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Abstract

We consider the problems of computing the maximal and the minimal non-empty suffixes
of substrings of a longer text of length n. For the minimal suffix problem we show that
for every τ , 1 ≤ τ ≤ log n, there exists a linear-space data structure with O(τ) query
time and O(n log n/τ) preprocessing time. As a sample application, we show that this data
structure can be used to compute the Lyndon decomposition of any substring of the text
in O(kτ) time, where k is the number of distinct factors in the decomposition. For the
maximal suffix problem, we give a linear-space structure with O(1) query time and O(n)
preprocessing time. In other words, we simultaneously achieve both the optimal query time
and the optimal construction time.

1. Introduction

Computing the lexicographically maximal and minimal suffixes of a string is both an
interesting problem on its own and a crucial ingredient in solutions to many other problems.
For example, the famous constant-space pattern matching algorithm of Crochemore and
Perrin and its more recent variants are based on the so-called critical factorizations, which
can be derived from the maximal suffixes [1, 2].

The first non-trivial solution of the maximal and minimal suffix problems is due to
Weiner, who introduced the suffix tree [3]. The suffix tree of a string can be constructed in
linear time and occupies linear space. Once constructed, it allows to retrieve the maximal
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and the minimal suffixes in constant time. Later, this result was improved by Duval [4] who
showed that the suffixes can be found in linear time and constant additional space.

We consider a natural generalization of these problems. We assume that the strings we
are asked to compute the maximal or the minimal suffixes for are actually substrings of a
text T and that they are specified by their endpoints in T . Then, one can preprocess T and
subsequently use this information to significantly speed up the computation of the desired
suffixes of a query string. This seems to be a very natural setting whenever one thinks of
storing large collections of static text data.

Let n be the length of T . We first show that for every τ , 1 ≤ τ ≤ log n, there exists
a linear-space data structure solving the minimal suffix problem with O(τ) query time and
O(n logn

τ
) preprocessing time. Secondly, we describe a linear-space data structure for the

maximal suffix problem with O(1) query time which can be constructed in linear time. As a
particular application, we show how to compute the Lyndon decomposition [5] of a substring
of T in O(kτ) time, where k is the number of distinct factors in the decomposition.

The key idea of our solution is to select, for each position j of the text T , a set of O(log n)
canonical substrings — substrings of T that end at j such that the lengths of two consecutive
canonical substrings differ by a factor of at most 2. Note that for substrings with a fixed
end-position, the maximal suffix becomes larger as the length of a substring increases, while
the minimal suffix becomes smaller. Thus, for a query x = T [i..j] we know that either
the answer is the same as for the longest canonical suffix of x, or the resulting suffix is
longer than |x|/2. For the latter case we develop a subroutine which exploits periodicities to
compute the maximal (resp. minimal) suffix given its approximate length (within a factor
of 2). The answers for canonical substrings are stored in O(log n) bits for each position j.
These bits let us to retrieve approximate lengths only; the exact answers are computed as
in the previous case.

The basic O(n log n)-time construction algorithm computes the answers for all canonical
substrings. However, for maximal suffixes we develop a linear-time construction algorithm.
This is possible mainly due to the following fact: the length of the maximal suffix of a string
cannot increase by more than one when a single letter is appended at the end. Minimal
suffixes do not enjoy such a property, e.g., when aa is extended to aab the length of the
minimal suffix increases from 1 to 3.

Related work. Text indexes that support various substring queries have been extensively
studied in the literature. The study dates back to the invention of the suffix tree. Augmented
properly, the suffix tree can be used to answer the substrings equality and the longest
common prefix queries in constant time and linear space [6].

Cormode and Muthukrishnan [7] initiated a study on substring compression problems,
where the goal is to quickly find the compressed representation or the compressed size for a
given substring of the text. Some of their results were later improved in [8] and [9].

Recently, substring queries gained more attention. It has been shown that various
periodicity-related queries can be answered in logarithmic or constant time [10, 11, 9]. Some
of these results apply a linear-space data structure for internal pattern matching queries,
which are to find all occurrences of one substring of the text in another substring [9]. Yet
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another type of substring queries is range LCP queries studied in [12, 13].
Queries asking for the k-th lexicographically smallest suffix of a substring, more general

than both the minimal and the maximal suffix queries, have also been studied. They can
be answered in O(log n)-time by a wavelet suffix tree, a linear space data structure which
admits an O(n

√
log n)-time construction algorithm [14]. However, wavelet suffix trees are

less efficient and much more involved than the data structures we specifically design for
minimal and maximal suffix queries.

2. Preliminaries

We start by introducing some standard notation and definitions. Let Σ be a finite non-
empty set (called an alphabet). The elements of Σ are letters. A finite ordered sequence of
letters (possibly empty) is called a string. Letters in a string are numbered starting from 1,
that is, a string T of length k consists of letters T [1], T [2], . . . , T [k]. The length of T is
denoted by |T |. For i ≤ j, T [i..j] denotes the substring of T from position i to position j
(inclusive). If i = 1 or j = |T |, then we omit these indices and we write T [..j] and T [i..].
Substring T [..j] is called a prefix of T , and T [i..] is called a suffix of T .

A border of a string T is a string that is both a prefix and a suffix of T but differs from T .
A string T is called periodic with period ρ if T = ρsρ′ for an integer s ≥ 1 and a (possibly
empty) proper prefix ρ′ of ρ. Borders and periods are dual notions: if T has period ρ, then
it has a border of length |T | − |ρ|, and vice versa; see, e.g., [15].

Fact 1 ([16]). If a string T has periods ρ and γ such that |ρ| + |γ| ≤ |T |, then T has a
period of length gcd(|ρ|, |γ|), the greatest common divisor of ρ and γ.

Lemma 2. If a string T has a proper border, then its shortest border has length at
most |T |/2.

Proof. Suppose that the shortest non-empty border of T has length larger than |T |/2,
then by border-period duality T has a period ρ smaller than |T |/2. Since 2ρ is also a period
and 2ρ < |T |, we get another (shorter) border of T , a contradiction. �

We assume the word RAM model of computation [17] with word size Ω(log n). Letters
are treated as integers in range {1, . . . , |Σ|}, so a pair of letters can be compared in O(1)
time. We also assume Σ = nO(1) so that all letters of the input text T can be sorted in O(n)
time. The natural linear order on Σ is extended in a standard way to the lexicographic order
of strings over Σ. Namely, T1 ≺ T2 if either

(a) T1 is a prefix of T2, or

(b) there exists i < min(|T1|, |T2|) such that T1[..i] = T2[..i], and T1[i+ 1] < T2[i+ 1].
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Consider a fixed string T . For i < j let Suf [i, j] denote {T [i..], . . . , T [j..]}. The suffix
array of a string T is a permutation SA on {1, . . . , |T |} defining the lexicographic order
on Suf [1, |T |]. More precisely, SA[r] = i iff the rank of T [i..] in the lexicographic order on
Suf [1, |T |] is r. For a string T , both SA and its inverse occupy linear space and can be
constructed in linear time; see [18] for a survey.

When speaking of substrings T [i..j] of a given fixed text T we assume, as long as this
leads to no confusion, that the former are represented by the indices i and j.

Fact 3 ([15, 6, 19]). Suffix array can be enhanced in linear time to answer the following
queries in O(1) time:

(a) Given substrings x, y of T , compute their longest common prefix lcp(x, y).

(b) Given substrings x, y of T , check if x ≺ y.

(c) Given indices i, j, compute the maximal and the minimal suffixes in Suf [i, j].

In particular, Fact 3(a) implies that given substrings x, y of T , it is possible to check in
O(1) time if x is a prefix of y.

Lemma 4. The following queries can also be answered in O(1) time using the enhanced
suffix array: given substrings x, y of T , compute the largest integer α such that xα is a prefix
of y.

Proof. It suffices to note that if x is a prefix of y = T [i..j] (which can be determined in
O(1) time), then (α− 1)|x| ≤ lcp(T [i..j], T [i+ |x|..j]) < α|x|. �

Queries involving the enhanced suffix array of TR, the reverse of T , are also meaningful
in terms of T . In particular for a pair of substrings x, y of T we can compute their longest
common suffix lcs(x, y) and the largest integer α such that xα is a suffix of y.

3. Minimal Suffix

Consider a string T of length n. For each position j we select O(log n) substrings T [k..j],
which we call canonical. By C`

j we denote the `-th shortest canonical substring ending at
position j. For a pair of integers 1 ≤ i < j ≤ n, we define α(i, j) to be the largest integer
` such that C`

j is a proper suffix of T [i..j]. The following properties of canonical substrings
are assumed:

(a) C1
j = T [j..j] and for some ` = O(log n) we have C`

j = T [1..j],

(b)
∣∣C`+1

j

∣∣ ≤ 2
∣∣C`

j

∣∣ for any `,
(c) α(i, j) and |C`

j | are computable in O(1) time given i, j and `, j respectively.
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Our data structure works for any choice of canonical substrings satisfying these prop-
erties, including the simplest when |C`

j | = min(2`−1, j). The algorithm is based on two
observations:

Lemma 5. The minimal suffix of T [i..j] is either equal to

(a) T [p..j], where p is the starting position of the minimal suffix in Suf [i, j]; or

(b) the shortest non-empty border of T [p..j].

Proof. We shall prove that the minimal suffix T [µ..j] of T [i..j] is both a prefix and a suffix
of T [p..j]. Since T [µ..j] is the minimal suffix, it is smaller or equal to T [p..j]. By definition
of the lexicographic order, either T [µ..j] is a prefix of T [p..j], or there exists ` such that
T [µ..µ+ `] = T [p..p+ `] and T [µ+ `+ 1] < T [p+ `+ 1]. If T [µ..j] is a prefix of T [p..j], then
we have |T [µ..j]| ≤ |T [p..j]| and thus T [µ..j] is also a suffix of T [p..j]. Let us now show that
the second case is impossible. Indeed, it follows that T [µ..] ≺ T [p..], a contradiction.

We now know that T [µ..j] = T [p..j] or T [µ..j] is a non-empty border of T [p..j]. All
borders of T [p..j] are suffixes of T [i..j], so in the latter case T [µ..j] must be a minimal
non-empty border of T [p..j]. Because the lexicographic order on borders coincides with the
order by lengths, this is also the shortest of these borders. �

Example 6. Consider a text T = cabacabaa and its substrings T [5..8] and T [1..4], both
equal to caba. For T [5..8] we have p = 7 and T [7..8] = a is the minimal suffix. On the other
hand, for T [1..4] we have p = 2 and the minimal suffix is the shortest border of T [2..4] = aba.

Lemma 7. The minimal suffix of T [i..j] is either equal to

(a) T [p..j], where p is the starting position of the minimal suffix in Suf [i, j]; or

(b) the minimal suffix of Cα(i,j)
j .

Proof. By Lemma 5, the minimal suffix is either equal to T [p..j] or to its shortest non-
empty border. In the latter case by Lemma 2 the length of the minimal suffix is at most
1
2
|T [p..j]| ≤ 1

2
|T [i..j]|. Also property (b) of canonical substrings implies that |Cα(i,j)

j | ≥
1
2
|T [i..j]|. Thus, in this case the minimal suffix of T [i..j] is the minimal suffix of Cα(i,j)

j . �

3.1. Data structure
The data structure, apart from the enhanced suffix array, contains, for each j = 1, . . . , n,

a bit vector Bj of length α(1, j). We set Bj[`] = 1 if and only if the minimal suffix of C`
j

is longer than C`−1
j (equivalently, if C`

j and C`−1
j do not share a common minimal suffix).

For ` = 1 we always set Bj[1] = 1, as C1
j is the minimal suffix of itself. Recall that the

number of canonical substrings for each j is O(log n), so each Bj fits into a constant number
of machine words, and thus the data structure takes O(n) space.
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3.2. Queries
Assume we are looking for the minimal suffix of T [i..j]. First, compute α(i, j), which can

be done in constant time. Next, find the minimal suffix T [p..] in Suf [i, j]; using the enhanced
suffix array this also takes constant time; see Fact 3. This gives us the first candidate T [p..j].

Then, we examine the bit vector Bj to compute the minimal suffix of Cα(i,j)
j . Let ` ≤

α(i, j) be the largest index such that Bj[`] = 1. Note that such an index always exists (as
Bj[1] = 1) and it can be found in constant time due to the following result.

Fact 8. Given a bit vector B of b = O(log n) bits and an index k ≤ b, the most significant
bit position not exceeding k′, i.e., value max{k′ ≤ k : B[k′] = 1}, can be found in O(1) time.

Proof. Note that all standard arithmetic and bitwise operations can be performed in
constant time on arguments of O(b) = O(log n) bits. In particular, we can perform bitwise
and of B and 2k − 1 = (1«k) − 1 to mask out bits at indices greater than k. The query
now reduces to determining the most significant bit position in the resulting bit vector. As
shown by Fredman and Willard [20], this can be achieved in constant time. Moreover, most
modern processors provide such operation in the instruction set; see also [21]. �

By definition of Bj, the minimal suffix of Cα(i,j)
j coincides with the minimal suffix of C`

j .
Also, since Bj[`] = 1, case (a) of Lemma 7 holds for C`

j . This yields the second candidate
T [p′..j], where T [p′..] is the minimal suffix in Suf [j − |C`

j |+ 1, j].
Finally, we compare T [p..j] with T [p′..j] in constant time (relying on Fact 3) and output

the smaller of these substrings. This completes the description of our constant-time query
algorithm.

3.3. Construction
A simple O(n log n)-time construction algorithm also relies on Lemma 7. It suffices to

show that, once the enhanced suffix array is built, we can determine Bj in O(log n) time.
We find the minimal suffix of C`

j for consecutive values of `. Once we know the answer for
`−1, case (a) of Lemma 7 gives us the second candidate for the minimal suffix of C`

j , and the
enhanced suffix array lets us choose the smaller of these two candidates. We set Bj[`] = 1 if
the smaller candidate is longer than C`−1

j . Therefore we obtain the following result.

Theorem 9. A string T of length n can be stored in an O(n)-space structure that computes
the minimal suffix of a given substring of T in O(1) time. This data structure can be
constructed in O(n log n) time.

The simple construction described above works for any choice of canonical substrings.
However, to derive a trade-off between query and construction times, we consider a specific
choice of canonical substrings and give an alternative construction method. Before we ac-
tually obtain the trade-off, let us describe the alternative construction algorithm in a basic
O(n log n)-time variant.
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It will be convenient to have many canonical substrings C`
j which are prefixes of each

other, because then we can make use of Duval’s algorithm (Algorithm 3.1 [4]) that computes
the minimal suffixes of all prefixes of a string in linear time.

For ` = 1 we define C1
j = T [j..j]. For ` > 1 we set m = b`/2c − 1 and define C`

j by

∣∣C`
j

∣∣ =

{
2 · 2m + (j mod 2m) if ` is even,
3 · 2m + (j mod 2m) otherwise.

Note that if 2 · 2m ≤ j < 3 · 2m, then T [1..j] = C2m+2
j , while if 3 · 2m ≤ j < 4 · 2m, then

T [1..j] = C2m+3
j ; see Fig. 1. Therefore the number of canonical substrings ending at j is

O(log n).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Figure 1: There are 9 canonical suffixes of T [1..28]: their lengths are 1, 2, 3, 4, 6, 8, 12, 20, 28. On the other
hand, T [1..35] has 10 canonical substrings of lengths 1, 2, 3, 5, 7, 11, 15, 19, 27, 35.

The following facts show that the above choice of canonical substrings satisfies properties (b)
and (c).

Lemma 10 (Property (b)). For any position j and value ` < α(1, j), we have
∣∣C`+1

j

∣∣ <
2
∣∣C`

j

∣∣.
Proof. For ` = 1 the statement holds trivially. Consider ` ≥ 2. Let m, as before, denote
b`/2c − 1. If ` is even, then `+ 1 is odd and we have∣∣C`+1

j

∣∣ = 3 · 2m + (j mod 2m) < 4 · 2m ≤ 2 · (2 · 2m + (j mod 2m)) = 2
∣∣C`

j

∣∣
while for odd `∣∣C`+1

j

∣∣ = 2 · 2m+1 + (j mod 2m+1) < 3 · 2m+1 ≤ 2 · (3 · 2m + (j mod 2m)) = 2
∣∣C`

j

∣∣ .
�

Lemma 11 (Property (c)). For 1 ≤ i < j ≤ n, value α(i, j) can be computed in constant
time.

Proof. Let m = blog |T [i..j]|c. Observe that∣∣C2m−1
j

∣∣ = 3 · 2m−2 + (j mod 2m−2) < 2m ≤ |T [i..j]|∣∣C2m+2
j

∣∣ = 2 · 2m + (j mod 2m) ≥ 2m+1 > |T [i..j]|.

Thus α(i, j) ∈ {2m− 1, 2m, 2m+ 1}, and we pick the correct value in constant time. �
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Figure 2: Canonical substring C4
j and C5

j (corresponding to m = 1) start at odd positions and have lengths
between 4 and 7. To compute their minimal suffixes, we run Duval’s algorithms for each four consecutive
chunks of length two (and for the last three and the last two chunks).

After building the enhanced suffix array, we set all bits Bj[1] to 1. Then for each ` > 1
we compute the minimal suffixes of the substrings C`

j as follows. Fix ` > 1 and split T into
chunks of size 2m each, where m = b`/2c − 1. Now each C`

j is a prefix of a concatenation
of at most four such chunks. We run Duval’s algorithm for each four (or less at the end)
consecutive chunks. This gives the minimal suffixes of C`

j for all positions j in O(n) time; see
Fig. 2. The value Bj[`] is determined by comparing the length of the computed minimal suffix
of C`

j with |C`−1
j |. We have O(log n) phases, which gives O(n log n) total time complexity

and O(n) total space consumption.

3.4. Trade-off
To obtain a data structure with O(n log n/τ)-time construction and O(τ)-time queries,

we define the bit vectors in a slightly different way. We set Bτ
j to be of size bα(1, j)/τc with

Bτ
j [k] = 1 if and only if k = 1 or the minimal suffix of Cτk

j is longer than Cτ(k−1)
j . This way

we need only O(log n/τ) phases in the construction algorithm, so it takes O(n log n/τ) time.
Again, assume we are looking for the minimal suffix of T [i..j]. As before, the difficult

part is to find the minimal suffix of Cα(i,j)
j . Our goal is to compute ` ≤ α(i, j) such that the

minimal suffix of Cα(i,j)
j coincides with the minimal suffix of C`

j , but is longer than C
`−1
j .

If we knew that α(i, j) = τk for an integer k, we could find the largest k′ ≤ k such that
Bτ [k′] = 1 and we would know that ` ∈ (τ(k′ − 1), τk′]. In general, we choose the largest k
such that τk ≤ α(i, j), and then we know that we consider all ` ∈ (τk, α(i, j)]∩(τ(k′−1), τk′],
with k′ defined as in the previous special case.

In total we have O(τ) possible values of `, and we are guaranteed that the suffix we seek
can be obtained using case (a) of Lemma 7 for C`

j for one of these values. After generating
all these candidates we use the enhanced suffix array to find the smallest suffix among them.
In total, queries take O(τ) time thus proving the following result:

Theorem 12. For every τ , 1 ≤ τ ≤ log n, a string T of length n can be stored in an O(n)-
space data structure that computes in O(τ) time the minimal suffix of a given substring of T .
This data structure can be constructed in O(n log n/τ) time.

3.5. Lyndon decompositions
As a corollary we obtain an efficient data structure for computing Lyndon decompositions

of substrings of T . Recall that a string w is a Lyndon word if it is strictly smaller than its
8



proper cyclic rotations. For a non-empty string x, a decomposition x = wα1
1 w

α2
2 . . . wαk

k is
called a Lyndon decomposition if and only if w1 > w2 > · · · > wk are Lyndon words [5].
Every string admits a unique Lyndon decomposition, which can be obtained as follows;
see [4]. The last factor wk is the minimal suffix of x and wαk

k is the largest power of wk
which is a suffix of x. Also, wα1

1 w
α2
2 . . . w

αk−1

k−1 is the Lyndon decomposition of the remaining
prefix of x. The last factor wαk

k can be computed in constant time using Theorem 12 and
Lemma 4, which yields the following corollary.

Corollary 13. For every τ , 1 ≤ τ ≤ log n, a string T of length n can be stored in an
O(n)-space data structure that computes the Lyndon decomposition of a given substring of
T in O(kτ) time, where k is the number of distinct factors in the decomposition. This data
structure can be constructed in O(n log n/τ) time.

4. Maximal Suffix

Our data structure for the maximal suffix problem is very similar to the one we have
developed for the minimal suffix. In particular, it is defined for canonical substrings C`

j

satisfying the same three properties. However, in contrast to the minimal suffix problem,
the properties specific to maximal suffixes let us design a linear-time construction algorithm.

The only component of Section 3 which cannot be immediately adapted to the maximal
suffix problem is Lemma 7. While its exact counterpart is not true, in Section 4.1 we prove
the following statement, which is equivalent in terms of algorithmic applications. The proof
is rather involved, but it yields an relatively simple algorithm, which asks a few queries to
the enhanced suffix array (provided by Fact 3 and Lemma 4).

Lemma 14. Consider a substring T [i..j]. Using the enhanced suffix array of T , one can
compute in O(1) time an index p (i ≤ p ≤ j) such that the maximal suffix of T [i..j] is either
equal to

(a) T [p..j]; or

(b) the maximal suffix of Cα(i,j)
j .

Just as in the data structure described in Section 3, apart from the enhanced suffix
array, we store bit vectors Bj, j ∈ [1, n], with Bj[`] = 1 if ` = 1 or the maximal suffix of
C`
j is longer than C

`−1
j . The query algorithm described in Section 3.2 can be adapted in an

obvious way, i.e., so that it uses Lemma 14 instead of Lemma 7 and chooses the larger of
the two candidates as the answer. This shows the following theorem:

Theorem 15. A string T of length n can be stored in an O(n)-space structure that enables
to compute the maximal suffix of any substring of T in O(1) time.

The O(n log n)-time construction algorithms and the trade-off between query and construc-
tion time, described in Sections 3.3 and 3.4, are also easy to adapt to the maximal suffix
problem. They are, however, outperformed by a O(n)-time construction presented in Sec-
tion 4.2.
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4.1. Proof of Lemma 14
Below we describe a constant-time algorithm, which returns a position p ∈ [i, j]. If the

maximal suffix T [µ..j] of T [i..j] is shorter than Cα(i,j)
j (case (b) of Lemma 14), the algorithm

may return any p ∈ [i, j]. Hence, we assume that T [µ..j] is longer than Cα(i,j)
j and show that

under this assumption the algorithm returns p = µ. Suppose T [p1..] is the maximal suffix
within Suf [i, j − |Cα(i,j)

j |].

Observation 16. P1 = T [p1..j] is a prefix of T [µ..j].

Proof. The proof is by contradiction. Suppose that the first ` letters of the suffixes
are equal, but T [p1 + `] 6= T [µ + `]. From the definition of the lexicographic order and
T [p1..j] � T [µ..j] we obtain T [p1 + `] < T [µ + `]. But then T [p1..] ≺ T [µ..], i.e. T [µ..] is
another suffix in Suf [i, j − |Cα(i,j)

j |] which is larger than T [p1..], a contradiction. �

If p1 = i, then we must have µ = i as well. Otherwise, we define p2 so that T [p2..] is
maximal within Suf [i, p1 − 1].

Lemma 17. If P1 is not a prefix of P2 = T [p2..j], then µ = p1. Otherwise P2 is a prefix of
T [µ..j].

Proof. We consider two cases depending on whether Suf [i, p1 − 1] contains a suffix that
starts with P1 or not. If no suffix in Suf [i, p1 − 1] starts with P1, then µ /∈ [i, p1 − 1] (as
T [µ..j] starts with P1). Consequently, µ ≥ p1. But T [p1..j] is a prefix of T [µ..j], i.e. the
latter cannot be shorter than T [p1..j] and therefore µ = p1.

Now consider the second case. Let Q be the prefix of P2 of length |P1|. If Q � P1, then
P2 = QT [p2 + |P1|..j] � P1T [µ+ |P1|..j] = T [µ..j], which is a contradiction. If Q ≺ P1, then
no suffix in Suf [i, p1 − 1] can start with P1 for otherwise such a suffix would be larger than
P2. Therefore, Q = P1.

If P2 = T [µ..j], then p2 = µ and the lemma follows. Otherwise P2 ≺ T [µ..j]. Suppose
that P2 is not a prefix of T [µ..j]. Then T [p2..p2+`] = T [µ..µ+`] and T [p2+`+1] < T [µ+`+1]
for some ` ≥ |P1|. Therefore T [p2..] ≺ T [µ..] and T [p2..] is not the maximal suffix in
Suf [i, p1 − 1], a contradiction. �

Lemma 18. The shortest period of P2 is ρ = T [p2..p1 − 1].

Proof. Clearly, P1 is a border of P2. Consequently, ρ = T [p2..p1 − 1] is a period of P2. It
remains to prove that ρ is the shortest period. Suppose the opposite holds and let γ be the
shortest period of P2. The properties of canonical substrings imply that lengths of any two
suffixes of T [i..j] starting in [i, j − |Cα(i,j)

j |] differ by at most a factor of two. In particular,
|P2| ≤ 2|P1|. Therefore |γ| + |ρ| < 2|ρ| ≤ |T [p2..j]| and by Periodicity Lemma (Fact 1) P2

has a period of length gcd(|γ|, |ρ|). Since γ is the shortest period, |ρ| must be a multiple of
|γ|, i.e., ρ = γk for some k ≥ 2.

Consider the string γT [p1..] and compare it with T [p1..]. Clearly, these two strings are
not equal. We now show that neither T [p1..] ≺ γT [p1..] or T [p1..] � γT [p1..] is possible.
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Figure 3: A schematic illustration of Lemma 19.

First suppose that T [p1..] ≺ γT [p1..]. Prepending both parts of the latter inequality
by copies of γ gives γ`−1T [p1..] ≺ γ`T [p1..] for any 1 ≤ ` ≤ k. From transitivity of ≺ it
follows that T [p1..] ≺ γkT [p1..] = T [p2..], which contradicts the maximality of T [p1..] in
Suf [i, j − |Cα(i,j)

j |].
Now suppose that T [p1..] � γT [p1..], which implies γk−1T [p1..] � γkT [p1..]. But

γk−1T [p1..] = T [p2 + |γ|..] and γkT [p1..] = T [p2..], so T [p2 + |γ|..] is larger than T [p2..]
and belongs to Suf [i, p1 − 1], a contradiction. �

Lemma 19. T [µ..j] is the longest suffix of T [i..j] equal to ρrρ′ for some integer r; see
Fig. 3.

Proof. Clearly, P2 is a border of T [µ..j]. Again, from the properties of canonical substrings
we have |T [µ..j]| ≤ 2|P1|. Therefore, |T [µ..j]| + |ρ| ≤ 2|P1| + |ρ| ≤ 2|P2|. This inequality
implies that the occurrences of P2 as a prefix and as a suffix of T [µ..j] have an overlap of at
least |ρ| positions. Since |ρ| is a period of P2, |ρ| is also a period of T [µ..j].

Thus T [µ..j] = ρ′′ρrρ′, where r is an integer and ρ′′ is a proper suffix of ρ. Furthermore,
ρ2 is a prefix of T [µ..j], since it is a prefix of P2, which is in turn a prefix of T [µ..j]. If ρ′′ is
not an empty string, there is a non-trivial occurrence of ρ in ρ2, which contradicts ρ being
the shortest period of P2; see, e.g., [15]. The claim follows. Note also that r must be the
maximal possible, since for every t > r we have ρtρ′ � ρrρ′. �

Proof (of Lemma 14). Let T [p1..] be the maximal suffix in Suf [i, j−|Cα(i,j)
j |] and T [p2..]

be the maximal suffix in Suf [i, p1−1]. We first compute p1. If p1 = i, we return i. Otherwise,
we compute p2 and check whether T [p1..j] is a prefix of T [p2..j]. If not, we return p = p1.
Otherwise, we determine the largest integer r such that ρr, where ρ = T [p2..p1−1], is a suffix
of T [i..p1− 1], and return p = p1− r|ρ|; see Fig. 4. Each of the steps takes constant time by
Fact 3 and Lemma 4. Correctness of the algorithm follows from the discussion above. �

4.2. Construction
For 1 ≤ p ≤ j ≤ n we say that a position p is j-active if there is no position p′ ∈ [p+1, j]

such that T [p..j] ≺ T [p′..j]. In these terms, the starting position of the maximal suffix of
T [i..j] is the leftmost j-active position in [i, j]. The definition also implies that for any ` > 1
we have Bj[`] = 1 if and only if there is at least one j-active position within the range
R`
j =

[
j − |C`

j | + 1, j − |C`−1
j |

]
. We set R1

j = [j, j] so that this equivalence also holds for
` = 1 (since j is always j-active).

11



1 2 3 4 5 6 7 8 9 10

(a) a b b a a b b a b c
p2 p=p1

(b) b b a b b a b a b c
p=p1

(c) b a b b a b a b b c
p=p1p2

(d) a b b b b b b b b c
p1p2p

Figure 4: An illustration of cases which may occur in Lemma 14. In all four examples we are looking for the
maximal suffix of x = T [1..9] and its (unknown) maximal suffix is shaded. We assume that Cα(1,9)9 = T [5..9].
(a) We have p = 2 but the maximal suffix of Cα(1,9)9 is larger than T [2..9]. (b) We have p1 = i = 1, so p = 1.
(c) We have p1 = 3 and p2 = 1. However, T [3..9] is not a prefix of T [1..9], so p = p1 = 3. (d) We have
p1 = 4, p2 = 3 and T [3..9] is a prefix of T [2..9]. Hence, ρ = b is a period of T [2..9]. This period continues
to the left until position p = 2.

Example 20. If T [1..8] = dcccabab, the 8-active positions are 1, 2, 3, 4, 6, 8. Consider, for
example, p = 3. We have that T [3..8] = cabab and this string is the maximal suffix of itself.

Our construction algorithm iterates over j = 1..n, maintaining the list of active positions
and computing the bit vectors Bj. We also maintain the ranges R`

j for the choice of canonical
substrings defined in Section 3.3, which form a partition of [1, j]. The following two results
describe the changes of the list of j-active positions and the ranges R`

j when we increment j.

Lemma 21. If the list of all (j− 1)-active positions consists of p1 < p2 < · · · < pz, the list
of j-active positions can be created by adding j, and repeating the following procedure: if pk
and pk+1 are two neighbours on the current list and T [pk..j] ≺ T [pk+1..j], remove pk from
the list. The latter may happen only if lcp(T [pk..], T [pk+1..]) = j − pk+1.

Proof. First, note that if a position 1 ≤ p ≤ j − 1 is not (j − 1)-active, then it is not
j-active either. Indeed, if p is not (j − 1)-active, then by the definition there is a position
p < p′ ≤ j− 1 such that T [p..j− 1] ≺ T [p′..j− 1]. Consequently, T [p..j] = T [p..j− 1]T [j] ≺
T [p′..j − 1]T [j] = T [p′..j] and p is not j-active. Hence, the only candidates for j-active
positions are the (j − 1)-active positions and j.

All elements removed by our procedure clearly fail to be j-active. Thus, when it ter-
minates, the contents of the list form a superset of the set of j-active positions. Moreover,
the suffixes T [p..j] starting at positions p on the list form a lexicographically decreasing se-
quence. We shall prove that each of these positions is j-active. For a proof by contradiction
suppose this is not the case and some index p in the list is not j-active. Let T [p′..j] be maxi-
mal suffix of T [p..j]. Then p′ > p is j-active and satisfies T [p..j] ≺ T [p′..j]. This contradicts
the monotonicity combined with the fact that the list contains all j-active positions.
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27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

R8
28

Figure 5: The partitions of [1, j] into R`j for j = 27 and j = 28. As for j = 28 we have k = 2 and 2k+4 = 8,
R7

27 and R8
27 are merged into R8

28.

Finally, let us justify the last part of the statement. Note that pk is (j−1)-active but not
j-active. Thus, T [pk..j] ≺ T [pk+1..j] but T [pk..j−1] � T [pk+1..j−1]. This may only be true
when T [pk+1..j− 1] is a prefix (and therefore a border) of T [pk..j− 1] or when pk+1 = j and
T [pk+1..j − 1] is empty. In both cases we obtain lcp(T [pk..j], T [pk+1..j]) = j − pk+1 which is
equivalent to lcp(T [pk..], T [pk+1..]) = j − pk+1. �

Example 22. Let T = dcccababb. The 8-active positions are 1, 2, 3, 4, 6, 8. The list of the
9-active positions is created by adding 9 and deleting 6. The latter is deleted because 6 and
8 are neighbours and T [6..9] = babb ≺ T [8..9] = bb. Therefore, the 9-active positions are
1, 2, 3, 4, 8, 9.

We now need a technical lemma which describes how the ranges R`
j are related to

ranges R`
j−1; see Fig. 5 for an example.

Lemma 23. Let j ∈ [1, n] and assume 2k is the largest power of two dividing j.

(a) If ` = 1, then R`
j = [j, j].

(b) If 2 ≤ ` < 2k + 4, then R`
j = R`−1

j−1.

(c) If ` = 2k + 4, then R`
j = R`

j−1 ∪R`−1
j−1.

(d) If ` > 2k + 4, then R`
j = R`

j−1.

Proof. Observe that we have R1
j = [j, j] and R2

j = [j − 1, j − 1], while for ` > 2

R`
j =

{
[2m(

⌊
j
2m

⌋
− 2) + 1, 2m−1(

⌊
j

2m−1

⌋
− 3)] if ` is even,

[2m(
⌊
j
2m

⌋
− 3) + 1, 2m(

⌊
j
2m

⌋
− 2)] otherwise,

where m = b`/2c − 1. Also note that

2m(
⌊
j
2m

⌋
− 3) =

{
2m(
⌊
j−1
2m

⌋
− 2) if 2m | j

2m(
⌊
j−1
2m

⌋
− 3) otherwise,

2m(
⌊
j
2m

⌋
− 2) =

{
2m−1(

⌊
j−1
2m−1

⌋
− 3) if 2m | j

2m(
⌊
j−1
2m

⌋
− 2) otherwise.

Moreover, 2m | j ⇐⇒ ` ≤ 2k+ 3 and 2m−1 | j ⇐⇒ ` ≤ 2k+ 5, which makes it easy to check
the claimed formulas. Note that it is possible that R`

j is defined only for values ` smaller
than 2k + 4. This is exactly when the number of ranges grows by one, otherwise it remains
unchanged. �
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We scan T from left to right and compute the bit vectors while maintaining the list
of active positions and the partition of [1, j] into ranges R`

j. Additionally, for every such
range we have a counter storing the number of active positions inside. Recall that Bj[`] = 1
exactly when the `-th counter is nonzero.

To efficiently update the list of active positions we store pointers to pairs of neighbouring
positions. Whenever a new pair of neighbouring positions pk, pk+1 appears, we insert a
pointer to the pair into the list associated with a position pk+1 + lcp(T [pk..], T [pk+1..]).
(Remember that lcp(T [pk..], T [pk+1..]) can be computed in constant time by Fact 3.)

Suppose that we already know the list of (j − 1)-active positions, the bit vector Bj−1,
and the number of (j − 1)-active positions in each range R`

j−1. At the moment we reach j,
we first update the list of (j−1)-active positions. We append j and then we process pointers
stored in the list of neighbouring positions associated with position j. For a pointer to a pair
(pk, pk+1) we check if pk and pk+1 are still neighbours. If they are and T [j+pk−pk+1] < T [j],
we remove pk from the list of active positions, otherwise we do nothing. If a position p is
deleted from the list, we find the range it belongs to (Rα(p−1,j)+1

j ), and decrement the counter
of active positions there. If a counter becomes zero, we clear the corresponding bit of the
bit vector.

Next, we update the partition: first, we append a new range [j, j] to the partition of
[1..j − 1] and initialize its counter of active positions to one. Let 2k be the largest power of
two dividing j. We update the first 2k + 4 ranges using Lemma 23, including the counters
and the bit vector. This takes O(k) time which amortizes to O(

∑∞
k=1

k
2k

) = O(1) over all
values of j. Correctness of the algorithm follows from Lemmas 21 and 23.

Theorem 24. A string T of length n can be stored in an O(n)-space structure that in
O(1) time computes the maximal suffix of a given substring of T . The data structure can be
constructed in O(n) time.
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