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Abstract  

Polymer supported bilayers (PSBs) are a recognised tool for drug discovery through function-

interaction analysis of membrane proteins. While silica supported bilayers (SSBs) spontaneously 

form from surface-adsorbed vesicles, successful PSB formation via a similar method has thus far 

been limited by insufficient understanding of the underlying vesicle-remodelling 

processes.  Here, we generated a polymer support through incubation of poly-L-lysine 

conjugated to alkyl chain terminated poly(ethylene)glycol on silica. This polymer-coated silica 

substrate yielded efficient vesicle adsorption and spontaneous bilayer formation thereby 

providing a rare opportunity to address the mechanism of PSB formation and compare it to that 

of SSB. The combined use of super resolution imaging, kinetics and simulations, indicates the 

rupture of stochastically formed vesicle-clusters is the rate-limiting step, which is an order of 

magnitude higher for silica than polymer-coated silica. This was confirmed by directly 

demonstrating increased rupture-rates for surface adsorbed multi-vesicle assemblies formed by 

vesicle cross-linking in solution.  Based on this key insight we surmised that a low propensity of 

cluster rupture can be compensated by an increase in number density of clusters: deposition of a 

mixture of oppositely charged vesicles resulted in bilayer formation on another alkane-PEG type 

of interface, which despite efficient vesicle adsorption, otherwise fails to support spontaneous 

bilayer formation. This potentially provides a universal strategy for promoting bilayer formation, 

on resistant surfaces without resorting to modification of the surface itself. Therefore, multi-

vesicle assemblies with tailored geometries could not only facilitate bilayer formation on 

polymers with interesting functional properties but also instigate exploration of vesicle 

architecture for other processes involving vesicle-remodelling such as drug delivery. 
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Introduction 

Silica supported bilayers (SSB) easily self-assemble
1, 2

 and are amenable to a large number of 

analytical, imaging 
3, 4, 5, 6, 7, 8, 9, 10

 and fluidic tools.
11, 12

 As a result they have served as model-

membranes for studying varied fundamental cellular processes: interaction dynamics of cell 

surface receptors 
10

 and enzyme-catalysis 
13

 necessary for signal transduction; membrane fusion 

necessary for neurotransmission; 
14

 protein mobility and organisation necessary for cell to cell 

communication 
15

 and protein-membrane interaction necessary for membrane remodelling and 

fission. 
16

 In order to better mimic the cellular environment the use of soft polymer-spacers 

between bilayer and the substrate has been long advocated. 
3, 17

 However, with a few exceptions, 

18, 19, 20, 21
 bilayer formation by vesicle deposition on soft polymer interfaces has proven difficult 

to achieve as our limited understanding of the underlying vesicle remodelling processes required 

for bilayer formation prevents rational design approaches.  

Through the use of bulk kinetics, it has been long recognised that the transformation of surface 

adsorbed vesicles into a bilayer occurs via multi-step vesicle remodelling processes. 
22, 23, 24

 Over 

the last decade membrane remodelling of substrate-bound giant and small uni-lamellar vesicles 

(GUV and SUV respectively) has been directly imaged by fluorescence microscopy, 
25, 26, 27

 

atomic force microscopy (AFM) 
28, 29, 30, 31, 32

 and interferometric scattering microscopy.
9
 This 

led to formulation of substrate-induced membrane remodelling paths that see 

surface-immobilised SUVs rupture or fuse (Scheme 1) i.e. (1) isolated vesicle rupture, 
9, 25

 (2) 

vesicle induced vesicle rupture, 
9, 25

 (3) vesicle-vesicle merger, 
25

 (4) bilayer edge induced 

vesicle rupture 
9, 27, 33

 and (5) bilayer-bilayer merger. 
27

 There is a lack of consensus regarding 

the relative contributions of these paths for SSB formation and due to a lack of polymers 

supporting spontaneous bilayer formation, contributions of these paths for PSB formation are 

completely unknown.  

For SSB formation, the behaviour of exponential growth in vesicle rupture at a critical coverage 

was qualitatively captured in simulations by assuming an instantaneous rupture of clustered 

vesicles
34

. Bilayer patches so produced efficiently grew via bilayer-edge induced assimilation of 

vesicles while isolated vesicles were stable. In another study, simulations emulating an 

adsorption isotherm also suggested critical vesicle density to be important for vesicle-rupture
35

. 

Again, rupture was promoted by neighbouring vesicles (clusters) and was instantaneous if a 

Page 3 of 44

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



number threshold was met. The bilayer-patches were suggested to grow mainly by the targeted 

adsorption of vesicles to the bilayer-edge 
35

; the efficiency of bilayer-edge-induced as well as 

spontaneous rupture of surface adsorbed vesicles was found to be low. 
35

 In contrast, label-free 

imaging of surface bound vesicles 
9
 suggested the rupture of isolated vesicles was the major 

source of bilayer-patches, with a critical vesicle density required to permit efficient spreading of 

the bilayer via bilayer-edge-induced vesicle (surface adsorbed) rupture rather than by vesicle-

induced vesicle-rupture or vesicle–vesicle merger. Thus, the rate limiting step(s) during SSB 

formation remain contentious and any inhibitory impact on them by lipid composition, and 

crucially the support-type, is still sparse; rendering PSB formation by rational design highly 

challenging. 

 

Scheme 1 Previously identified substrate-induced membrane remodelling pathways that see 

surface-immobilized SUVs rupture or fuse: (1) vesicle-vesicle merger, 
25

 (2) isolated vesicle rupture, 
9, 

25
 (3) vesicle induced vesicle rupture, 

9, 25
 (4) bilayer edge induced vesicle rupture 

9, 27, 33
 and (5) bilayer-

bilayer merger 
27

. 

 

Here, we conjugated poly-L-lysine to alkyl chain terminated poly(ethylene)glycol. Polymer 

coated silica-substrate fortuitously supported efficient vesicle adsorption and spontaneous bilayer 

formation thereby providing a unique opportunity to address why bilayers readily form on silica 

substrate yet have considerable difficulty on soft polymers. We attempted to gain insight into 

SSB and PSB formation through the combined use of super resolution imaging, kinetics and 

simulations specifically designed to determine the rates of the different vesicle remodelling 

pathways (Scheme 1). This facilitated identification of the rate limiting step. We find bilayer-

patch formation upon rupture of stochastically occurring vesicle clusters is the overall rate-

limiting step on both the supports. However, this rate is an order of magnitude smaller on the 
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polymer support. The increased rupture rate of clustered vesicles is directly demonstrated by 

depositing pre-cross-linked vesicles. Furthermore, we show that using a mixture of oppositely-

charged vesicles increases the propensity to form bilayers on a different alkane-PEG type of 

interface, which efficiently adsorbs vesicles but normally fails to support spontaneous bilayer 

formation.  We surmise this occurs due to an increased number density of clusters on the surface 

and perhaps by increasing their rate of rupture. This result implies that a strategy of mixing 

oppositely-charged vesicles may provide a near-universal method for nucleating bilayer patches, 

thereby enabling continuous bilayer formation on soft-polymer surfaces. Notably, this method 

does not require an alteration of the surface simply to promote bilayer formation. 

The results emphasise the role of multi-vesicle assemblies not only for PSB formation but 

potentially for other processes requiring vesicle-fusion such as drug delivery. 

 

Experimental Section 

We attempted to gain insight into SSB and PSB formation by developing a simulation 

specifically targeted at identifying the rate limiting steps. Our approach involved modelling 

vesicles and bilayers as explicit entities furnished with a rule set covering the pathways shown in 

Scheme 1. All but one path relies on the close proximity of multiple entities, the spatial 

distribution of vesicles as they are immobilised on the surface is therefore a key parameter and is 

determined experimentally using super-resolution fluorescence imaging. The simulation runs in a 

stepwise manner with the rate of each pathway recast as a probability of occurrence over the time 

scale of each step followed by calculation of experimentally accessible aggregate behaviour such 

as the fraction of intact vesicles and extent of membrane-merger as a function of time (Scheme 

2).  Experimental measurement of these i.e. fraction of intact vesicles and extent of membrane 

merger in conjunction with the amount of deposited vesicles (which serves as an input for the 

simulation) in real time was achieved simultaneously using a previously described system 

combining reflectance interferometry with total internal reflection fluorescence spectroscopy 

(RIF-TIRFS) and automated fluidic sample delivery. 
10, 36

  A direct comparison between 

measurements and simulations for the rates of vesicle rupture and membrane merger for partial 

and full coverage of the surface enabled determination of rate constants for different paths and 

identification of the rate-limiting steps for SSB and PSB formation for SUVs composed of 1-
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stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC).  

 

Scheme 2 Simulation stages: From an initial state (0) vesicles are deposited on the surface in accordance 

with the measured RIF trace at random locations outside the occluded area (i.e. not on top of a bilayer or a 

vesicle). (1) Vesicles in contact may merge with a probability PM. (2,3) Vesicles have a chance to rupture 

into bilayers: isolated vesicles with a probability P0; vesicles with N contacts with probability PN. (4,5) 

Bilayer edge induced vesicle rupture is carried out with a probability PR. Bilayer-bilayer merger always 

occurs to reflect the high reactivity of bilayer edges. The cycle is repeated every ∆t (typically 100 ms). 

For a given input RIF time-trace and different values of PM, P0, PN and PR fluorescence traces for 

membrane merger and vesicle rupture are simulated and   compared with the experimentally measured 

traces. 

 

Simultaneous measurement of rate of vesicle adsorption, vesicle rupture and membrane 

merger 

To correlate the rate and extent of vesicle deposition with vesicle rupture and membrane merger 

we employed a mixture of non-labelled SOPC SUVs , SUVs encapsulating RhoB and SUVs 

doped with 10 mol% of DHPE-OG488 such that the final vesicle proportions were 85:10:5 

respectively. Changes in surface adsorbed mass and emission intensities for OG488 and RhoB 

were measured simultaneously in real time using reflectance interference (RIF) and total internal 

reflection fluorescence spectroscopy (TIRFS) in flow-through conditions using a home-built set-

up described previously.
10, 36

  Partial or full surface coverage was achieved by varying the total 

lipid concentration while maintaining a constant injection time.  

 

Determination of spatial distribution of adsorbed vesicles through super resolution microscopy 
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and spatial point pattern analysis 

Spatial distribution of adsorbing vesicles is a critical input for simulations. Therefore, SOPC 

SUVs doped with Sulforhodamine B conjugated to DHPE, were imaged using an objective-

coupled TIRF microscopy configuration with a 561 nm laser, 150x objective lens (NA = 1.45; 

UAPON, Olympus) and scientific CMOS camera (2x binning, Lpx = 6.5 µm; Orca Flash 4.0, 

Hamamatsu). Fluorescence of RhoB was excited in the evanescent field with high excitation 

intensity where all vesicles showed a fast drop in emission arising from photo-bleaching, thereby 

allowing recording of a large number of single-vesicle deposition events with high spatial 

precision. Each image was convolved with a Gaussian kernel of root mean square (RMS) width 

equal to 82 nm (corresponding to an estimated spread function (PSF) full width half maximum 

(FWHM) of 193 nm) to achieve low-pass filtering of noise 
7–9

. Detection and fitting of vesicle 

PSF with sub-pixel accuracy is implemented in MATLAB and based upon the CLEAN 

algorithm of Högbom 
37, 38

 where  user defined uniform intensity threshold was implemented as 

described before 
38, 39

 and instances of sub-diffraction limited localisation were discarded 

through filtering each PSF against a maximum width and ellipticity 
40, 41, 42

. This led to a time 

stack with each frame containing coordinates for vesicles detected over multiple consecutive 

frames before they completely bleach.  We needed to link these coordinates in time to obtain a 

unique vesicle map. Detected coordinates in a given frame were linked with the ones in the 

previous frame by identifying the minimum spatial separation between positions in adjacent 

frames (maximum 120 nm permitted) 
43

, with failure to identify a link followed by repetition at 

increasingly large temporal separations to a maximum of 5 seconds.  

Vesicle coordinate maps so obtained were analysed for similarity to complete spatial randomness 

(CSR) using a normalised form of Ripley’s K-function 
44

; denoted L(r),  where, K(r) is the 

Ripley’s K-function, ki,j takes a value of 1 if the inter-vesicle spacing (ri,j) is less than or equal to 

r and a value of 0 otherwise.  Edge-correction is applied with the wi,j term and has been described 

in detail elsewhere 
45, 46

.  

���� = ������ = 	 
���  ��,���,�
�

���.���
�
���  

 

For distributions exhibiting CSR, this conversion yields zero L(r) for all lengths (r).  Positive or 
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negative deviation of L(r) from 0 for any r demonstrate clustering or dispersion respectively at 

that length scale
47

. In order to account for a finite number of particles and area, a 99% L(r) 

confidence level was calculated by simulating 500 point patterns for each data set with 

comparable area and particles. 

Simulating bilayer formation and calculation of vesicle rupture and membrane merger 

A detailed description, underlying approximations, assumptions and their justifications, are 

presented in the supporting information. Briefly, the model operates in a sequential framework 

consisting of distinct phases within a discrete time step (∆t, generally < 100 ms). From an initial 

state (Scheme 2, step 0) an experimentally determined mass of vesicles is deposited on the 

surface such that vesicle do no deposit on an occluded area (i.e. not on top of a bilayer or a 

vesicle). Surface adsorbed vesicles are not allowed to laterally diffuse (Figure S1, Supporting 

Information). Some overlap (f0) with surface bound vesicles is permitted; this indirectly 

determines how many vesicles may be in contact at a given surface coverage. The ensemble is 

then evolved according to known membrane remodelling pathways (Scheme 1) through different 

stages of simulation (Scheme 2). Vesicles in contact may merge with a probability PM. (Scheme 

2, step 1).  Vesicles have a chance to rupture into bilayers (Scheme 2, step 2,3):  isolated vesicles 

with a probability P0; vesicles with N contacts with a probability �� = ���� + ����, where F 

and C are parameters reflecting the strength of the clustering effect. Bilayer edge induced vesicle 

rupture is carried out with a probability PR and bilayer-bilayer merger always occurs to reflect 

the high reactivity of bilayer edges (Scheme 2, step 4,5). Bilayers grow and change their 

boundaries during this process often creating new contacts. Each contact is tested once.  

Probabilities of individual paths could be determined unambiguously with a complete knowledge 

of the number and spatial distributions of surface bound species as a function of time; however, 

direct experimental determination of these remains beyond current technological scope. For a 

given set of probabilities (rate constants), our simulation methodology allows estimation of 

experimentally accessible aggregate behaviour such as the fraction of intact vesicles and extent 

of membrane-merger as a function of time. For a given adsorption process (RIF trace) RhoB and 

OG488 traces can be simulated by (i) tracking the total internal volume of unmerged vesicles and 

(ii) from the weighted mass of labelled and unlabeled lipids according to the experimentally 

measured de-quenching curve (Figure S2, Supporting Information) and then integrated. A direct 

comparison between measurements and simulations for the rates of vesicle rupture and 
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membrane merger for partial and full coverage of the surface enabled determination of the rate 

constants. 
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Results and discussion 

Vesicle-adsorption on silica is diffusion controlled and vesicle-distribution spatially random  

In order to determine the relative contributions of different vesicle remodelling pathways for 

silica we simulated and experimentally measured the rate of vesicle adsorption, vesicle rupture 

and membrane merger by injection of a 85:10:5 mixture of label-free SOPC SUVs, SUVs 

encapsulating Sulphorhadmine B and SUVs doped with 10 mol% of DHPE-OG488 to achieve 

surface saturation (Figure 1). Here, RIF served as an absolute measure of mass where 4.4 

ng/mm
2
 is the surface coverage for a defect free contiguous bilayer composed of SOPC. 

10, 36
 

Vesicle remodeling pathways 1-4 contribute towards a drop in RhoB signal through vesicle-

content loss resulting from vesicle rupture. At 10 mol% OG488 is heavily quenched (Figure S2, 

Supporting Information); vesicle remodeling pathways 2-5 contribute towards a rise in OG488 

signal through fluorescence de-quenching upon dilution as a result of membrane merger. It is 

noteworthy that in the absence of lipid mixing and vesicle rupture, RhoB and OG488 traces 

report on vesicle deposition alone and so should match the RIF trace. 

As noted elsewhere,
29

 
22

 vesicle deposition increases linearly till saturation (Figure 1, RIF trace) 

indicating the association process is diffusion controlled (further supporting data in Supporting 

Information, Figure S3), rather than driven by affinity to the surface or bilayer-edges 
33, 35

. This 

linearity is maintained despite lipid mixing and vesicle rupture starting well before saturation, as 

evidenced by a sharp rise in OG488 trace and decline in RhoB trace at 2.2 ng/mm
2
, suggesting 

creation of bilayer-edges had limited impact on vesicle adsorption. Lateral interactions such as 

vesicle-vesicle and vesicle-bilayer contacts, the numbers of which likely increase with surface 

loading, affect the rate of vesicle rupture and lipid mixing, thereby modulating the contribution 

of different vesicle remodelling pathways shown in Scheme 1. Under conditions of complete 

spatial randomness (CSR), a certain number of vesicles is expected to be in physical contact with 

other vesicles.  Therefore, the degree of clustering will be a function of the number density of 

vesicles on the surface i.e. coverage. We can also speculate that the ability of a bilayer to grow 

will depend on the number of vesicles in the neighbourhood since low vesicle densities mean the 

bilayer edge will be unlikely to contact, and hence incorporate, a constant stream of vesicles as it 

grows. These inferences would be inaccurate if deposition deviates from CSR. Thus, correctly 

determining the degree of randomness, dispersion or clustering in the deposition process is 

critical in properly implementing the simulation. However, experimental determination of vesicle 
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distribution at sufficiently high loading for meaningful statistical analysis is non-trivial as (i) 

conventional fluorescence super-resolution methods don’t apply and (ii) scanning probe 

microscopy risks being too invasive as tip mediated relocation of vesicles during scanning 

cannot be ruled out. As surface bound vesicles are essentially immobile (Figure S1, Supporting 

Information), we therefore used fluorescence super-resolution microscopy in conjunction with 

ongoing adsorption and rapid photobleaching. 

 

 

 

Figure 1 Vesicle binding to silica is diffusion rather than affinity controlled and vesicle rupture and 

membrane merger begins well before surface saturation: Simultaneous measurement of vesicle 

deposition (RIF trace, red), vesicle rupture (Oregon Green 488, blue) and membrane merger 

(Sulforhodamine, green). Injection period is marked with a grey background. 

 

For determining the spatial distribution of depositing vesicles, we utilized SOPC SUVs  doped 

with 0.1% sulforhodamine-DHPE and imaged the surface using objective coupled TIRFM. High 

photo-bleaching rates enabled recording of all single-vesicle deposition events with high spatial 

precision. Figure 2 A shows a typical frame and Figure 2 B shows the magnified crop for 4 

consecutive frames demonstrating transient-detection of surface bound vesicles. For each full 

frame, centroids of the individual vesicles were determined by fitting a 2D Gaussian to the 

diffraction-limited intensity profile 
37, 48

 followed by frame-to-frame tracking till they bleached. 

A map of all individual vesicles was thus obtained with a median spatial precision of 3 nm, 

Figure 2 C shows such a map for all vesicles detected in the window from 5-20% of the total 
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surface coverage on silica. Figure D shows a random distribution for an equal number of 

vesicles, demonstrating no appreciable difference to the measured distribution.  These maps 

allowed calculation of the distance of each vesicle to its nearest neighbour, the histogram of 

which is plotted in Figure 2 E and compared to a simulated random distribution shown in Figure 

2 F. Qualitatively the two histograms appear very similar, further indicating a random 

distribution of particles. Figure 2 G shows a comparison of a measured vesicle distribution (also 

in the range 5-20% of total surface loading) to CSR using Ripley’s K-function test. 
44

  Deviation 

of the measured profiles outside the 99% confidence interval (black lines; generated from 500 

simulations of random distributions) would indicate a departure from randomness at that length 

scale. Retention of the measured curves within the 99% confidence level implies random 

distribution of deposited vesicles.  

Taken together, under our conditions vesicles do not preferentially associate with the bilayer-

edges and appear to bind to the surface in a spatially random manner. Therefore, for determining 

the rate constants for different paths shown in Scheme 1, we used a CSR vesicle distribution and 

simulated the fluorescence traces by treating the RIF trace as a mass input. Since, as several 

pathways contribute to each fluorescence trace, as per our simulation methodology, rate 

constants for different paths (Scheme 1) could not be uncorrelated for a single surface coverage 

(Figure 1). As explained below these correlations can be countered by a strategy of multiple 

surface coverages and a global simulation that must satisfy all measurements. 
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Figure 2: Super-resolution imaging shows random spatial distribution of surface bound vesicles: 

(A) A typical frame acquired using an objective coupled TIRFM with high laser power to ensure rapid 

photo bleaching. (B) 4 successive frames of the cropped area showing photo bleaching of the adhered 

vesicles and arrival of fresh vesicles. (C) Example location map of all vesicles deposited between 5-20% 

of full surface loading and (D) simulated random distribution for the same number of vesicles. 

Histograms showing distance of each vesicle to its nearest neighbour for  (E) a measured vesicle location 

map, and (F) a simulated random distribution. (G) Comparison of measured vesicle distribution for the 

range of 5-20% of full surface loading (black line) to complete spatial randomness (CSR) using Ripley’s 

K-function test. No deviation of the measured profiles outside the 99% confidence interval (generated 

from 500 simulations of random distributions; grey lines) indicates randomness at that length scale.  

 

Rupture of stochastically occurring vesicle clusters is rate limiting for SSB and PSB formation 

Variations in surface coverage lead to different spatial and number distributions of the reactant 

species (isolated vesicles, clustered vesicles and bilayer-edges) thus altering the relative 

contributions of each pathway. We took advantage of this feature by restricting the maximum 

surface coverage to fractions of a full bilayer and measuring the lateral processes, i.e. vesicle 

rupture and membrane merger, post-injection where surface coverage is unchanging. The use of 

RIF trace as a mass input during and post injection was therefore critically important. Comparing 

simulations with experiments for different surface coverage thus constrained the rates and 

reduced correlations. Short injection durations and variable lipid concentrations were used to 
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achieve variable surface loadings for measurement of vesicle rupture and membrane merger 

during and post injection. During the injection phase increase in mass with three different rates is 

a result of stop of flow followed by fast flushing of the dead-volume necessary for automating 

fluidic control (Figure 3, RIF traces). Figure 3 shows the experimental and simulated 

fluorescence traces for five different RIF traces showing maximum surface coverage of 0.46, 

1.13, 2.37, 3.18 and 4.4 ng/mm
2
. Simulated lateral distributions of isolated vesicles (grey circle), 

clustered vesicles (red circles) and bilayer patches (green circles) corresponding to each set of 

traces at three different time-points (during and post injection) is shown to the right (Figure 3). 

The rate constants determined by matching the simulations with experiments are summarized in 

Table 1. We find that the isolated vesicles are extremely stable (kisolated ≤ 10
-5

 s
-1

) but rupture 

much more readily when in contact with other vesicles. Bilayer edge-induced vesicle rupture is 

extremely rapid (≥ 100 s
-1

) but accurate determination is limited by the data acquisition rate (10 

Hz). Given the reaction rates and the relative abundance of isolated and clustered vesicles and 

bilayer patches (Figure 3, right panels), this analysis reveals that rupture of binary and higher 

clusters is the major driving force for nucleation of bilayer patches. Subsequently, these drive 

bilayer formation by bilayer-edge catalysis so long there are neighbouring vesicles available for 

further rupture. 
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Figure 3 Measurements and simulations of surface loading dependent vesicle rupture and lipid 

mixing show rupture of clustered vesicles is the rate limiting step for SSB formation: Measured 

(dashed) and simulated (solid) RIF (red), RhoB (green) and OG488 (blue) traces for surface loadings of 

(A) 0.46, (B) 1.13, (C) 2.37, (D) 3.18, and (E) 4.4 ng.mm
-2

. Injection period is marked with a grey 

background. Images to the right show the simulated spatial distribution of isolated vesicles (grey), 

vesicles in contact with other vesicles (red) and bilayers (green) at different time points for the 

corresponding simulated fluorescence traces.  

 

These conclusions are qualitatively similar to Zhdanov et. al. with one key difference: in their 

case the probability of rupture of a cluster is fixed at 1. This assumption is incompatible with our 

observation of continued rupture of vesicles post-injection at low surface coverages. If clusters 

rupture as soon as they form, for a random distribution of vesicles, the number of nucleation sites 

is simply dictated by surface coverage and some chosen definition of contact distance. While this 

strategy captures the qualitative behaviour of exponential growth in vesicle rupture starting at a 
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critical coverage, it is impossible to infer anything about the underlying vesicle rupture 

behaviour. For example, should rupture of clustered vesicles be the differentiating factor between 

support types that behaviour will be lost. At the same time, the complete stability of vesicles at 

very low coverages (essentially no clusters) and the exponential growth of bilayers at high 

coverage limit the options for altering other remodelling pathways to compensate for flexibility 

in the cluster rupture rate. The approach of allowing remodelling rates to be free variables, rather 

than arbitrarily assigned values, but constraining the possible outcomes by global simulation of 

multiple surface coverages could be critical in establishing the differences between different 

surface types. In addition, this approach permits a clarification of the role of surface coverage 

which has been central to the discussion of bilayer formation for over a decade. Arguably, there 

are two major interpretations of the importance of surface coverage: (1) a critical vesicle 

coverage is essential for generating the required number of vesicle clusters which rupture with 

infinite efficiency. (2) While individual isolated vesicles efficiently rupture on their own, an 

increase in vesicle coverage helps efficient propagation of a bilayer through bilayer-edge induced 

assimilation of vesicles 
9
. Our approach appears able to discriminate between the various 

proposed remodelling pathways and provides meaningful kinetic rate constants, which are 

expected to differ for different substrate types.  

 

Table 1:  Reaction rate constants for vesicle remodelling paths and their best estimates for 

SSB and PSB formation 

Pathway Rate equation SSB 

[10
-5

.s
-1

] 

PSB 

[10
-5

.s
-1

] 

Isolated vesicle rupture rate ��� !"#$% = 1
∆' ()�1 − +,� ≤ 1 ≤ 1 

Binary cluster rupture rate  �-�."/0 =	 1∆' ()�1 − +�� 421 38 

Ternary cluster rupture rate �#$/."/0 =	 1∆' ()�1 − +�� 3361 75 

Vesicle merger rate �2$/3$/ =	 1∆' ()�1 − +4� 82.5 10 

Bilayer-edge induced vesicle-

rupture rate  
�-�!"0$/ =	 1∆' ()�1 − +5� ≥ 10

7
 8.10

5
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A further test for the methodology employed above would be to perform a similar analysis on a 

more complex substrate expected to alter some of the pathways. A high density of alkyl chains 

(AC) is known to promote vesicle adhesion
49

 and polyethylene(glycol) has been shown to be a 

biocompatible non-interacting spacer-polymer.
49, 50, 51

 For bilayer formation these properties 

have been successfully exploited by depositing AC terminated PEG (PEG-AC) on silica either 

covalently
18, 19

 or with the aid of poly-l-lysine (PLL-PEG-AC).
20

 However, bilayer formation 

could only be achieved upon prolonged incubation with soluble PEG.
18, 19

 
20

 Here, we 

synthesized a new variant of PLL-PEG-AC (Figure 4 A-C). Silica coated with the polymer 

fortuitously yielded a bilayer upon vesicle deposition as indicated by full fluorescence recovery 

upon photo-bleaching (Figure 4 E): a diffusion coefficient (D) of 2.27 ± 0.30 µm
2
s

-1
 and a 

mobile fraction of 1.02 ± 0.008 were obtained (experimental details in Supporting Information). 

This is comparable to a diffusion coefficient of 1.77 ± 0.09 µm
2
s

-1
 and a mobile fraction of 1.08 

for silica (Figure 4 E, blue line). This system provided us with a unique opportunity for 

understanding how lipid bilayers self-assemble on an alkane-PEG type of polymer. 

 

 

Figure 4 Vesicle deposition on PLL-PEG-AC leads to bilayer formation: (A) Surface architecture of 

silica coated with PLL-PEG-AC. (B) Chemical architecture of PLL-PEG-AC and SOPC bilayer (C) 

Chemical structure of PEG-AC attached to PLL. (D) Confocal laser scanning images showing 

fluorescence-recovery after photo-bleaching for a bilayer formed by SOPC vesicle doped with 0.2% 

OG488-DHPE on PLL-PEG-AC; first frame: immediately before photo-bleaching, second frame: 

immediately after photobleaching, third frame: 30 s post bleaching. (E) Normalised fluorescence from the 

bleached region demonstrating efficient recovery over time for silica (blue line) and PLL-PEG-AC (red 

line).  
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While overall deposition, vesicle rupture and membrane merger behaviour is similar to silica 

(Figure S4), SUV deposition occurs at a reduced rate (Figure S3 B) Deviation of fluorescence 

traces from the RIF trace start at higher surface loading (3.45 ng/mm
2
, Figure 5E) compared to 

the silica surface (2.2 ng/mm
2
) implying a general increase in vesicle stability. Figure 5 shows 

the experimental and simulated RIF and fluorescence traces for the surface coverages 0.41, 3.45, 

3.66, 3.89 and 4.40 ng/mm
2
.  The best determined kinetic constants for vesicle remodelling 

pathways are listed in Table 1. As with silica, spontaneous vesicle rupture is very slow and 

vesicles are strongly destabilized by contact with a partner (vesicle or bilayer). However, 

vesicles are less prone to rupture and merger on PLL-PEG-AC than on silica e.g. rupture of 

binary clusters, vesicle-vesicle merger and membrane edge induced vesicle rupture are all nearly 

an order of magnitude slower on PLL-PEG-AC than on silica. This point is best illustrated by the 

simulated spatial distribution of the surface bound entities which is shown to the right of the 

traces at three different times.  For similar surface loadings, considerably larger amounts of 

clustered vesicles are visible on PLL-PEG as compared to silica (Figure 5 B and 3 D 

respectively).  

Higher vesicle stability on a polymer cushion may result from several reasons. On a hard 

interface like silica, vesicle adhesion is likely to be accompanied by distortion and high local 

curvature thus making them prone to rupture (Scheme 3). In comparison, a softer support with 

conformational flexibility of the polymer may prevent excessive vesicle distortion leading to 

decreased rupture rate. It proved difficult to demonstrate this effect for isolated vesicles as due to 

experimental constrains only a lower limit of 10
-5

. s
-1

 on rupture of isolated vesicles could be 

determined. As opposed to isolated vesicles, a clear difference in incorporation of surface 

adsorbed vesicles into existing bilayer patches was observed. This process was an order of 

magnitude slower on PLL-PEG-AC as compared to silica (Table 1 and Scheme 3). This could 

result either from minimal distortion of vesicles and/or less reactive bilayer-edges. Sequestration 

of the polymer attached alkyl chains may help stabilise the otherwise exceedingly reactive 

bilayer edges. Merger and rupture of clustered vesicles exhibited a similar trend.  For binary 

clusters the rupture rate on silica was an order of magnitude higher than on PLL-PEG-AC. We 

attribute this difference to substrate induced vesicle distortion (Scheme 3).  Vesicles exhibiting 

high membrane curvature, arising from increased substrate contact area, are more likely to 

undergo membrane-merger leading to either leaky vesicle-fusion or rupture.  
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Taken together, efficiency of different vesicle remodelling pathways was found to be different 

for PLL-PEG-AC and silica. Surprisingly, despite such different surface types, rupture of 

clustered vesicles still proved to be the rate-limiting step for PLL-PEG-AC as was the case for 

silica.  

 

 

Figure 5 Measurements and simulations of surface loading dependent vesicle rupture and lipid 

mixing show rupture of clustered vesicles is the rate limiting step for PSB formation: Measured 

(dashed) and simulated (solid) traces for RIF (red), RhoB (green) and OG488 (blue) for surface loadings 

of (A) 0.41, (B) 3.45, (C) 3.66, (D) 3.89, and (E) 4.4 ng.mm
-2

. Injection period is marked with a grey 

background. Images to the right show the spatial distribution of isolated vesicles (grey), vesicles in 

contact with other vesicles (red) and bilayers (green) at different time points. Scale bar 1µm. 
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Scheme 3 Rate constants for a selection of vesicle remodelling paths on silica and silica coated with 

PLL-PEG-AC: A) rupture of individual vesicles to form isolated bilayer patches, B) Bilayer-edge 

induced assimilation of vesicles, C) rupture of binary vesicle cluster to form an isolated bilayer patch. 

 

Increased reactivity of vesicle clusters 

Allowing clustered vesicles, as compared to single isolated ones, a greatly increased rate of 

rupture was critical in matching the simulation to the measured traces. Therefore, for a direct 

experimental verification of this prediction we attempted to measure the rupture rate of vesicles 

cross-linked with streptavidin. Upon crosslinking vesicles demonstrated a near doubling of their 

hydrodynamic diameter, however in the absence of scattering cross-sections for single, binary 

and further clusters it proved difficult to determine their relative proportions (Supporting 

Information, Figure S5). Cross-linked and uncross-linked vesicles were injected on silica and 

PLL-PEG-AC such that surface loadings were < 0.8 ng/mm
2 

– well under the threshold where 

uncrosslinked SUVs show loss of encapsulated dye. As the deposited vesicles do no dissociate 

from the surface (Supporting Information Figure S6), a decay in fluorescence can only be 

attributed to vesicles being destabilized by the substrate. Shown in Figure 6 are the normalized 

RhoB TIRFS traces for vesicles with and without cross-linking.  On silica, as expected, un-cross-

linked vesicles exhibit no drop in RhoB trace during the washing phase whereas cross-linked 

vesicles demonstrate a significant decay. Similarly, PLL-PEG-AC cross-linked vesicles showed 

a smaller but significant decay. Interestingly, on a previously reported interface (PEG-AC linker 

(Figure 4 C) coupled covalently to the silica surface silanised with 3-

Glycidyloxypropyl)trimethoxysilane)
18

 where bilayer formation by vesicle deposition could only 

be achieved upon prolonged incubation with soluble PEG, cross-linked vesicles did not exhibit 

any dye loss (Figure 6 C). Presumably the substrate offers further vesicle stabilization to that 
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provided by both silica and PLL-PEG-AC; this is further evidenced by the lack of spontaneous 

bilayer formation on this substrate. It appears that crosslinked vesicles are indeed less stable than 

isolated individual vesicles albeit to a different extent depending upon the nature of the polymer 

cushion. 

 

Figure 6 Increased rupture rates of pre-clustered vesicles: Normalized RhoB trace for cross-linked 

(light green) and un-cross-linked (dark green) vesicles on (A) silica, (B) PLL-PEG-AC and (C) PEG-

AC.
18

 Injection periods are marked with a grey background. Top panels show the surface-types. 

 

Promoting bilayer formation on polymer cushions:  Uncoupling clustering from surface 

coverage 

While crosslinking with streptavidin proved useful in demonstrating increased rupture propensity 

for vesicle clusters, such undefined protein-mediated clusters as nucleation sites are suboptimal 

and are not a universal solution for inducing bilayer formation.  Nonetheless, this analysis helped 

us consolidate the central role of clusters and formulate a summary of what we think are the 

necessary requirements for a defect free continuous bilayer formation on polymer cushions,   

(1) Sufficient surface coverage: So long a surface allows for adsorption of ~ 4.4ng/mm
2
, in 

principle, efficient propagation of bilayer patches through bilayer-edge assimilation of vesicles 

and complete coverage of the surface can be achieved. While this is readily achieved for silica 

and mica type surface, ultrathin, hydrophilic, noncharged polymers such as carbohydrates or 

poly(ethylene glycol) (PEG) which are typically used for biotechnological applications show 
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minimal adsorption of vesicles
17, 52, 53, 54, 55, 56, 57, 58

. This problem is solved by incorporating alkyl 

chains at polymer terminus as efficient anchors for vesicles
59

.  Alkane-PEG type of architectures 

have proven to be particularly successful in ensuring this requirement
18, 19, 20

.   

(2) Favourable lateral distribution: Lateral distribution of the adsorbed vesicles must allow for 

some clustering to occur. Dispersed and clustered distribution are therefore expected to hinder 

and promote bilayer formation as compared to a random distributions. Therefore, vesicles 

composed of charged lipids, due to electrostatic repulsion, could show a dispersed distribution 

hence poor propensity for bilayer formation. Adsorption hot spots arising from surface 

heterogeneity could be another factor in determining the lateral distribution.  

(3) Efficient rupture of clusters: Clustered vesicles display differential propensity of rupture on 

different surface types, silica > PLL-PEG-AC > PEG-AC.  Evidently, hard interfaces appear to 

be more efficient than soft polymer cushions. Given the lack of available data on rupture of 

vesicle clusters it is difficult to predict how different polymer surface types can alter the 

propensity for vesicle rupture. Equally, customising the polymer to aid vesicle rupture may 

conflict with other requirements for the surface (e.g. biocompatibility).  

Our model suggests that for nucleation of bilayer patches a low probability of rupture can be 

compensated by increasing the number density of clusters. Alternatively, the effect of a high 

propensity for rupture could be diminished via a dispersed distribution. As discussed above, 

PLL-PEG-AC is positively charged and supports efficient adsorption of neutral vesicles (SOPC), 

which then form a bilayer. Negatively charged vesicles are likely to efficiently deposit and 

strongly adhere to the surface but mutual repulsion will reduce the propensity to cluster. 

Therefore, despite allowing for full surface coverage, negatively charged vesicles may fail to 

produce a bilayer. We tested this hypothesis by performing a FRAP measurement with SOPC 

vesicles doped with 20% DOPS, 0.2 % OG488 DHPE (overall negatively charged). In contrast to 

neutral vesicles (SOPC), which exhibits a diffusion coefficient (D) of 2.27 ± 0.30 µm
2
s

-1
 and a 

mobile fraction of 1.02, negatively charged vesicles exhibited next to no florescence recovery. 

This suggests an impact of electrostatics on clustering of vesicles and prompted us to further test 

the potential of electrostatics on bilayer formation. Surfaces exhibiting high propensity for 

vesicle adsorption but low propensity for rupture of clustered vesicles would form a good test 

substrates e.g. PEG-AC. We reasoned that a mixture of negatively and positively charged 

vesicles may lead to vesicle-vesicle interaction in solution and a clustered vesicle distribution on 
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a surface. A 1:1 mixture of negatively charged (20% DOPS, 80% SOPC) positively charged 

(20% DOTAP, 80%SOPC) vesicles exhibited increased scattering upon mixing in solution 

(Figure S7 Supporting Information) indicating vesicle-vesicle interaction in solution. We 

therefore incubated PEG-AC with neutral (SOPC), negatively charged (20% DOPS, 80% 

SOPC), positively charged (20% DOTAP, 80%SOPC) and 1:1 mixture of oppositely charged 

vesicles. In order to test for altered FRAP behaviour resulting from vesicles potentially perfused 

in solution we also incubated the surface with vesicles composed of mixed oppositely charged 

lipids (10% DOPS, 10% DOTAO, 80% SOPC). Following an incubation for 30 minutes, the 

FRAP measurements for each condition is shown in Figure 7. All four case of a single type of 

vesicle failed to show any fluorescence recovery after photo-bleaching indicating a lack of a 

contiguous bilayer. Conversely, a 1:1 mixture of oppositely charged vesicles showed a bilayer 

with a diffusion coefficient of 2.25 ± 0.029 µm
2
.s

-1
 and recovered fraction of 1.01 ± 0.001.  It 

seems likely that the primary driver for this change in behaviour is the increased number density 

of clusters, although we cannot rule out the possibility of tighter binding of vesicles of opposite 

charge leading to a higher propensity of cluster rupture. In either case, the net effect is to 

encourage bilayer formation on a difficult surface without requiring any change to the surface 

and with only minimal impact on bilayer composition. 
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Figure 7 Promoting bilayer formation via electrostatically induced clustering: Schematic 

representation of lateral distribution of (A) neutral, (B) positively, (C) negatively and (D) a mixture of 

positively and negatively charged lipids and (E) a mixture of positively and negatively charged vesicles 

on a neutral PEG-AC surface. Frames before bleaching, immediately after bleaching and 30 s post 

bleaching for surface adsorbed (F) SOPC, (G) 20% DOPS+ 80% SOPC, (H) 20% DOTAP + 80% SOPC 

(I) 10% DOTAP + 10% DOPS + 80% SOPC and a (J) 1:1 mixture of 20% DOPS and 20% DOTAP 

vesicles. (K) Intergrated fluorescence from the bleached spot as a function time for SOPC (black open 

circle), 20% DOPS+ 80% SOPC (red open circle), 20% DOTAP + 80% SOPC (blue open circle), 10% 

DOTAP + 10% DOPS + 80% SOPC (red and blue open circle) and a 1:1 mixture of 20% DOPS and 20% 

DOTAP vesicles (red and blue circle). 
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For using clustered vesicles as nucleators for generation of bilayer patches, several further 

optimisations can be envisioned such that overall lipid composition of the bilayer is minimally 

impacted. A number of factors could have an impact on efficiency of cluster formation and 

stability of the cluster. We think the common point of contact between the substrate and the 

vesicles is where the membrane remodelling process begins. Therefore line tension generated 

through phase separation within vesicles forming a cluster could have a significant impact on the 

stability of the cluster. Taken together a combination of two or more of the following strategies 

could produce highly potent clusters: (i) Vesicle crosslinking via complementary DNA strands 

for stoichiometrically better defined cluster; (ii) Oppositely charged vesicles with optimised 

doping of charged lipids and proportions of charged vesicles; (iii) Phase separation within 

individual vesicles forming a cluster. 

 

Conclusion 

Over the last decade the mechanism of SSB and PSB formation has been extensively studied and 

several alternative mechanisms have been proposed. However, the rate constants for different 

steps remained undetermined. We have combined super-resolution imaging with the 

measurement and global simulation of the kinetics of vesicle rupture and membrane merger. 

Multiple surface coverages has allowed us to determine differential contributions of several 

previously proposed vesicle remodelling pathways. In contrast to previous studies, where an 

infinite efficiency of rupture clustered vesicles is assumed, we find the efficiency to be very 

modest. Bilayer nucleation is further limited by the number density of vesicle clusters. A simple 

cross-linking strategy helped differentiate vesicle rupture rates in a substrate dependent manner, 

thus demonstrating the importance of multi-vesicle assemblies for processes involving vesicle 

remodelling.  Improving cluster density by mixing oppositely charged vesicles had an even more 

potent effect and permitted bilayer formation on PEG-AC which otherwise fails to produce a 

bilayer. While the efficiency of vesicle rupture may be difficult to alter, our results suggest the 

number density of clusters may be increased, thus forming a bilayer without resorting to 

modifications of the surface itself. 

It is likely that more sophisticated crosslinking approaches capable of producing geometrically 

defined multi-vesicle assemblies would have greater success and so not only promote the use of 

polymers with interesting functional properties that better mimic varied cellular membrane 
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architectures but also as potential vehicles for drug delivery to cellular membranes. 
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Scheme 1 Previously identified substrate-induced membrane remodelling pathways that see surface 
immobilized SUVs rupture or fuse: (1) vesicle-vesicle merger, 25 (2) isolated vesicle rupture, 9, 25 (3) 
vesicle induced vesicle rupture, 9, 25 (4) bilayer edge induced vesicle rupture 9, 27, 33 and (5) bilayer-

bilayer merger 27  
81x40mm (300 x 300 DPI)  
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Scheme 2 Simulation stages: From an initial state (0) vesicles are deposited on the surface in accordance 
with the measured RIF trace at random locations outside the occluded area (i.e. not on top of a bilayer or a 
vesicle). (1) Vesicles in contact may merge with a probability PM. (2,3) Vesicles have a chance to rupture 

into bilayers: isolated vesicles with a probability P0; vesicles with N contacts with probability PN. (4,5) 
Bilayer edge induced vesicle rupture is carried out with a probability PR. Bilayer-bilayer merger always 

occurs to reflect the high reactivity of bilayer edges. The cycle is repeated every ∆t (typically 100 ms). For a 

given input RIF time-trace and different values of PM, P0, PN and PR fluorescence traces for membrane 
merger and vesicle rupture are simulated and   compared with the experimentally measured traces.  
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Figure 1 Vesicle binding to silica is diffusion rather than affinity controlled and vesicle rupture and 
membrane merger begins well before surface saturation: Simultaneous measurement of vesicle deposition 
(RIF trace, red), vesicle rupture (Oregon Green 488, blue) and membrane merger (Sulforhodamine, green). 

Injection period is marked with a grey background.  
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Figure 2: Super-resolution imaging shows random spatial distribution of surface bound vesicles: (A) A 
typical frame acquired using an objective coupled TIRFM with high laser power to ensure rapid photo 

bleaching. (B) 4 successive frames of the cropped area showing photo bleaching of the adhered vesicles and 

arrival of fresh vesicles. (C) Example location map of all vesicles deposited between 5-20% of full surface 
loading and (D) simulated random distribution for the same number of vesicles. Histograms showing 
distance of each vesicle to its nearest neighbour for  (E) a measured vesicle location map, and (F) a 

simulated random distribution. (G) Comparison of measured vesicle distribution for the range of 5-20% of 
full surface loading (black line) to complete spatial randomness (CSR) using Ripley’s K-function test. No 

deviation of the measured profiles outside the 99% confidence interval (generated from 500 simulations of 
random distributions; grey lines) indicates randomness at that length scale.  
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Figure 3 Measurements and simulations of surface loading dependent vesicle rupture and lipid mixing show 
rupture of clustered vesicles is the rate limiting step for SSB formation: Measured (dashed) and simulated 

(solid) RIF (red), RhoB (green) and OG488 (blue) traces for surface loadings of (A) 0.46, (B) 1.13, (C) 2.37, 

(D) 3.18, and (E) 4.4 ng.mm-2. Injection period is marked with a grey background. Images to the right 
show the simulated spatial distribution of isolated vesicles (grey), vesicles in contact with other vesicles 
(red) and bilayers (green) at different time points for the corresponding simulated fluorescence traces.  
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Figure 4 Vesicle deposition on PLL-PEG-AC leads to bilayer formation: (A) Surface architecture of silica 
coated with PLL-PEG-AC. (B) Chemical architecture of PLL-PEG-AC and SOPC bilayer (C) Chemical structure 
of PEG-AC attached to PLL. (D) Confocal laser scanning images showing fluorescence-recovery after photo-

bleaching for a bilayer formed by SOPC vesicle doped with 0.2% OG488-DHPE on PLL-PEG-AC; first frame: 
immediately before photo-bleaching, second frame: immediately after photobleaching, third frame: 30 s 

post bleaching. (E) Normalised fluorescence from the bleached region demonstrating efficient recovery over 
time for silica (blue line) and PLL-PEG-AC (red line).  
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Figure 5 Measurements and simulations of surface loading dependent vesicle rupture and lipid mixing show 
rupture of clustered vesicles is the rate limiting step for PSB formation: Measured (dashed) and simulated 
(solid) traces for RIF (red), RhoB (green) and OG488 (blue) for surface loadings of (A) 0.41, (B) 3.45, (C) 

3.66, (D) 3.89, and (E) 4.4 ng.mm-2. Injection period is marked with a grey background. Images to the 
right show the spatial distribution of isolated vesicles (grey), vesicles in contact with other vesicles (red) and 

bilayers (green) at different time points. Scale bar 1µm.  
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Scheme 3 Rate constants for a selection of vesicle remodelling paths on silica and silica coated with PLL-
PEG-AC: A) rupture of individual vesicles to form isolated bilayer patches, B) Bilayer-edge induced 

assimilation of vesicles, C) rupture of binary vesicle cluster to form an isolated bilayer patch.  
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Figure 6 Increased rupture rates of pre-clustered vesicles: Normalized RhoB trace for cross-linked (light 
green) and un-cross-linked (dark green) vesicles on (A) silica, (B) PLL-PEG-AC and (C) PEG-AC.18 Injection 

periods are marked with a grey background. Top panels show the surface-types.  
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Figure 7 Promoting bilayer formation via electrostatically induced clustering: Schematic representation of 
lateral distribution of (A) neutral, (B) positively, (C) negatively and (D) a mixture of positively and 

negatively charged lipids and (E) a mixture of positively and negatively charged vesicles on a neutral PEG-

AC surface. Frames before bleaching, immediately after bleaching and 30 s post bleaching for surface 
adsorbed (F) SOPC, (G) 20% DOPS+ 80% SOPC, (H) 20% DOTAP + 80% SOPC (I) 10% DOTAP + 10% 

DOPS + 80% SOPC and a (J) 1:1 mixture of 20% DOPS and 20% DOTAP vesicles. (K) Intergrated 
fluorescence from the bleached spot as a function time for SOPC (black open circle), 20% DOPS+ 80% 
SOPC (red open circle), 20% DOTAP + 80% SOPC (blue open circle), 10% DOTAP + 10% DOPS + 80% 
SOPC (red and blue open circle) and a 1:1 mixture of 20% DOPS and 20% DOTAP vesicles (red and blue 

circle).  
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