:393–400) and are able to identify
and successfully adjust for bias in the tool’s estimated sensitivity to detect those at higher risk of breast cancer.
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Keywords: diagnostic tests; group sequential design; family history; uniformly minimum variance unbiased
estimator

1. Introduction

The development and validation of an informative diagnostic test for a medical condition is of great use
for clinicians. This process is well described in the literature if only a single diagnostic variable is studied.
However, there are often multiple candidate classifiers that show potential as diagnostic tools, and it may
also be unclear if any will offer an improvement compared to current technology. The challenge is to
identify the most promising diagnostic test and then to correctly validate its properties.

It is in the context of biomarker research that this challenge is particularly evident, where new tech-
nological advancements have led to an abundance of biomarker discovery studies and a huge number of
candidate markers, for example, in colorectal cancer [1] and prostate cancer [2]. Guidelines have also
been established for the discovery and validation of potential biomarkers [3].

The development of questionnaires for diagnosis is a parallel endeavour to biomarker discovery and
validation. There will be a set of possible questions, with each considered a candidate classifier. In
particular, questions about the family history of a disease are simple and cheap to measure when com-
pared with genetic or biomarker variables. They can also provide the bulk of a diagnostic or risk prediction
tool’s classification ability, despite the discovery of many genetic markers [4].

To make efficient use of resources, a sequential procedure is a natural choice for the selection and
validation of diagnostic tests. This is particularly the case for biomarkers, due to the high false discovery
rate – despite showing initial promise, the majority of markers will not subsequently perform well enough
compared with an existing test to be considered for further development. Also, many biomarker studies
rely on stored biological samples, and there is a need to preserve specimen resources [5]. Hence, group
sequential designs have been proposed that allow for early stopping because of poor marker performance
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[5,6]. In these settings, the simplest (two-stage) group sequential design has been proposed; whereby the
discovery and validation phases are separated by a single interim analysis.

Estimating the performance of the chosen classifier is complicated by the first stage selection rules. A
candidate classifier will have to perform well in the first stage in order to proceed to the validation stage,
which will lead to overly optimistic estimates. In particular, the usual maximum likelihood estimator
(MLE) that combines data from both stages will be biased high. Hence, hypothesis-testing procedures
using the MLE will have incorrect p-values, with an inflation of the type I error rate. Furthermore,
confidence intervals will have coverage probabilities that can be well below the nominal level.

There are obvious parallels in this endeavour with multi-arm adaptive clinical trials of pharmaceuti-
cal treatments, where a promising single treatment or treatment dose is selected in a preliminary phase
for a subsequent confirmatory analysis against standard therapy. Specific examples include seamless
designs [7, 8] and drop-the-losers trials [9]. In this domain, the issues of bias and type I error inflation
are well understood. Many methods exist to adjust for bias [10–13] and to ensure correct hypothesis
testing [9, 14] because of demands of regulatory authorities when making licensing decisions based on
trial evidence.

Bias and type I error are also important in the diagnostic test setting. Like pharmaceutical drugs, they
are marketed and sold to the healthcare industry on the basis of their (claimed) clinical utility. They can
have a pivotal role in guiding the treatment plan of patients [15]. Hence, diagnostic tests are subject to
rigorous approval pathways by regulatory authorities.

In the spirit of Cohen and Sackrowitz [13], an efficient unbiased estimator can be obtained by tak-
ing the unbiased stage two data and conditioning on a complete, sufficient statistic – a technique known
as Rao–Blackwellisation. By the Lehmann–Scheffé theorem, this will give the uniformly minimum
variance conditionally unbiased estimator (UMVCUE). In a similar vein, uniformly most powerful
conditionally unbiased (UMPCU) hypothesis tests have also been developed [14,16]. The ‘condition’, in
each case, is that the single treatment has been selected from many at stage 1 and carried forward to the
validation stage.

The rationale for this continued conditional perspective is that estimation is only important if a promis-
ing classifier is actually identified. Indeed, when a study appropriately terminates early, the candidate
classifiers are then deemed inadequate and further estimation of their performance is not needed. This
viewpoint is demonstrated in a number of recent examples [5, 6, 17].

An alternative argument for the use of conditional estimators and confidence intervals is that we
are essentially combining a discovery and validation study into a single, two-stage design. In this
setting, the conditional estimators offer properties that are analogous to what would be observed if an
independent validation study was completed, but are more efficient because they utilise the data from the
discovery phase.

In this research article, we focus on finding the UMVCUE for the chosen classifier’s sensitivity
(or true positive rate) when the candidate classifiers are dichotomous. For example, this could correspond
to the absence/presence of a biomarker or a ‘yes’/‘no’ question in a questionnaire. Once the UMVCUE
is found, we then construct confidence intervals for the estimated sensitivity.

Pepe et al. [5] considered a two-stage study for a single dichotomous diagnostic biomarker, with
early stopping for futility. They derived the UMVCUE and described bootstrapping schemes to estimate
confidence intervals for the sensitivity. Prior to this, Tappin [18] provided methodology to find the
UMVCUE when selecting from multiple dichotomous classifiers (provided that ties were broken
according to a pre-specified ordering) but without the option of stopping for futility or the construction
of confidence intervals. This latter issue was addressed by Sill and Sampson [16], who showed how to
construct exact confidence intervals when there are multiple candidate classifiers to choose from in the
first stage.

We extend the above approaches for finding the UMVCUE and exact confidence intervals by
allowing the following: (i) generalised rules for ranking the candidate classifiers; (ii) arbitrary (fixed)
futility thresholds for each classifier; and (iii) unequal stage one sample sizes.

In Section 3, we describe the model framework and show how to derive the UMVCUE and construct
exact confidence intervals. We then carry out a simulation study in Section 4 to investigate their properties.
In Section 5, we apply our inferential technique to a recent family history screening tool validation study
by Walter et al. [19] and conclude with a discussion in Section 6. However, we first describe the data that
served as motivation for this work.
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2. Motivation: The family history questionnaire study

Walter et al. [19] implemented a two-stage diagnostic validation study in 10 general practices across
eastern England. The aim was to develop a brief self-completed family history questionnaire (FHQ) that
accurately identified people at higher risk of diabetes, ischaemic heart disease (IHD), breast cancer and
colorectal cancer. This self-completed FHQ would be a cheaper and simpler alternative to the current
gold standard in-depth interview.

There were 1147 participants recruited into the study, with 618 in stage 1 and 529 in stage 2. This
sample size was chosen to give at least 90% power to detect whether those answering ‘yes’ to a question
would have a different risk from those answering ‘no’. Overall, 32% were at an increased risk of one or
more of the conditions, as assessed by the three-generational gold standard pedigree collected by trained
research nurses.

In stage 1 of the analysis, the FHQ consisted of 12 questions (14 including sub-questions). Questions
that were sufficiently predictive of increased risk for each condition were identified by the following
procedure:

(1) Test for significance of questions using (a two-sided) Fisher’s exact test with p < 0.05.
(2) Retain the significant question with the greatest balanced accuracy (defined as the arithmetic

average of the sensitivity and specificity).
(3) Exclude each significant question if, in combination with the most accurate question, there was no

significant improvement in prediction as assessed by a likelihood ratio test with p < 0.10.
(4) If necessary, assess further combinations of the remaining significant question using multiple

logistic regression.

Questions 4a, 4b, 9a and 9b were not considered in the above analysis by Walter et al. because of a small
number of positive responses.

Six questions (questions 2, 3, 6, 8, 10 and 11) were taken into the brief FHQ, which was tested on the
additional 529 subjects in stage 2. No significant differences in sex, age or prevalence of increased risk
for the conditions were found between the participants in stages 1 and 2.

Finally, to validate the retained questions, a 𝜒2-test was used to compare the sensitivity and specificity
between the two stages for each condition. Because there were non-significant differences (p > 0.05) for
all conditions, the data from both stages were then pooled to give an overall assessment of the brief FHQ.
In particular, combined results were given for the sensitivity and specificity of the selected questions.

A schematic of the stage 1 selection process for breast cancer is given in Figure 1. Question 8 was the
significant question with the highest balanced accuracy and was selected for further validation in stage 2.
Question 6 was also selected on the basis of a likelihood ratio test.

Through its use of a two-stage design and a complex interim selection rule, the development of the
brief FHQ has clear parallels to a biomarker discovery and validation study. Therefore, it inherits many
of the same issues of bias and type I error inflation. In the next section, we describe how to derive efficient

Figure 1. Schematic of the stage 1 selection process for identifying sufficiently predictive questions for breast
cancer.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 1417–1437
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unbiased point estimates and confidence intervals under general selection rules, for which the FHQ study
is a special case.

3. General framework for the uniformly minimum variance conditionally
unbiased estimator

3.1. Model description

Suppose there are K candidate binary classifiers, each taking values in {0, 1}. For example, this could
correspond to a set of K candidate diagnostic biomarkers or a questionnaire with K ‘yes’/‘no’ questions.
The aim is to select the classifier that performs ‘best’ (as defined below), subject to passing a ‘fixed’
threshold and then to estimate its sensitivity. To do so, we perform a two-stage validation study.

In the first stage, each classifier i is tested on a population that contains n1i known case subjects. These
could be disease cases or those that have been classified as a case by some gold standard test. Ideally,
the classifiers could be all tested on the same population; hence, the n1i would all be equal. However,
commonly, the number of case subjects will vary between the classifiers. This could be because of missing
data or because the classifier is not applicable to all subjects (e.g. gender-specific questions).

Let Xi denote the number of true positives for classifier i. Hence, we assume that we have K independent
binomial variables Xi ∼ Bin

(
n1i, si

)
for i = 1,… ,K, where si is the true sensitivity for the ith classifier

and where sensitivity is defined as Prob(positive test ∣ subject diseased).
Each classifier has an associated fixed threshold that the number of true positives must pass in order to

be considered further in stage 1. That is, for each i ∈ {1,… ,K} there is a fixed cut-off ci, and we require
Xi ⩾ ci or else classifier i is dropped for ‘futility’. For example, if there already exists a classifier with
known sensitivity c̄, then we might set ci = c̄n1i. If all the classifiers fail to pass their respective fixed
thresholds, then the whole study is terminated early.

Suppose that L > 0 classifiers pass their fixed threshold. Let X∗
1 ,X

∗
2 ,… ,X∗

L denote the number of true
positives, where the relabelling preserves the original ordering of the labels (this is important for breaking
ties). The L classifiers are then ranked from ‘best’ to ‘worst’ using a pre-specified function r

(
X∗

i ;𝝀i

)
,

where the 𝝀i are constants associated with classifier i.

Thus, classifier i is ranked above classifier j if r
(
X∗

i ;𝝀i

)
> r

(
X∗

j ;𝝀j

)
. If there is a tie, r

(
X∗

i ;𝝀i

)
=

r
(

X∗
j ;𝝀j

)
, we choose the classifier with the smallest index. This allows us to rank the classifiers in a

priori order of importance. For instance, we might pre-rank the classifiers on the basis of evidence from
previous studies, biological plausibility or simply the cost of measurement. A fully Bayesian approach is
also possible, where classifiers are ranked using the posterior distribution of the si, given the specification
of suitable priors. Note that the method used for breaking ties is important. For example, Tappin [18]
showed that if ties are broken by randomisation, then, in fact, no UMVCUE exists.

We also require r
(
X∗

i ;𝝀i

)
to induce the following inequalities on the X∗

i :

r
(
X∗

i ;𝝀i

)
⩾ r

(
X∗

j ;𝝀j

)
⇒ X∗

i ⩾ d
(

X∗
j ;𝝀i,𝝀j

)
for i, j ∈ {1,… ,L}, i ≠ j

where d
(

X∗
j ;𝝀i,𝝀j

)
is a function that only depends on X∗

j ,𝝀i,𝝀j and not on X∗
i . Hence, there is equality

if and only if there is a tie in the rankings. Note that r
(
X∗

i ;𝝀i

)
need not to be explicitly defined by the

study organisers, as complex selection rules can be reverse engineered to conform to this set up, as we
show for the FHQ study.

As an example of the above formulation, consider ranking the classifiers by their estimated sensitivities
and, hence, 𝝀i = n1i and r

(
X∗

i

)
= X∗

i ∕n1i. This induces the following inequality:

r
(
X∗

i ; n1i

)
⩾ r

(
X∗

j ; n1j

)
⇒ X∗

i ⩾ d
(

X∗
j ; n1i, n1j

)
= n1iX

∗
j ∕n1j.

At the end of stage 1, the classifier with the highest ranking (that has passed its fixed threshold) is then
selected for further validation in stage 2. Let M be the index of this chosen classifier. In the second stage,
the selected classifier from stage 1 is tested on a population containing n2 additional cases, where n2 is
a constant that does not depend on X∗

M . Let Y denote the number of true positives in these n2 additional
observations. Note that Y ∼ Bin

(
n2, sM

)
, independently of X∗

M .
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After the end of the study, we estimate the sensitivity sM of the selected classifier. The naïve estimator
(MLE) for sM using data from both stages is

Ŝall ∶=
X∗

M + Y

n1M + n2
.

This estimator is biased high, because it does not take into account the first stage selection procedures
and so E

[
X∗

M∕n1M|M]
> sM .

An unbiased estimator Ŝ2 can easily be found by just using the stage 2 data, where Ŝ2 ∶= Y∕n2.
However, given the smaller sample size, then this estimator suffers from lower precision. Hence, we look
for an unbiased estimator that utilises data from both stages.

3.2. Deriving the uniformly minimum variance conditionally unbiased estimator

In this section, we extend the arguments of Pepe et al. [5] and Tappin [18] to find the UMVCUE for the
parameter of interest sM .

Let
(
i1, i2,… , iL

)
denote the vector of indices of the L classifiers X∗

i after they have been ranked,
with ties being decided by choosing the smaller index. Hence, M = i1 is the index of the selected classifier.

In what follows, we drop the * superscript for notational convenience. We drop the constants 𝝀 from
the arguments of the functions r and d as well.

In Appendix A.1, we show that a complete and sufficient statistic for
(
s1, s2,… , sL

)
is Z =(

Z1,Z2,… ,Z2L

)
, where

Z1 = Xi1
+ Y ,Z2 = Xi2

,… ,ZL = XiL

ZL+1 = i1,ZL+2 = i2,… ,Z2L = iL.

Let 𝜓(i) denote the ranking of the ith classifier, and Q the event

{
𝜓
(
i1
)
= 1, 𝜓

(
i2
)
= 2,… , 𝜓

(
iL
)
= L;X1 ⩾ c1,X2 ⩾ c2,… ,XL ⩾ cL

}
.

Then by the Lehmann–Scheffé theorem, Û ∶= E
(

Y
n2

∣ Z = z,Q
)

is the UMVCUE for sM under Q.
Now, following the idea of Pepe et al. [5], note that conditional on Z1 = Xi1

+ Y , the distribution of
Y is hypergeometric: Y ∣ Z1 ∼ Hyper

(
z1, n1M + n2 − z1, n2

)
, which can be re-expressed (for notational

convenience) as Y ∣ Z1 ∼ Hyper
(
n2, n1M , z1

)
. That is,

f
(
Y|Z1

)
=

(
n2

y

)(
n1M

z1 − y

)
(

n1M + n2

z1

) for y ∈
{

max
(
0, z1 − n1M

)
,… ,min

(
z1, n2

)}
.

The conditional density f (Y ∣ Z,Q) is essentially the same, except that the support of Y is further
restricted by Q. There is the ranking condition inequality r

(
Xi1

)
⩾ r

(
Xi2

)
⇒ Xi1

⩾ d
(
Xi2

)
and the fixed

threshold condition Xi1
⩾ ci1

.
The precise way that Y is additionally restricted under (Z,Q) is given below.

(1) y + xi1
= z1

(a) If i1 > i2 ⇒ no tie in the ranking is possible
⇒ xi1

> d
(
xi2

)
⇒ y < z1 − d(z2)

(b) If i1 < i2 ⇒ a tie is possible
⇒ xi1

⩾ d
(
xi2

)
⇒ y ⩽ z1 − d

(
z2

)
© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 1417–1437
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(2) y + xi1
= z1 and xi1

⩾ ci1
⇒ y ⩽ z1 − ci1

The formula for the UMVCUE (assuming L > 1) is then as follows.

Û = E

(
Y
n2

∣ Z = z,Q
)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
n2

∑
y∈A

y

(
n2

y

)(
n1M

z1 − y

)
∑
y∈A

(
n2

y

)(
n1M

z1 − y

) if i1 > i2 and d(z2) ∈ Z

1
n2

∑
y∈B

y

(
n2

y

)(
n1M

z1 − y

)
∑
y∈B

(
n2

y

)(
n1M

z1 − y

) otherwise

(1)

where

A =
{

max
(
0, z1 − n1M

)
,… ,min

(
z1 − d

(
z2

)
− 1, z1 − ⌈cM⌉, n2

)}
∶ conditions 1(a) and 2

B =
{

max
(
0, z1 − n1M

)
,… ,min

(
z1 −

⌈
d
(
z2

)⌉
, z1 − ⌈cM⌉, n2

)}
∶ conditions 1(b) and 2

and ⌈x⌉ is the ceiling function acting on x.
Note that if the summation over y goes up to n2 (so either max(A) = n2 or max(B) = n2), then, in fact,

Û = z1
n1M + n2

, which is just the usual MLE Ŝall. This makes it clear when the stage 1 selection exerts no

biasing effect at all.
If L = 1, then the dependence on Z2 disappears, and we are left with the simpler formula below.

Û = E

(
Y
n2

∣ Z1 = z1,Q

)
= 1

n2

∑
y∈A′

y

(
n2

y

)(
n1M

z1 − y

)
∑
y∈A′

(
n2

y

)(
n1M

z1 − y

)

where A′ =
{

max
(
0, z1 − n1M

)
,… ,min

(
z1 − ⌈cM⌉, n2

)}
.

3.3. Constructing confidence intervals

After calculating a point estimate for sM at the end of the study, it is natural to seek a confidence interval
as well. In this section, we describe two schemes for generating confidence intervals.

3.3.1. Nonparametric bootstrap. Firstly, we adapt the nonparametric bootstrap procedure originally used
by Pepe et al. [5]. Given trial data Z, the procedure follows the resampling schema below.

(1) Resample the first stage data for the selected classifier M = i1 (with replacement). This gives a
bootstrapped number of true positives X(B)

M .

(2) If X(B)
M ⩾ cM and r

(
X(B)

M

)
⩾ r

(
Xi2

)
,

(a) Resample the second stage data (with replacement), giving a bootstrapped number of true
positives Y (B).

(b) Calculate the UMVCUE Û(B) from equation (1), using X(B)
M ,Y (B) and the original observed

value Xi2
.

These steps are then repeated for a large value of B, so that there are enough sampled values of Û(B) to
accurately assess its sampling distribution. The 𝛼∕2 and (1 − 𝛼∕2) empirical quantiles are then used as
the (1 − 𝛼)% confidence interval. Bootstrapped confidence intervals for the naïve estimators Ŝ2 and Ŝall
are also immediately available following this procedure.
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3.3.2. Sill–Sampson approach. Alternatively, we can adapt the approach used by Sill and Sampson [16],
who found exact likelihood-based confidence intervals for sM in the context of two-stage adaptive clinical
trial. The derivation is similar to that in the work of Sill and Sampson [16], but we remove the control
arm and also additionally allow for early stopping for futility and unequal first stage sample sizes. See
Appendix A.2 for further details.

Defining X−1 ∶=
(
Xi2
,… ,XiL

)
, then the conditional distribution used to find the confidence

intervals is

fQ
(
Z1|X−1

)
= 𝜇−1

[
sM∕

(
1 − sM

)]Z1
∑

XM∈D

(
n1M

XM

)(
n2

Z1 − XM

)
where

𝜇 ∶=
n1M+n2∑

T=b

[
sM∕

(
1 − sM

)]T ∑
XM∈D

(
n1M

XM

)(
n2

T − XM

)
is the normalising constant and

D =

{{
max

(
d
(
Xi2

)
+ 1,Z1 − n2, ⌈cM⌉, 0) ,… ,min

(
Z1, n1M

)}
if i1 > i2 and d

(
Xi2

)
∈ Z{

max
(⌈

d
(
Xi2

)⌉
,Z1 − n2, ⌈cM⌉, 0) ,… ,min

(
Z1, n1M

)}
otherwise

b =

{
max

(
d
(
Xi2

)
+ 1, ⌈cM⌉, 0) if i1 > i2 and d

(
Xi2

)
∈ Z

max
(⌈

d
(
Xi2

)⌉
, ⌈cM⌉, 0) otherwise.

Suppose we observe Z1 = Zobs. To construct the (1−𝛼)% confidence interval for sM , use the following
functions:

p1

(
sM

)
∶=

Zobs∑
Z1=b

fQ
(
Z1|sM ,X−1

)
and

p2

(
sM

)
∶=

n1M+n2∑
Z1=Zobs

fQ(Z1|sM ,X−1).

Bounds for a two-sided (1−𝛼)% confidence interval
[
Δ1,Δ2

]
can then be found by solving the equations

p2

(
Δ1

)
= 𝛼1 and p1

(
Δ2

)
= 𝛼2 respectively, where 𝛼1 + 𝛼2 = 𝛼.

The original Sill–Sampson approach sets 𝛼1 = 𝛼2 = 𝛼∕2, but this does not (in general) give the shortest
confidence interval. We also experimented with choosing 𝛼1 and 𝛼2 to minimise the confidence interval
length, which we refer to as ‘optimised’ Sill–Sampson confidence intervals.

3.3.3. Clopper–Pearson approach. In order to see how the Sill–Sampson approach compares with
using confidence intervals for the MLE, we use the well-known Clopper-Pearson method [20]. This
uses the likelihood of the usual MLE to construct exact confidence intervals. Hence, the Sill–Sampson
and Clopper–Pearson approaches are both likelihood based, but only the first takes into account the
selection rules.

The Clopper–Pearson approach is as follows. Suppose we observe Z1 = Zobs. Then to construct the
(1 − 𝛼)% confidence interval for sM , use the following functions:

p1

(
sM

)
∶=

n1M+n2∑
Z1=Zobs

(
n1M + n2

Z1

)
sZ1

M

(
1 − sM

)n1M+n2−Z1

and

p2

(
sM

)
∶=

Zobs∑
Z1=0

(
n1M + n2

Z1

)
sZ1

M

(
1 − sM

)n1M+n2−Z1 .
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Bounds for a two-sided (1−𝛼)% confidence interval
[
Δ1,Δ2

]
can then be found by solving the equations

p2

(
Δ1

)
= 𝛼∕2 and p1

(
Δ2

)
= 𝛼∕2 respectively.

4. Simulation studies

We now perform a simulation study using a typical trial design. Consider a two-stage trial conducted on K
potential diagnostic biomarkers, where the interest is in finding the biomarker with the highest sensitivity.
In stage 1, the ith biomarker is tested on a population that contains n1i known case subjects, where the n1i
are not necessarily identical.

Suppose there already exists a biomarker with known sensitivity c̄ = 0.70. Hence, the fixed cut-off
for biomarker i is set to ci = 0.70n1i. The biomarkers that satisfy Xi ⩾ ci are then ranked by sensitivity,
giving r

(
Xi

)
= Xi∕n1i and d

(
Xj

)
= n1iXj∕n1j. Finally, the selected biomarker (with label M = i1) is taken

forward to stage 2, where it is tested on an additional population with n2 = 50 case subjects.

4.1. Point estimation

To start with, consider a simple simulation with K = 3 biomarkers with equal true sensitivities
S = (0.70, 0.70, 0.70). Each biomarker is tested on the same population of 50 case subjects, giving
n1 = (50, 50, 50) and c = 0.70n1 = (35, 35, 35). Figure 2 gives the probability mass functions of
100,000 realisations of the three estimators Ŝall, Ŝ2 and Û. Note the slight negative skew evident in the
distribution of Û. The empirical biases and MSEs were (0.0308, -0.0001, -0.0001) and (0.0024, 0.0042,
0.0033) respectively.

Table I shows the bias and MSE of the estimators for a range of further parameter values for S and
n1, where n2 = 50 and c = 0.70n1 as before. P(continue) gives the probability that the whole trial
continues to the validation stage, while P(best) is the probability that the biomarker with the highest (or
joint-highest) sensitivity is selected for validation in stage 2, conditional on the trial actually continuing
to the validation stage.

The MLE Ŝall is biased high, and this bias is most pronounced for larger values of K and when the true
sensitivities are similar. Note that Ŝall is still biased even when the probability of continuing to stage 2
is close to 100% (e.g. scenario 6). This indicates two sources of bias: the bias due to early stopping and

0.
00

0.
04

0.
08

0.
12

P
ro

ba
bi

lit
y

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Estimate

P
ro

ba
bi

lit
y

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Figure 2. Probability mass functions of the estimators for S = (0.70, 0.70, 0.70), n1 = (50, 50, 50), c = 0.70n1 =
(35, 35, 35) and n2 = 50. Each mass function is based on 100,000 simulations.
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Table I. Simulation results with n2 = 50 and c = 0.70n1. The mean bias and MSE shown are 100 times the
actual estimates. There were 100,000 simulations for each set of parameter values.

Bias (MSE)×100

Parameter values P(continue) P(best) Ŝall Ŝ2 Û

1. S = (0.50, 0.70) 0.570 0.997 2.289 0.016 0.000
n1 = (50, 50) (0.199) (0.421) (0.313)

2. S = (0.60, 0.80) 0.914 0.906 1.097 −0.006 −0.003
n1 = (15, 25) (0.222) (0.336) (0.267)

3. S = (0.50, 0.70, 0.70) 0.810 0.987 2.909 −0.005 −0.006
n1 = (25, 25, 20) (0.313) (0.420) (0.376)

4. S = (0.50, 0.60, 0.70, 0.80) 0.985 0.807 1.400 −0.015 −0.001
n1 = (30, 40, 40, 40) (0.197) (0.340) (0.244)

5. S = (0.58, 0.60, 0.62, 0.64) 0.580 0.422 4.689 −0.005 0.010
n1 = (40, 35, 30, 30) (0.426) (0.466) (0.418)

6. S = (0.70, 0.70, 0.70, 0.70) 0.965 1 3.465 0.032 0.023
n1 = (50, 50, 50, 50) (0.265) (0.420) (0.336)

the bias due to selecting the ‘best’ classifier from a set of candidates. The first source of bias would be
expected to disappear when the probability of continuing to stage 2 is 100% but not the second.

The UMVCUE Û is unbiased as expected, and it also has a lower MSE than the unbiased estimator
Ŝ2 that only uses the stage 2 data. Indeed, there was a reduction of MSE ranging from 10% (for
scenario 5) to 28% (for scenario 1). However, Û generally has a greater MSE than Ŝall, by up to 57%
(for scenario 1). This is not always the case – for scenario 5, the large bias of Ŝall leads to a slightly
greater MSE.

4.2. Interval estimation

We also consider the coverage of the confidence intervals constructed using the two procedures in
Section 3.3, with 𝛼 = 0.05. Table II shows the resulting mean coverage and confidence interval width for
the scenarios in Table I.

The coverage for the MLE Ŝall calculated using the nonparametric bootstrap is substantially lower than
the nominal 95%, with values as low as 73% (for scenario 6). In contrast, the bootstrap coverage of the
UMVCUE Û is much closer to the nominal, hovering around 94% for all the scenarios. The bootstrapped
confidence interval widths are greater for Û than for Ŝall, with an increase ranging from 16% (for scenario
2) up to 51% (for scenario 7).

Using exact (likelihood-based) approaches give better coverage for both the MLE and UMVCUE, at
the cost of slightly wider confidence intervals. For the MLE, the Clopper–Pearson approach gives conser-
vative coverage for the majority of the scenarios, except for the last two sets of parameter values where
the coverage was less than the nominal 95%. In contrast, the Sill–Sampson approach gives conservative
confidence intervals for all the parameter values considered. This results in an increase in confidence
interval width ranging from 11% (for scenario 2) up to 31% (for scenario 7).

Using optimised Sill–Sampson confidence intervals gives a slight reduction in width and coverage,
although the latter is still above 95% in all the scenarios. However, this comes at a much greater computa-
tional cost when simulating a large number of trials. Hence, we do not consider optimised Sill–Sampson
confidence intervals any further in this research article.

4.3. Hypothesis testing

Consider now testing the hypothesis H0 ∶ sM ⩽ s∗ versus H1 ∶ sM > s∗, using exact 95% one-sided con-
fidence intervals. We compare using Clopper–Pearson confidence intervals for Ŝall with the Sill–Sampson
approach, where H0 is rejected if s∗ is less than the lower bound of the confidence interval. For a given
set of true sensitivities S, let S0 =

{
s ∈ S ∶ s ⩽ s∗

}
. Then we define the conditional type I error rate as

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 1417–1437
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𝛼 = P
(
reject H0|sM ∈ S0,Q

)
. The unconditional type I error rate is defined as P

(
reject H0, sM ∈ S0

)
,

where there is no conditioning on continuing to stage 2.
Similarly, the conditional power of the test is defined as P

(
reject H0|sM ∈ S∖S0,Q

)
. The unconditional

power is P
(
reject H0, sM ∈ S∖S0

)
, with no conditioning on continuing to stage 2.

Figure 3 shows the conditional and unconditional type I error rates and powers when the sensitivities
are constrained to the set S = (0.50, 0.60, 0.70, 0.80), with stage 1 sample sizes n1 = (30, 40, 40, 40).
Using the Clopper–Pearson confidence intervals for Ŝall can give highly inflated conditional type I error
rates (as high as 24%), particularly for values of s∗ that are just above 0.60 or 0.70.

In contrast, using the Sill–Sampson approach guarantees that the conditional type I error rate will be
less than 5% for all values of s∗. This comes at the cost of lower power, both conditionally and uncondi-
tionally. Note that while using exact confidence intervals for the MLE does not control the type I error
conditionally, it does control it unconditionally since P

(
sM ∈ S0

)
is low when s∗ < 0.70.

Figure 4 shows the conditional and unconditional type I error rates and powers for the scenario
S = (0.70, 0.70, 0.70) and n1 = (50, 50, 50). This time, using the confidence intervals for Ŝall gives inflated
type I error rates both conditionally and unconditionally. Even unconditionally, the type I error rate can
be as high as 11%. In contrast, the Sill–Sampson approach again guarantees that the type I error rate will
be less than the nominal 5%. However, this is at the cost of a substantial loss of power compared with
using the MLE.

0.60 0.65 0.70 0.75 0.80 0.85 0.900.
00

0.
05

0.
10

0.
15

0.
20

0.
25

S* S*

S* S*

C
on

di
tio

na
l t

yp
e 

I e
rr

or
 r

at
e

Clopper−Pearson

Sill−Sampson

0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
on

di
tio

na
l p

ow
er

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

U
nc

on
di

tio
na

l t
yp

e 
I e

rr
or

 r
at

e

0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U
nc

on
di

tio
na

l p
ow

er

Figure 3. Conditional and unconditional type I error rates and power for testing the hypothesis H0 ∶ sM ⩽ s∗
versus H1 ∶ sM > s∗, using exact 95% one-sided confidence intervals. The true sensitivities are constrained to the
set S = (0.50, 0.60, 0.70, 0.80), with stage 1 sample sizes n1 = (30, 40, 40, 40). Plots show the results from 10,000

simulated sets of trial data. The horizontal line shows the nominal 5% level.
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Figure 4. Conditional and unconditional type I error rates and power for testing the hypothesis H0 ∶ sM ⩽ s∗
versus H1 ∶ sM > s∗, using exact 95% one-sided confidence intervals. The true sensitivities are constrained to
the set S = (0.70, 0.70, 0.70), with stage 1 sample sizes n1 = (50, 50, 50). Plots show the results from 10,000

simulated sets of trial data. The horizontal line shows the nominal 5% level.

5. Application to the family history questionnaire study

In this section, we return to the motivating example of the two-stage FHQ study by Walter et al. [19].
Although a 𝜒2-test for concordance was carried out before pooling data from the two stages, a natural
question to ask is whether any bias was induced into the results by the stage 1 selection rules. Using
the framework for bias adjusted inference outlined in Section 3, we calculate the UMVCUE and exact
confidence intervals for the sensitivities of the selected questions.

5.1. Model description for the family history questionnaire

We use a slightly simplified version of the study design formulated in Section 3.1. Note that this model
does not consider combinations of questions; hence, steps 3 and 4 in stage 1 are ignored. In the discussion,
we comment on how the approach could potentially be extended to consider combinations of questions. In
what follows, the focus is on estimating the sensitivity of the selected questions. The model for estimating
the specificity, or other measures of diagnostic performance, will be very similar.

In the first stage, K questions are assessed on a case-control population, with the results for the ith

question available on n1i cases and m1i controls. Let Xi denote the number of true positives (TP) for the
ith question (i = 1,… ,K). That is, the total number of ‘yes’ responses from the case population. Then
the Xi are assumed to follow independent binomial populations: Xi ∼ Bin

(
n1i, si

)
, where si denotes

the true sensitivity of question i. In Section 5.3.2 we explore the performance of the method when this
independence assumption in violated, as was the case (to a very limited extent) with the FHQ data.
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Table III. Contingency table for Fisher’s exact test.

Question i

‘Yes’ = 1 ‘No’ = 0

Increased risk 1 Xi n1i − Xi

No increased risk 0 FPi TNsi

It is worth noting that when analysing the sensitivity of the selected questions, we are explicitly condi-
tioning on the specificity results (i.e. the number of false positives and true negatives) in addition to what
was specified in Section 3.2. We use this fact for both of the selection procedures: Fisher’s exact test and
ranking by balanced accuracy.

5.1.1. Fisher’s exact test cut-off. Firstly, Fisher’s exact test is applied to the contingency table given in
Table III where FPi = number of false positives and TNi = number of true negatives for question i. As the
focus is in estimating the sensitivity and we are conditioning on the observed specificity results from the
trial, then the values of FPi and TNi are considered fixed for each i.

The aim is to find the threshold that Xi must pass in order for Fisher’s exact test to give a p-value
pi < 0.05. That is, the value of ci such that Xi ⩾ ci ⇒ pi < 0.05. Because the FPi and TNi are fixed, then
we can do so by simply setting ci as the smallest value in

{
0, 1,… , n1i

}
such that pi < 0.05 for all Xi ⩾ ci.

Note that the conditioning on the observed number of false positives and true negatives is important.
Indeed, another way of finding the Fisher’s exact test threshold for the Xi would be to only consider the
row and column totals as fixed, hence, allowing FPi and TNi to vary also. However, this would induce
dependence between the Xi and the ci, which would invalidate the derived form of the UMVCUE.

Although a two-sided Fisher’s exact test was used in a study, we did not have to consider departures
towards the other extreme – i.e. values of Xi ≪ bi that gave pi < 0.05. This was because all of the
significant questions in the study actually passed the upper threshold ci. In addition, we would not be
interested in a question that had especially low values of Xi, because this would imply a low sensitivity.
The balanced accuracy ranking (see the succeeding paragraphs) should rule out such questions being
carried forward to stage 2.

In summary, for each i ∈ {1,… ,K}, there is an associated fixed threshold ci. If Xi ⩾ ci then Fisher’s
exact test will give a p-value < 0.05; thus, Xi will be considered further in the balanced accuracy ranking.

Suppose L > 0 questions are identified as significant. Let X∗
i (i = 1,… ,L) denote the number of true

positives, where the relabelling preserves the order of the original labelling.

5.1.2. Balanced accuracy ranking. The significant question with the greatest balanced accuracy is now
selected. If there is a tie (which did not occur in the study data), we assume that the question with the
smallest index would be chosen.

Now, suppose question i has a greater balanced accuracy than question j. This implies the following
inequality on X∗

i and X∗
j :

Accuracyi ⩾ Accuracyj

⇒
(
Sensitivityi + Specificityi

)
⩾
(
Sensitivityj + Specificityj

)
⇒

X∗
i

n1i
+ Spi ⩾

X∗
j

n1j
+ Spj

⇒ X∗
i ⩾ n1i(Spj − Spi) +

n1i

n1j
X∗

j

(2)

where Spi = Specificityi ∶=
TNi

TNi+FPi
.

Let
(
i1, i2,… , iL

)
denote the vector of indices of the X∗

i after they have been ordered by balanced
accuracy, and let M = i1. Then from equation (2) the following inequality holds:

X∗
M ⩾ nM

(
Spi2

− SpM

)
+

n1M

n1,i2

X∗
i2
. (3)
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In the second stage, we test the selected question M from stage 1 on n2 additional cases and m2 addi-
tional controls. Let Y denote the number of true positives recorded in stage 2. Note that Y ∼ Bin

(
n2, sM

)
,

and is independent of XM .

5.2. The uniformly minimum variance conditionally unbiased estimator

To find the UMVCUE for the sensitivity sM of the selected question (after the end of stage 2), we use
equation (1), where

d
(
Z2

)
=

n1MZ2

n1,i2

+ n1M

(
SpM − Spi2

)
.

Equation (1) holds when the number of significant questions L satisfies L > 1, which is what occurred
in this study for all of the diseases considered.

5.3. Results

We now apply our results to the trial data from the FHQ study, first repeating the analysis carried out
in the work of Walter et al. [19]. Fisher’s exact test indicated that an increased risk of diabetes was
associated with questions 1 and 3 (p = 0.004 and p < 0.001). For IHD, questions 1, 2, 3 and 8 were
significant (p = 0.013, p < 0.001, p = 0.018 and p = 0.048). For breast cancer (females only), there was
a significant association for questions 6, 7, 8, 12a and 12b (p < 0.001, p < 0.001, p < 0.001, p < 0.001
and p = 0.002). Finally, increased risk of colorectal cancer was associated with questions 10 and 11
(p < 0.001 for both).

Table IV shows the sensitivities, Fisher’s exact test thresholds (FT) and balanced accuracies for each
question. The questions that passed the Fisher threshold are shown in bold, with the ultimately selected
question also boxed. If the significant question with the highest balanced accuracy is chosen, then ques-
tion 3 is selected for diabetes, question 2 for IHD, question 8 for breast cancer and question 10 for
colorectal cancer.

5.3.1. Uniformly minimum variance conditionally unbiased estimator for the selected questions. Using
the data from stages 1 and 2, we now calculate the value of the UMVCUE Û for the sensitivity of the
selected question for each condition, and compare it with the various naïve estimators of the sensitivity
(Ŝ1, Ŝ2, Ŝall). Ŝ2 and Ŝall are defined as before, while Ŝ1 ∶= XM∕n1M is the estimated sensitivity just using
the stage 1 data.

Table V gives the values of the estimators for each disease, along with exact (likelihood-based) two-
sided 95% confidence intervals. For (Ŝ1, Ŝ2, Ŝall), Clopper–Pearson confidence intervals are used, while
the Sill–Sampson confidence interval is shown for Û.

For diabetes, IHD and colorectal cancer, the UMVCUE is identical to the MLE Ŝall that uses data from
both stages. This is a consequence of the formula for Û as described earlier. In addition, the Sill–Sampson
confidence intervals for diabetes and IHD are virtually identical to the Clopper–Pearson intervals for Ŝall.
This is an attractive feature: the approach is able to identify when selection bias is not an issue.

However, for breast cancer, the UMVCUE is smaller than Ŝall. Looking at the individual estimates for
the stages Ŝ1 and Ŝ2, there is an especially large relative drop from 0.731 to 0.636 between stages 1 and
2, which supports the idea that the stage 1 data was biased high by the selection criteria. Figure 5 gives
a graphical representation of the breast cancer data.

If we follow Walter et al. [19] and use Pearson’s 𝜒2-test to compare the sensitivity between the two
stages, the p-values are 0.873, 1.000, 0.696 and 0.920 for diabetes, IHD, breast cancer and colorectal can-
cer, respectively. It is interesting to note that the p-value for breast cancer is substantially lower than those
for the other diseases, although it is still far above 0.05. This suggests that the 𝜒2-test is too conservative
as a tool for detecting bias in the stage 1 data.

Indeed, for breast cancer, suppose we assume that the stage 1 data as well as the total number of cases
in stage 2 are fixed. Then the number of true positives in stage 2 would have to be less than or equal to 8
(i.e. a sensitivity less than 0.363) in order for the 𝜒2-test to reject the null hypothesis.

5.3.2. Correlation. Finally, we consider the effect of correlation on the sensitivity estimates for the
FHQ data. Recall that the data were assumed to be drawn from independent populations. However, in
the FHQ study, each participant answered multiple questions. It sometimes happens that the answer to
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Table V. Uniformly minimum variance conditionally unbiased estimators (UMVCUE) and naïve estimators
for the selected questions for each disease, with exact (likelihood-based) 95% confidence intervals.

Condition Question Ŝ1 Ŝ2 Ŝall Û

Diabetes 3 0.982 0.970 0.977 0.977
(0.938, 0.998) (0.914, 0.994) (0.946, 0.992) (0.946, 0.992)

Ischaemic heart disease 2 0.925 0.931 0.928 0.928
(0.844, 0.972) (0.845, 0.977) (0.874, 0.963) (0.874, 0.963)

Breast 8 0.731 0.636 0.688 0.662
cancer (0.522, 0.884) (0.407, 0.828) (0.537, 0.813) (0.455, 0.806)

Colorectal 10 0.846 0.750 0.800 0.800
cancer (0.546, 0.981) (0.428, 0.945) (0.593, 0.932) (0.579, 0.932)

Û

Ŝall

Ŝ2

Ŝ1

0.40 0.50 0.60 0.70 0.80 0.90

Sensitivity

E
st

im
at

o
r

Figure 5. Plot of point estimates and exact (likelihood-based) 95% confidence intervals for the breast cancer data.

Table VI. Correlation matrix for all of the stage 1 data in the family history questionnaire study, using pairwise-
complete responses.

Q1 Q2 Q3 Q5 Q6 Q7 Q8 Q10 Q11 Q12a Q12b

Q1 1 0.142 0.121 0.051 0.072 0.028 0.096 0.047 0.086 0.049 0.062
Q2 0.142 1 0.101 0.090 0.056 0.033 0.062 0.006 0.050 0.002 0.063
Q3 0.121 0.101 1 −0.003 0.067 0.027 0.013 0.005 0.069 0.022 0.029
Q5 0.051 0.090 −0.003 1 0.006 0.016 0.014 −0.049 −0.014 0.121 0.012
Q6 0.072 0.056 0.067 0.006 1 0.005 0.018 0.045 −0.002 0.085 0.096
Q7 0.028 0.033 0.027 0.016 0.005 1 0.282 0.004 −0.007 0.116 0.124
Q8 0.096 0.062 0.013 0.014 0.018 0.282 1 −0.023 0.056 0.240 0.112
Q10 0.047 0.006 0.005 −0.049 0.045 0.004 −0.023 1 0.193 0.084 0.112
Q11 0.086 0.050 0.069 −0.014 −0.002 −0.007 0.056 0.193 1 0.187 0.121
Q12a 0.049 0.002 0.022 0.121 0.085 0.116 0.240 0.084 0.187 1 0.395
Q12b 0.062 0.063 0.029 0.012 0.096 0.124 0.112 0.112 0.121 0.395 1

one questions should (logically at least) determine the answer to another question as well. For example,
answering ‘yes’ to question 12b should mean that the answer to question 12a will also be ‘yes’. For
these two reasons, we might expect there to be some correlation between the sensitivity estimates for
different questions. The correlation matrix (using pairwise-complete responses) for all of the stage 1 data
is displayed in Table VI.
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Reassuringly, the correlations between all of the questions appears to be rather small, with a mean
(absolute) pairwise correlation of just 0.07. The maximum correlation coefficient was 0.395, for the pair
(Q12a, Q12b), which is explained by the aforementioned reason.

Nevertheless, we simulated FHQ-like data with the above correlation structure, using a modified
version of the R package bindata [21]. The true sensitivities were assumed equal to the estimated
stage 1 sensitivities, with 50,000 simulated data sets for each condition. For breast cancer the UMVCUE
had a mean bias of -0.0082, which is less than 32% of the observed correction to the MLE for the actual
FHQ data. For the other diseases there was no appreciable bias.

6. Discussion

In this research article, we present a framework for conditional estimation for a general two-stage trial
design with binary classifiers. By allowing for generalised selection rules and arbitrary futility thresholds,
our estimation strategy can be applied to a wide range of two-stage validation study designs. In particular,
complex ranking criteria can be reverse engineered to fit within our framework.

We showed that using the usual MLE can lead to substantial conditional bias, especially when there are
many candidate classifiers under consideration with similar true sensitivities. In contrast, the UMVCUE
is indeed unbiased but often at the expense of a larger MSE. However, there are still large savings in
efficiency when compared with just using the unbiased stage 2 data.

The usual MLE also can suffer from incorrect confidence interval coverage and inflated type I error
rates for hypothesis testing, both conditionally and unconditionally. These issues can be avoided by using
the Sill–Sampson approach to find exact confidence intervals, although this comes at the cost of reduced
power. Although this approach is somewhat conservative, when presenting the results of a trial to a reg-
ulatory authority, any inflation in the type I error rate above the advertised level is likely to be deemed
unacceptable [16].

The application of our inferential technique to the FHQ data demonstrated how the UMVCUE can
identify whether selection bias is an issue. Point estimates for the selected questions using the UMVCUE
and the MLE were identical for three of the conditions, with virtually identical confidence intervals as
well. However, for breast cancer, the UMVCUE was able to identify and correct for the bias induced in
the MLE. We also found that with the correlation structure present in the FHQ data, these results were
not significantly affected by the minor violations of the independence assumption.

Our focus in this research article was in deriving unbiased estimators for the true sensitivity of
the chosen classifier. However, by relaxing the unbiasedness condition slightly, it may be possible to
achieve a lower MSE. One approach we tried was to use median unbiased estimates, as described by
Jovic and Whitehead [22]. Briefly, using the distribution functions p1

(
sM

)
and p2

(
sM

)
defined for the

Sill–Sampson approach, the (approximate) median unbiased estimator is given by 1
2

(
Δ1 + Δ2

)
, where

p2

(
Δ1

)
= 0.5 and p1

(
Δ2

)
= 0.5. However, we found that there was no gain over the UMVCUE in terms

of MSE, and the estimator was indeed biased slightly low in its mean.
We only considered a design that selects and evaluates the performance of a single classifier. However,

many studies (including the FHQ study) combine multiple classifiers into risk prediction models. Much
further research is needed to explore conditional estimation for combinations of classifiers, especially
given the wide variety of model selection and validation procedures present in the literature. For example,
recent work by Koopmeiners et al. [23] describes the issue of testing and validating a panel of biomarkers.
Accounting for correlation will clearly be essential here too.

One way to try and deal with correlated classifiers is to decorrelate the variables of interest, as described
by Zuber and Strimmer [24] in the context of biomarker discovery and gene-ranking by t-scores. However,
is not clear whether similar transformations can be applied to binary data without altering its distribution.

A related issue would be to consider joint inference on the sensitivity and specificity. As mentioned
in Section 5, by conditioning on the observed specificity results we treated the number of true negatives
(and false positives) as fixed values. If we instead considered the number of true negatives as a binomial
random variable (possibly correlated with the number of true positives), then further work would be
needed to allow conditionally unbiased estimation. A complicating factor would be determining how
the ranking criterion and ‘fixed’ thresholds change as the number of true positives and negatives are
jointly varied.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 1417–1437
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Finally, another extension would be to consider inference trials with more than two stages. Bowden and
Glimm [11] describe conditionally unbiased estimates for normally distributed outcomes with multiple
stages of selection, and their approach could be extended to the binomial setting.

Appendix A

A.1. Proof of the completeness and sufficiency of Z

Here we prove the following theorems (originally theorems 2.1 and 3.1 in the work of Tappin [18]).

Theorem A.1
The statistic Z =

(
Z1, Z2,… ,Z2L

)
is sufficient for

(
s1, s2,… , sL

)
, where

Z1 = XM + Y ,Z2 = Xi2
,… ,ZL = XiL

ZL+1 = i1,ZL+2 = i2,… , Z2L = iL

Proof
The joint distribution of X,Y is as follows:

f (X,Y) =
(

n1M

XM

)
sXM

M

(
1 − sM

)n1M−XM

(
n2

Y

)
sY

M

(
1 − sM

)n2−Y

×
∏
j≠M

(
n1j

Xj

)
s

Xj

j

(
1 − sj

)n1j−Xj

=

[
sXM+Y

M

(
1 − sM

)n1M+n2−(XM+Y)∏
j≠M

s
Xj

j

(
1 − sj

)n1j−Xj

]

×

[(
n1M

XM

)(
n2

Y

)∏
j≠M

(
n1j

Xj

)]
.

Thus according to the factorisation criteria, the statistic Z is sufficient for
(
s1, s2,… , sL

)
.

Theorem A.2
When ties are broken by selecting the population with the smallest index, the sufficient statistic Z is also
complete.

Proof
Following Tappin [18] and Jung and Kim [25], we prove the result for L = 2 classifiers, and note that the
argument easily extends to arbitrary L > 2.

For an arbitrary function g(⋅), defined on the range of Z, we will show that Es

[
g(z)

]
≡ 0 for all

s =⇒ g(z) ≡ 0. Without loss of generality, we assume that d
(
z2

)
∈ Z. Let

A1 =
{

Z ∶ z3 = 1, ⌈ci2
⌉ ⩽ z2 ⩽ n1i2

,max
(
0, ⌈cM⌉, d(z2

))
⩽ z1 ⩽ n1M + n2

}
A2 =

{
Z ∶ z3 = 2, ⌈ci2

⌉ ⩽ z2 ⩽ n1i2
,max

(
0, ⌈cM⌉, d(z2

)
+ 1

)
⩽ z1 ⩽ n1M + n2

}
.

Note that Z1 = XM ,Z2 = Xi2
,Z3 = M = i1 and Z4 = i2. Because Z1 = XM + Y , then the distribution of(

X,Z1

)
is given by

f
(
X, Z1

)
=
(

n1M

XM

)(
n12

Z2

)(
n2

Z1 − XM

)
sZ1

M

(
1 − sM

)n1M+n2−Z1 sZ2

2

(
1 − s2

)n12−Z2

We can now find the distribution of Z by summing over the support of XM:

f (Z) = 𝜅(z)sZ1

M

(
1 − sM

)n1M+n2−Z1 sZ2

2

(
1 − s2

)n12−Z2 .
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where

𝜅(z) =

[(
n12

Z2

) ∑
XM∈D

(
n1M

XM

)(
n2

Z1 − XM

)]

and

D =

{{
max

(
d
(
Z2

)
+ 1,Z1 − n2, ⌈cM⌉, 0) ,… ,min

(
Z1, n1M

)}
if i1 > i2{

max
(⌈

d
(
Z2

)⌉
, Z1 − n2, ⌈cM⌉, 0) ,… ,min

(
Z1, n1M

)}
otherwise.

Thus

h(s) ∶= Es

[
g(z)

]
=

∑
z∈A1

g(z)𝜅(z)
(
1 − s1

)n11+n2−Z1 sZ2

2

(
1 − s2

)n12−Z2

+
∑
z∈A2

g(z)𝜅(z)sZ1

2

(
1 − s2

)n12+n2−Z1 sZ2

1

(
1 − s1

)n1i2
−Z2

(4)

Let P (s, j, k) ∶= h(s)∕sk
j and Q (s, j, l) ∶= h(s)∕(1 − sj)l for j ∈ {1, 2}. Each term, say term i,

in equation (4) has the factor sk1i

1

(
1 − s1

)l1i sk2i

2

(
1 − s2

)l2i for some non-negative integers k1i, k2i, l1i, l2i.
Because all terms have different factors, that is,

(
k1i, k2i, l1i, l2i

)
≠
(
k1j, k2j, l1j, l2j

)
for i ≠ j, any subset of

the terms in equation (4) has a unique minimum among
{

k1i, k2i, l1i, l2i

}
.

On the one hand, if
{

k1i

}
has a unique minimum k1 and because P

(
s, 1, k1

)
= 0 for all s, letting s1 → 0

and s2 > 0 show that g(z) = 0, where g(z) is the coefficient of the term with the sk1

1 factor. Similarly, if{
k2i

}
has a unique minimum k2 and because P

(
s, 2, k2

)
= 0 for all s, letting s2 → 0 and s1 > 0 show

that g(z) = 0, where g(z) is the coefficient of the term with the sk2

2 factor.
On the other hand, if

{
l1i

}
has a unique minimum l1 and because Q

(
s, 1, l1

)
= 0 for all s, letting s1 → 1

and s2 > 0 show g(z) = 0, where g(z) is the coefficient of the term with the
(
1 − s1

)l1 factor. Similarly,
if
{

l2i

}
has a unique minimum l2 and because Q

(
s, 2, l2

)
= 0 for all s, letting s2 → 1 and s1 > 0 show

g(z) = 0, where g(z) is the coefficient of the term with the
(
1 − s2

)l2 factor.
Whichever coefficient is 0, we remove that term from h(s) before the next step. We continue

this procedure until all terms in equation (4) are removed, concluding that g(z) ≡ 0 for all z in the support
of Z.

A.2. Derivation of the Sill–Sampson approach

Defining X =
(
X1,… ,XL

)
, consider the joint distribution of X,Y|Q:

fQ (X,Y) = K(s)−1IQ(X)Π
(

n1M

XM

)
sXM

M

(
1 − sM

)n1M−XM

(
n2

Y

)
sY

M

(
1 − sM

)n2−Y

where K(s), with s =
(
s1,… , sL

)
, is the probability of observing the event Q, IQ(X) is the indicator

function for Q, and

Π =
∏
j≠M

(
n1j

Xj

)
s

Xj

j

(
1 − sj

)n1j−Xj

Because Z1 = XM + Y , the distribution of X,Z1|Q is given by

fQ
(
X,Z1

)
= K(s)−1IQ(X)Π

(
n1M

XM

)(
n2

Z1 − XM

)
sZ1

M

(
1 − sM

)n1M+n2−Z1
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We can now find the distribution of the complete sufficient statistic Z conditional on Q by summing
over the support of XM:

fQ(Z) = fQ
(
Z1,X−1

)
= ΠK(s)−1IQ′

(
X−1

)
sZ1

M

(
1 − sM

)n1M+n2−Z1
∑

XM∈D

(
n1M

XM

)(
n2

Z1 − XM

)
.

where IQ′

(
X−1

)
is the indicator function for X−1 ∶=

(
Xi2
,… ,XiL

)
on Q′ =

(
𝜓(i2) = 2,… , 𝜓

(
iL
)
=

L;Xi2
⩾ ci2

,… ,XiL
⩾ ciL

)
and

D =

{{
max

(
d
(
Z2

)
+ 1,Z1 − n2, ⌈cM⌉, 0) ,… ,min(Z1, n1M)

}
if i1 > i2 and d(Z2) ∈ Z{

max
(⌈

d
(
Z2

)⌉
,Z1 − n2, ⌈cM⌉, 0) ,… ,min(Z1, n1M)

}
otherwise.

Then the distribution of X−1 is

fQ
(
X−1

)
=

n1M+n2∑
Z1=b

fQ
(
Z1,X−1

)
where

b =

{
max

(
d
(
Z2

)
+ 1, ⌈cM⌉, 0) if i1 > i2 and d

(
z2

)
∈ Z

max
(⌈

d
(
Z2

)⌉
, ⌈cM⌉, 0) otherwise.

The conditional distribution used to find the confidence intervals is fQ
(
Z1|X−1

)
=

fQ
(
Z1,X−1

)
∕fQ

(
X−1

)
. Hence,

fQ
(
Z1|X−1

)
= 𝜇−1

[
sM∕

(
1 − sM

)]Z1
∑

XM∈D

(
n1M

XM

)(
n2

Z1 − XM

)

where

𝜇 ∶=
n1M+n2∑

T=b

[
sM∕

(
1 − sM

)]T ∑
XM∈D

(
n1M

XM

)(
n2

T − XM

)
is the normalising constant.
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