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Sarah Kewley,∗ Mark Lowenberg, †

Simon Neild, ‡

University of Bristol, Bristol, BS8 1TR, United Kingdom

Bernd Krauskopf§

University of Auckland, Auckland, 1142, New Zealand

Pilots may experience vibrations in the cockpit during ground manoeuvres because of

energy being transferred from the nose landing gear to the fuselage. This indicates that

the fuselage dynamics could also have an effect on the dynamics of the gear. To study this

interaction, a mathematical model of a nose landing gear coupled to a fuselage model with

yaw and pitch degrees of freedom is developed. Results obtained by bifurcation analysis

show the nature of the interaction between the two systems; in particular the two-DOF

fuselage does affect the onset and subsequent severity of nose landing gear shimmy.

I. Introduction

When designing an aircraft, analysis of how it behaves on the ground must be considered. The landing

gear are especially complex as they must be lightweight mechanisms that can be stowed when in flight, but

are also required to withstand large loads during landing and when on the ground. One of the main issues
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during ground manoeuvres, be it, take-off, landing or taxiing, is the phenomenon of shimmy oscillations.

Shimmy is a well studied problem in engineering and can occur in any ground vehicle with a rolling wheel.

It is categorised as a self-induced oscillation and was first properly understood in cars by Broulhiet1 in the

1920s. He found that the tyre behaviour in a rolling system is fundamental to shimmy and introduced the

concept of sideslip. Fromm2 recognised the similarities of the vibrations of cars and aircraft and, while

studying the effect of sideslip, found that the lateral forces acting on the wheel are coupled to the shimmy

dynamics.

Due to the influence of the tyre on shimmy dynamics, many tyre models have been presented. Probably the

most well known is the stretched-string model by Dietrich and Von Schlippe,3 who considered the tyre to

be an elastic string stretched around the outer edge of the wheel, which deforms via a lateral displacement.

They modelled this as a straight line from the leading point on the contact patch to the point of maximum

deflection. In 1966, Pacejka4 followed this by considering the contact line to have a number of different

shapes. He implemented this tyre model in various ground vehicles, making use of experimental data

and mathematical modelling. Instead of using a set curve for the contact line, Segel5 allowed it to vary

dynamically, thus modelling the actual shape of the contact patch. He called this the exact stretched-string

model. In the 1990s, Somieski6 developed a nose landing gear (NLG) model that consisted of the torsional

dynamics of the landing gear, the forces and moments of the gear and the elastic characteristics of the tyre

described by the stretched string. He found that, with lower damping and increased velocity and vertical

load, the system was more likely to experience shimmy oscillations. This was extended by Thota et al ,7 who

introduced a non-zero rake angle to the landing gear model and then included a lateral bending degree of

freedom (DOF), which coupled to the torsional DOF via the tyre.8 Thota et al used bifurcation analysis to

investigate the interaction of the DOFs and found that, in addition to the well known torsional oscillations,

the system may experience stable lateral and quasiperiodic shimmy oscillations.

The model presented in the work by Thota et al was used as a basis for the coupled NLG-fuselage model

developed by Terkovics et al ,9 who added a lateral rigid body fuselage mode representing the displacement

of the aircraft at the NLG-fuselage attachment point. They found that the presence of the fuselage affects

the NLG shimmy dynamics significantly and, thus, the onset of shimmy is altered with the inclusion of their

simple fuselage representation. As well as the rigid body modes, the flexible modes of the fuselage are also
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important. Luber et al10 investigated the effects of a fighter aircraft during its development phase. They

found that the elastic fuselage modes are important when the natural frequencies of the fuselage are similar

to that of the NLG modes. Wright and Cooper11 also looked at the effect of a flexible fuselage coupled to

single DOF landing gear models. They measured the heave response of the system when the gears passed

over a dip in the runway. They then repeated the analysis when including a flexible mode in the fuselage

model. The results show a significant response at the natural frequency of the flexible modes, indicating

that the dynamic response of the fuselage increases with the inclusion of flexible modes.

In this paper a coupled NLG-fuselage model is derived and analysed in order to further investigate the

interaction between the NLG and the fuselage. The model derivation considers the NLG and the fuselage as

two separate systems that are coupled via constraint forces.

The fuselage model is a two DOF mass spring damper system in the lateral and vertical directions at the

NLG-fuselage attachment point. The lateral displacement represents any modal characteristics of an elastic

fuselage, and any yawing of a rigid fuselage whilst on the runway. The vertical fuselage displacement also

represents the modal dynamics of an elastic fuselage, and any pitching of a rigid fuselage during ground

manoeuvres. These generalisations are made because the amplitudes of the oscillations of the fuselage are

assumed to be small and, therefore, can be modelled as linear translations. The NLG model is highly

nonlinear; it models the torsional and lateral bending modes of the gear, which are coupled due to the

geometry of the structure and via the tyre model, for the lateral deflection of the tyre.

This coupled model is studied by means of bifurcation analysis; results are presented as time histories and one-

and two-parameter bifurcation diagrams. The bifurcation diagrams are created with the software package

AUTO,12 which has been integrated into Matlab via the Dynamical Systems Toolbox.13 One-parameter

bifurcation diagrams show that, when the forward velocity of the aircraft is increased, the straight-rolling

solution becomes unstable via a Hopf bifurcation. The system then experiences stable periodic oscillations

dominated by either the torsional or lateral modes of the NLG. Two-parameter bifurcation diagrams show

the effect of fuselage motion on the dynamics of the NLG. Analysis shows that the two fuselage DOFs do

affect the onset of shimmy oscillations and, in the shimmy region, their frequency and amplitude. Moreover,

the onset of shimmy is influenced most by the fuselage when the lateral fuselage mode has a low effective

mass. The vertical fuselage mode is found to have no effect on the onset of shimmy, but it influences the
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severity of the oscillations once in the shimmy region.

The model is presented in section II, and the results in section III. In particular, bifurcation analysis in two

parameters is carried out in subsection IIIC. Finally, conclusions are drawn in section IV.

II. Derivation of NLG-fuselage model

Since many of the landing gear models that are presented in the literature assume that

the fuselage motion is negligible, we first concentrate on the landing gear model, including

motion and forces at the interface with the fuselage. This model has four degrees of freedom,

the torsional and lateral bending rotations of the landing gear and the lateral and vertical

motions at the interface with the fuselage, ψ, δ, yA and zA respectively (see figure 1). The

fuselage model is then discussed, introducing two additional degrees of freedom: a lateral and

a vertical deflection, y and z respectively. The two subsystems are then combined to give the

overall dynamics of the coupled fuselage and nose landing gear. At this stage the constraint

that the tyre remains in contact with the ground is introduced, eliminating the zA degree of

freedom, resulting in a five degree of freedom model which is expressed in state-space form.

Finally the tyre is considered, which introduced an additional state, λ.

The NLG is shown schematically in figure 1(a) and consists of a strut, caster and wheel, which have a
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Figure 1. Schematic of coupled nose landing gear and fuselage model.
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combined centre of gravity located at point B on the strut. The NLG is attached to the fuselage at point

A and is in contact with the ground at point C. Two different coordinate frames are considered: a global

frame with origin O is fixed to the ground and has orthogonal axes X,Y and Z, with the Z axis orientated

vertically downwards and X axis pointing in the forward direction of the aircraft; and a moving (or body)

frame, with its origin at point A and axes ξ, η and ζ. The ζ-axis is rotated from the vertical by the constant

rake angle φ and is in-line with the strut in the downwards direction, while the ξ-axis is in-line with the

caster. The NLG model has three DOFs. It is allowed to rotate torsionally about the ζ-axis by the angle ψ

and to rotate through the lateral bending angle δ, about a rotated X-axis through A. Finally, the NLG is

allowed to move laterally and vertically at point A by displacements yA and zA, respectively. The vertical

displacement zA, however, does not manifest itself as a degree of freedom due to ground constraints. The

lateral displacement yA is under no constraint but is grounded via a small compliance to remove rigid body

drift. Here, a single wheel gear is considered, with the gyroscopic effects neglected as the focus

of the work is the effect of fuselage motion on the onset of shimmy. The effect of multiple

wheels and their gyroscopic effects on the landing gear dynamics are reported by Thota et al .14

A. The NLG model

Lagrangian mechanics were used to derive the equations of motion (EOMs) for this NLG system. Along

with the three DOFs (δ, ψ and yA), the vertical displacment zA is temporarily treated as a

DOF. For each DOF the Lagrangian equation

∂

∂t

(

∂L

∂q̇i

)

−
∂L

∂qi
+
∂R

∂q̇i
= Qi (1)

holds where L = T − U , and T and U are the kinetic and potential energies of the system, respectively.

Moreover, R is Rayleigh’s dissipation function, Qi is the expression for the generalised forces and qi = δ, ψ, yA

and zA are the generalised coordinates. The kinetic energy is given by

T =
1

2

(

m | vB |2 +ω
TJBω

)

, (2)

where the vector vB is the velocity vector of point B, ω is the angular velocity of the NLG about point A,

m is the mass of the NLG and JB is the inertia matrix tensor at point B in the global frame. The potential
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energy and Rayleigh’s dissipation function are defined by

U =
1

2

(

kδδ
2 + kψψ

2 + kyAy
2

A

)

(3)

and

R =
1

2

(

cδ δ̇
2 + cψψ̇

2

)

, (4)

respectively, where kν and cν are the stiffness and damping coefficients of DOF ν. We can now show how

the terms in equation (2) are derived.

Firstly, due to the coupling with the fuselage, it is convenient to write the EOMs in the global frame. As

the transformation from the global frame to the body frame is via three successive rotations (φ, δ, ψ), a

transformation matrix can be written, which transforms vectors expressed in the body frame to the global

frame; it is given by

H =



















cosφ cosψ + sinφ sin δ sinψ − cosφ sinψ + sinφ sin δ sinψ cos δ sinφ

cos δ sinφ cos δ cosψ − sin δ

− sinφ cosψ + cosφ sin δ sinψ sinφ sinψ + cosφ sin δ cosψ cos δ cosφ



















. (5)

The position and velocity of point A in the global frame is given by

rA =



















V t

yA

−L− zA



















(6)

and vA = ṙA, respectively, where V is the constant forward velocity of the aircraft, t is time, and L =

lg +R cosφ is the height of the NLG at equilibrium; lg is the distance from point A to the end of the strut

and R is the radius of the wheel. The position vector of point B in the body frame is given by

rbAB =



















0

0

lζ



















, (7)

where lζ is the distance of point B from point A at equilibrium. This can be transformed to the global frame

by using the Euler transformation matrix in equation (5), giving the relative position of point B with respect

to point A in the global frame as

rAB = HrbAB . (8)
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Therefore, the absolute position of point B in the global frame is

rB = rA + rAB (9)

and the absolute velocity is given by

vB = vA + vAB

=



















V − sinφ sin δlζ δ̇

ẏA − cos δlζ δ̇

−żA − cosφ sin δlζ δ̇



















, (10)

where vAB = ṙAB . Due to the successive rotations between the global frame and the body frame, the angular

velocity vectors do not create an orthogonal set. Therefore, to transform the vectors into the global frame

the rotation matrices must be applied individually, giving the angular velocity

ω =



















cosφδ̇ + sinφ cos δψ̇

− sin δψ̇

− sinφδ̇ + cosφ cos δψ̇



















(11)

of the NLG with respect to point A.

As previously mentioned, the constraint at the ground leads to the variable zA being constrained. An

expression for zA is found by calculating the velocity at the ground contact point; point C in figure 1(a).

First, the position vector of point C in the body frame is given by

rbAC =



















−e−R sinφ

0

lg +R cosφ



















, (12)

where e is the caster length. Therefore, the absolute position of point C in the global frame is

rC = rA + rAC , (13)

where rAC = HrbAC . The absolute velocity of point C is

vC = ṙC . (14)
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The ground constraint states that the gear must not lift off the ground. Therefore, the velocity at the ground

in the Z direction equals 0, which yields the equation,

− żA + ṙAC.Z = 0. (15)

Equation (15) gives an expression for the constrained variable żA. Finally, in order to calculate generalised

forces Qi, the forces acting on the landing gear must be defined. There are two forces acting in the Y and

Z direction at point A, which couple the landing gear to the fuselage; they are given by

CY.NLG =



















0

CY

0



















and CZ.NLG =



















0

0

CZ



















(16)

and are indicated in figure 1(a). There are also gravitational forces at points A and B, given by

GA =



















0

0

Mg



















and GB =



















0

0

mg



















, (17)

respectively, where M is the static mass of the fuselage acting on the nose gear and g is the gravitational

acceleration. At point C, there is a lateral tyre force and a vertical force given by the vectors

FY =



















−FzΛ sin θ

FzΛcos θ

0



















and FZ =



















0

0

−Fz



















, (18)

where θ is the ground projection of the angle ψ and is defined θ = ψ cosφ cos δ. The lateral tyre force is

a function of Λ which is defined by

Λ = kλ tan
−1(7 tan(α)) cos(0.95 tan−1(7 tan(α))). (19)

where kλ is the restoring coefficient of the tyre, α = tan−1
(

λ
L

)

is the slip angle, L is the relaxation

length and λ is the lateral displacement of the tyre. The definition of Λ is taken from Thota

et al8 which is based on work by Pacejka15. In addition, the landing gear experiences a self-aligning
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moment due to the tyre, given by

Mkα =



















0

0

−FzCkα



















, (20)

where

Ckα =























kα
αm

π
sin

(

α π
αm

)

, if |α| ≤ αm,

0, if |α| > αm.

(21)

Here αm is the maximum slip angle and kα is the self-aligning coefficient of the tyre. This piecewise function

is based on that in Somieski.6

The power P of the system is calculated by using the general expression

P =

N
∑

j=1

Fj · vj +

M
∑

k=1

Mk · ωk =

n
∑

i=1

Qiq̇i (22)

and the generalised forces for each coordinate are

Qi =

N
∑

j=1

Fj ·
∂vj
∂q̇i

+

M
∑

k=1

Mk ·
∂ωk

∂q̇i
(23)

where Fj are the forces and Mk the moments acting on the system and vj and ωk are the

corresponding velocities respectively. Noting that the forces do not depend on velocity this

can be rewritten as

Qi =
∂P

∂q̇i
(24)

to find the generalised forces of the system.

Equation (1), with DOFs i = δ, ψ, yA, zA, in turn, can now be used to calculate the four equations of motion
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for the landing gear

G1

(

δ̈, ψ̈, ÿA, z̈A

)

+G2

(

ψ̇2, δ̇ψ̇
)

+ cδ δ̇ +G3Fz + kδδ +G4 = 0, (25)

H1

(

δ̈, ψ̈
)

+H2δ̇
2 + cψψ̇ +H3Fz + kψψ = 0, (26)

J1

(

δ̈, ÿA

)

+ J2δ̇
2 + J3Fz + kyAyA + CY = 0, (27)

K1

(

δ̈, z̈A

)

+K2δ̇
2 − Fz + CZ +mg = 0. (28)

The coefficients G1...4, H1...3, J1...3 and K1,2 are given in the Appendix.

B. The fuselage model

A schematic of the fuselage model is shown in figure 1(b). Once again, the attachment point between the

fuselage and landing gear is labelled A. The fuselage is allowed to move laterally via the displacement y and

vertically via the displacement z. These displacements have effective masses µ and ν, respectively. Equation

(1) can be used again to calculate the equations of motion. The kinetic energy is given by

T =
1

2

(

µ | vµ |2 +ν | vν |2
)

, (29)

where vectors vµ and vν are the respective absolute velocity vectors in the global frame of effective masses

µ and ν, given by

vµ =



















0

ẏA + ẏ

0



















and vν =



















0

0

−żA − ż



















. (30)

The potential energy of the system and Rayleigh’s dissipation function are given by

U =
1

2

(

µfny
2
y2 + νfnz

2
z2
)

and R =
1

2

(

2qµfny ẏ
2 + 2sνfnz ż

2
)

, (31)

respectively, where fny and fnz are the natural frequencies, and q and s are the relative dampings of the

lateral and vertical fuselage modes. The fuselage has forces equal and opposite to those in equation (16),
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given by

CY.F =



















0

−CY

0



















and CZ.F =



















0

0

−CZ



















. (32)

The generalised forces arise solely from the constraint forces and are calculated using equation

(24). Implementing equation (1) for i = yA, zA, y, z gives the equations of motion for the fuselage

µ(ÿA + ÿ) + CY = 0, (33)

ν(z̈A + z̈)− CZ = 0, (34)

µ(ÿA + ÿ) + cy ẏ + kyy = 0, (35)

ν(z̈A + z̈) + cz ż + kzz = 0. (36)

C. Coupled NLG-fuselage model

Now that the NLG and the fuselage systems have been derived, they can be combined by eliminating the

coupling force terms CY and CZ . By using equations (27) and (33), CY is eliminated to give

M1

(

δ̈, ÿA, z̈A, ÿ
)

+ J2δ̇
2 + J3Fz + kyAyA = 0. (37)

Similarly, CZ is eliminated by using equations (28) and (34) to give

R1

(

δ̈, z̈A, z̈
)

+K2δ̇
2 − Fz +Mg +mg = 0, (38)

where M1 and R1 are given in the Appendix. Equation (38) can be rearranged to get an expression for Fz.

The relationship −żA + ṙAC.Z = 0 is due to the ground constraint and is given in equation (15). These

expressions for Fz and z̈A can be substituted into equations (25), (26), (35), (36) and (37) to give the five

equations of motion for the overall NLG-2DOF fuselage model.
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D. Tyre Model

The tyre model is based on the stretched-string model described by Dietrich and Von Schlippe.3

The following derivation results in a kinematic expression for the lateral deformation of the

tyre’s leading contact point. Here, we assume that the tyre fully adheres to the ground at

all times. Segel5 defines the exact stretched-string model, where the actual shape of the

Figure 2. Deformation of the tyre described by the stretched-string model.

tyre contact line is considered. This contact line is defined by the function p(x, t), x ∈ [−h, h]

and is shown in figure 2 where h is half the tyre contact patch length and L is the relaxation

length. Therefore, the lateral tyre deflection p(t) is described for any point P between the

tyre’s leading point P1, and its trailing point P2. If we consider point P on the curve p(x, t), its

absolute position vector is given in the global frame as a superposition of the absolute position

of point C, the ground contact point (indicated in figures 1a and 2) and is defined as

rP = rC + rCP =



















rC.X + x cos θ − p(x, t) sin θ

rC.Y + x sin θ + p(x, t) cos θ

rC.Z



















, (39)

where rC.X , rC.Y and rC.Z are the X, Y , and Z components of the position vector rC given in

equation (13). Its velocity vector is thus

vP = ˙rP =



















ṙC.X + ẋ cos θ − xθ̇ sin θ − (p′(x, t)ẋ+ ṗ(x, t))− p(x, t)θ̇ cos θ

ṙC.Y + ẋ sin θ + xθ̇ cos θ + (p′(x, t)ẋ+ ṗ(x, t))− p(x, t)θ̇ sin θ

ṙC.Z



















. (40)
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The condition that the tyre fully adheres to the ground implies that the velocity of point P is

0. Therefore, enforcing the condition vP = 0 gives the following constraint equations

ṙC.X + ẋ cos θ − xθ̇ sin θ − (p′(x, t)ẋ+ ṗ(x, t))− p(x, t)θ̇ cos θ = 0, (41)

ṙC.Y + ẋ sin θ + xθ̇ cos θ + (p′(x, t)ẋ+ ṗ(x, t))− p(x, t)θ̇ sin θ = 0, (42)

ṙC.Z = 0. (43)

Equation (43) gives us the expression for our constrained variable żA already given in equation

(15). Equations (41) and (42) can be solved for ṗ(x, t);

ṗ(x, t) = ṙC.X sin θ − ṙC.Y cos θ − xθ̇ − p′(x, t)
(

pθ̇ − ṙC.X cos θ − ṙC.Y sin θ
)

(44)

to give a constraint of the lateral displacement of point P along the contact line. This PDE

can be coupled to the equations of motion; the reader is directed to work by Takacs et al .16

However, here we choose to approximate the constraint equation to consider the lateral dis-

placement at the leading contact point P1 only; namely where x = h, and assume that no

sliding occurs in the contact area. This could lead to a ‘kink’ in the contact line at points P1

and P2. We can assume that when rolling the string forms a continuous varying slope at point

P1 whilst at point P2 there may be discontinuities due to the absence of bending stiffness. For

further explanation and proof of this, see Pacejka.15 As the slope is continuous at the leading

point, it can be written as

p′(x, t) |x=h= −
λ(t)

L
. (45)

Using this, equation (44) becomes an ODE that describes the kinematics of the tyre at the

contact leading point via

λ̇(t) = ṙC.X

(

sin θ −
λ(t)

L
cos θ

)

− ṙC.Y

(

cos θ +
λ(t)

L
sin θ

)

−

(

h−
λ(t)2

L

)

θ̇. (46)

This first-order differential equation, along with the five second-order differential equations (equations (25),

(26), (35), (36) and (37), once equation (38) and (15) are used to eliminate Fz and z̈A) represent the coupled

NLG-2DOF fuselage model.
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III. Bifurcation analysis of NLG-fuselage model

The parameter values used for the nose landing gear model presented in section II are shown in table 1;

they are mostly taken from Thota et al .8 The parameter values for the fuselage model are shown in table

2 and are chosen in a realistic range to ensure that the system exhibits shimmy; i.e. the vertical load is

reasonably large.

A. Examples of shimmy oscillation

The existence of shimmy in the NLG-fuselage system can be shown by numerically integrating the equations

of motion with respect to time given in section II. Figures 3 and 4 show example time responses for the

DOFs ψ, δ, y and z and their corresponding frequency spectra; parameter values remain constant during

each time history. Figure 3 shows the system experiencing shimmy at a velocity of V = 50m/s. It can be seen

that all DOFs display oscillatory motion; however, some are more responsive than others. The maximum

amplitude of the torsional angle, ψ, is very large compared to that of the lateral bending angle, δ; hence,

we refer to this as torsionally dominated shimmy. It can also be seen that the maximum amplitudes of the

lateral fuselage and vertical fuselage DOFs (y and z, respectively) are small and not overly responsive in

this type of shimmy. A further point to note is that the DOFs ψ, δ, λ and y are locked into a frequency of

11Hz, while the vertical fuselage DOF oscillates at a frequency of 22Hz, double that of the other DOFs.

Figure 4 shows the system experiencing a second type of shimmy at velocity V = 50m/s. The maximum

torsional angle, ψ, is now much smaller and the maximum lateral bending angle, δ, is much larger; this

indicates that the shimmy experienced at this velocity is dominated by lateral bending, and it is referred

to as laterally dominated shimmy. It can be seen that the lateral fuselage DOF is much more responsive to

this type of shimmy compared to that in figure 3. The maximum amplitude of the vertical fuselage DOF is

slightly larger in figure 4, but still small. The DOFs δ, ψ, λ and y oscillate at a frequency of 15Hz and once

again the vertical fuselage DOF, z, oscillates at 30Hz, double that of the other DOFs.

We observe that both time series were taken at V = 50m/s, indicating that the system has two stable

periodic solutions at this velocity and can, therefore, experience either torsionally dominated shimmy or

laterally dominated shimmy depending on the initial conditions.

14 of 29

American Institute of Aeronautics and Astronautics



Table 1. NLG and tyre parameters

Parameter Name Value Units

NLG data

lζ distance from A to B 1.25 m

m mass of the landing gear 320 kg

Jζζ m.m. of inertia at B with respect to ζ-axis 100 kg m2

Jξξ m.m. of inertia at B with respect to ξ-axis 100 kg m2

Jηη m.m. of inertia at B with respect to η-axis 100 kg m2

Jξη p. of inertia at B with respect to (ξ, η)-axes 0 kg m2

Jξζ p. of inertia at B with respect to (ξ, ζ)-axes 0 kg m2

Jηζ p. of inertia at B with respect to (η, ζ)-axes 0 kg m2

kδ lateral stiffness of strut 6.1E6 Nm rad−1

cδ lateral damping of strut 300 Nms rad−1

kψ torsional stiffness of strut 3.8E5 Nm rad−1

cψ torsional damping of strut 300 Nms rad−1

lg distance from point A to the end of the strut 2.138 m

φ rake angle 9 ◦

Tyre and wheel data

R wheel radius 0.362 m

L relaxation length 0.3 m

e caster length 0.12 m

kλ restoring coefficient of the tyre 0.002 rad−1

h half contact patch length 0.1 m

kα self-aligning coefficient of the tyre 1.0 m rad−1

αm self-aligning moment limit 10 ◦

Other

g gravitational acceleration 9.81 m s−2

B. One-parameter continuation

We now consider a one-parameter continuation with the forward velocity, V , as the continuation parameter.

Figure 5 shows its projections onto the five variables ψ, δ, λ, y and z. The diagram shows the maximum
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Table 2. Fuselage parameters

Parameter Name Value Units

M Fuselage mass at NLG 12 t

fny lateral natural frequency 15 Hz

fnz vertical natural frequency 15 Hz

µ lateral effective mass 2 t

ν vertical effective mass 2 t

q lateral relative damping 0.02

s vertical relative damping 0.02

response amplitude of the system steady states for any value of V . The solution can either be stable or

unstable. A stable solution can be either an equilibrium where the system is straight rolling (no shimmy), or

a periodic orbit at constant amplitude (stable shimmy). Figure 5 shows that for low velocities the equilibrium

(or straight-rolling) solution is stable. When the velocity is increased, the system experiences a supercritical

Hopf bifurcation, Ht, at V = 4.86m/s. This causes the straight-rolling equilibrium to become unstable and

gives rise to a stable periodic orbit whose maximum amplitude forms the black branch. From the projection

of this branch in the maximum torsional angle (figure 5(a)), compared to that of the lateral bending angle

(figure 5(b)), it is evident that this branch is torsionally dominated. Shimmy experienced along this branch

will therefore be similar to that shown in the time series in figure 3. Following this branch as the forward

velocity is increased further, the system experiences a torus bifurcation, Tt, at V = 67.5m/s. Here, the

torsionally dominated branch loses stability, and the unstable branch then joins the unstable straight-rolling

solution via a Hopf bifurcation, H ′

t, at V = 69.9m/s. After the straight-rolling solution initially loses

stability via a Hopf bifurcation, Ht, it experiences a second Hopf bifurcation, Hl, at V = 14.29m/s. This

Hopf bifurcation is subcritical, and the resulting branch is unstable. At V = 41.3m/s the branch gains

stability via torus bifurcation, Tl. From observing its projection in the torsional and lateral bending angles,

this branch can be identified as laterally dominated. Here, the shimmy is similar to that displayed in the time

series in figure 4. This laterally dominated branch remains stable as the velocity is increased and joins the

straight-rolling solution, which regains stability at a Hopf bifurcation, H ′

l , at V = 77.17m/s. As previously

mentioned, the system has areas of bistability, where the shimmy experienced is dependent upon the choice
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Figure 3. Time series of equations (25), (26), (35), (36) and (37) taken at forward velocity V = 50m/s showing

the system exhibiting torsionally dominated shimmy ; all other parameters are as in tables 1 and 2.

of initial conditions and it covers the interval V ∈ [41.3, 76.5]. This region of bistability is easily identified

in the one-parameter continuation diagrams in figure 5.

C. Two-parameter continuations

The effect of the fuselage on the NLG can now be investigated by considering two-parameter continuations

in which the bifurcation points from figure 5 are continued in a second parameter.
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Figure 4. Time series of equations (25), (26), (35), (36) and (37) taken at forward velocity V = 50m/s showing

the system experiencing laterally dominated shimmy ; all other parameters are as in tables 1 and 2.

1. Two-parameter bifurcation diagrams in the (V,M)-plane

We first consider as the second continuation parameter the static mass,M of the fuselage acting on the NLG.

Two resulting bifurcation diagrams in the (V,M)-plane with fuselage dynamics, and without, are shown in

figure 6. Continuing the Hopf bifurcation points Ht and Hl in V and M results in the thick black curves

Hc
t and Hc

l , respectively. Torus bifurcation points from figure 5, Tt and Tl, are also continued in these

parameters and result in the grey curves T ct and T cl , respectively. We note here that the torus curves emerge
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Figure 5. One-parameter bifurcation diagrams in V showing the maximum amplitudes of ψ, δ, λ, y and z for

M = 12t; other parameters are as given in tables 1 and 2.

from intersection points of Ht and Hl known as double Hopf points, HH. The Hopf bifurcation curves are

stability boundaries of the equilibrium solution and, therefore, indicate the onset of shimmy. The torus curves

are stability boundaries of the periodic orbits; T ct for the torsional and T cl for the lateral shimmy oscillations.

The bifurcation diagram shows that the straight-rolling solution is entirely stable in the unshaded area.

Consistent with the one-parameter continuation in figure 5, over the given range of velocities, the system has

regions of purely stable torsionally dominated shimmy, purely stable laterally dominated shimmy, as well as

a region of bistability where the two stable periodic solutions co-exist and the type of shimmy experienced
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Figure 6. Two-parameter bifurcation diagrams in the (V,M)-plane for (a) an oscillating fuselage where param-

eters are as given in table 2, and (b) for a non-oscillating fuselage where µ = ν = 10000t.

depends upon the initial conditions. These regions are bounded by the shown bifurcation curves.

In figure 6(a) the system experiences torsionally dominated shimmy in the region bounded by the curves Hc
t

and T ct . However, this region is split into two parts, in the part indicated by the vertically striped shading

20 of 29

American Institute of Aeronautics and Astronautics



and bounded by the curves Hc
t and T cl , there is only one periodic solution corresponding to the torsionally

dominated shimmy. In the second part, indicated by the block grey shading and bounded by the curves T cl

and T ct , there are two periodic solutions corresponding to torsionally and laterally dominated shimmy; this

is the region of bistability. The region indicated by the horizontal shading and bounded by the curves Hc
l

and T cl is the region of laterally dominated shimmy only. Note that the one-parameter continuation in figure

5 is a cross section of figure 6(a) at M = 12t.

In order to evaluate the effect of the fuselage modes on the landing gear stability, the fuselage masses are now

set to very large values; this is the practical equivalent of setting them to infinity such that their dynamics

is suppressed. Figure 6(b) shows the respective two-parameter bifurcation diagram in the (V,M)-plane with

µ = ν = 10000t. It can be seen that the bifurcation curves have moved compared to those in figure 6(a),

so there is a smaller region of the desirable straight-rolling solution. In particular, for intermediate to large

values of V , the boundary of stability of the straight-rolling solution is lower in figure 6(b) and consists of

a transition to laterally dominated shimmy. There is also a second double Hopf bifurcation point in figure

6(b) at M ≈ 15t. It gives rise to a second torus bifurcation curve, T ′c
t , creating a second small region of

purely laterally dominated shimmy. We remark figure 6(b) is in agreement with the findings in Thota et al8

on a NLG without the consideration of the fuselage dynamics.

Overall figure 6(b) indicates that the oscillating fuselage stabilizes the gear, resulting in an increased region

of stable straight-rolling, that is, no shimmy. This energy is transferred into the fuselage and dissipates,

meaning that the fuselage acts as a passive damper in certain parameter regions. The differences between

figure 6(a) and (b) clearly show that the fuselage influences the dynamics of the NLG. However, as the

fuselage model is a two DOF system, it is unclear what effect each fuselage DOF has. We can investigate

this by studying the effects of separately varying the different fuselage parameters, i.e. the respective effective

mass and natural frequency.

2. Effect of the lateral fuselage DOF

By keeping the natural frequency and effective mass of the vertical DOF fixed at the values given in table 2,

we can now investigate the effects of the lateral fuselage mode. To do this, we consider the two-parameter

bifurcation diagrams in figure 7. In panel (a) the bifurcation diagram is shown in the (V, fny )-plane, that
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Figure 7. Two-parameter bifurcation diagrams, (a) in the (V, fny )-plane and (b) in the (V, µ)-plane; shading

reflects the type of shimmy, as defined in figure 6.

is, the two continuation parameters are the forward velocity V and the natural frequency fny of the lateral

fuselage DOF. Once again, the one-parameter continuation in figure 5 is a cross section of this bifurcation

diagram; namely at fny = 15Hz. The Hopf bifurcation curves that bound the stable and unstable areas

of the equilibrium solution show that the boundaries of the shimmy region are influenced by the natural
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Figure 8. Two-parameter bifurcation diagrams, (a) in the (V, fnz )-plane and (b) in the (V, ν)-plane; shading

reflects the type of shimmy, as defined in figure 6.

frequency. We observe that, for fuselage frequencies of fny < 15Hz, the system experiences purely torsionally

dominated shimmy. However, at fny = 14.3Hz the Hopf bifurcation curves, Hc
l and H ′c

t , intersect at the

double Hopf point HH, leading to emerging torus bifurcation curves, T cl and T ct , that give rise to stable

laterally dominated shimmy. Therefore, for fny > 15Hz, the system has regions of purely torsionally dom-
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inated shimmy, regions of purely laterally dominated shimmy and regions of bistability. The introduction

of laterally dominated shimmy at fny = 15Hz shows that there is a resonance between the NLG and the

fuselage, because the natural frequency of the gear’s lateral bending mode is 15Hz. For fny = 5.2Hz, the onset

points of shimmy are highly affected by the presence of the fuselage dynamics. Since the natural frequency

of the gear’s torsional mode is 11Hz, the value of 5.2Hz is roughly half the natural frequency, indicating a

2:1 resonance between the fuselage lateral DOF and the nose gear.

Figure 7(b) shows the bifurcation diagram in the (V, µ)-plane, with the forward velocity V and the effective

mass µ of the lateral DOF as the continuation parameters. The one-parameter continuation in figure 5 is a

cross section at µ = 2t. The Hopf bifurcation curves in panel (b) show that the effective mass has less of

an impact on the onset of shimmy than the natural frequency; however lower effective mass values show a

larger range of equilibrium stability for large velocity values. At these low values of µ, when the NLG does

shimmy it does so purely torsionally. However, as the effective mass µ increases, other types of shimmy are

introduced due to the intersection of the Hopf bifurcation curves Hc
t and Hc

l at the double Hopf point HH

at µ ≈ 2t. The torus bifurcation curves, T cl and T ct , emerge from HH and the system has regions of both

types of shimmy as well as bistability between them.

3. Effect of the vertical fuselage DOF

The same approach is now taken to investigate the effects of the vertical DOF. The natural frequency and

effective mass of the lateral fuselage DOF are kept fixed at the values given in table 2. Figure 8 shows

two-parameter bifurcation diagrams in the (V, fnz )-plane in panel (a) and in the (V, ν)-plane in panel (b).

The one-parameter bifurcation diagrams in figure 5 are a cross section of the diagrams in figure 8(a) and

8(b) at fnz = 15Hz and ν = 2t, respectively. The Hopf bifurcation curves, Hc
t and Hc

l , which bound the

shimmy region in both panels (a) and (b), are invariant under the change in natural frequency and effective

mass. This indicates that the onset of shimmy does not depend on the vertical DOF. However, the torus

bifurcation curves, T ct and T cl , are sensitive to f
n
z and ν; this indicates that the vertical fuselage DOF affects

the type of oscillatory behaviour in the shimmy region. We also note that in figure 8(a) the torus bifurcation

curve T cl experiences a dip in velocity at fnz = 5.1Hz. This implies that there is a larger region of bistability
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at this value of fnz than at other values. Similar to the lateral fuselage DOF, this could be due to 5Hz

being roughly half the natural frequency of the torsional and lateral oscillations, suggesting a 2:1 resonance

between the NLG and the vertical fuselage mode.

IV. Conclusions

A mathematical model has been developed to investigate the interaction between a NLG and the fuselage.

This NLG model includes a torsional angle, ψ, and a lateral bending angle, δ. In addition, the gear is free to

move laterally and vertically at the NLG-fuselage attachment point. Fuselage dynamics are included in the

form of two translational DOFs. They represent the local displacement of the yaw and pitch dynamics of

the fuselage about its centre of gravity and any movement from flexible modes of the fuselage. This coupled

NLG 2DOF fuselage model is then completed by the exact stretched-string tyre model.

With this model the effects of the variation of fuselage parameters on stability and oscillatory characteristics

of the NLG have been explored by means of a bifurcation analysis with respect to key parameters. The

bifurcation diagrams presented were created with the bifurcation software package AUTO, as integrated into

Matlab via the Dynamical Systems Toolbox. One-parameter bifurcation diagrams with the forward velocity

of the aircraft as the continuation parameter identified stable branches of periodic orbits that correspond to

stable, observable shimmy oscillations of the gear. We found that these branches can be dominated by either

the torsional or lateral DOFs of the gear. They are bounded by bifurcation points which can be continued

in two parameters to give a more global view of the dynamics of the system. Two-parameter bifurcation

diagrams in the (V,M)-plane were considered, both with an oscillating fuselage and a fuselage of infinite

mass. These showed that the presence of an oscillating fuselage increases the region where the straight-rolling

solution is stable, suggesting that the presence of the fuselage stabilizes the gear. This indicates that energy

is being transferred from the gear into the lateral fuselage mode, where it is dissipated.

We also investigated the effects of the two fuselage DOFs separately, which showed that the onset of shimmy

is dependent upon the lateral but not the vertical fuselage DOF. This indicates that the increased area

of the stable straight-rolling solution for the oscillating fuselage in the (V,M)-plane is due to the lateral

fuselage DOF, and not the vertical one. The onset and decay of shimmy oscillations is affected most by

the lateral fuselage DOF for natural frequency values of 5.2Hz and less than 14.3Hz and effective mass
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values of approximately less than 4t. The system is therefore showing a resonance with the nose landing

gear whose natural frequencies are 11Hz and 15Hz. While the vertical DOF does not appear to affect the

onset of shimmy, it does however affect the system once it is oscillating. Overall the conclusion is that the

interactions between the fuselage and the NLG exist; the fuselage can influence the dynamics of the gear

during shimmy, and in the case of the lateral DOF, the onset of shimmy.

Future work on the landing gear model involves extending the model to include the axial compression of the

strut and investigating gyroscopic effects of the wheel. Based on the demonstration here of the fuselage’s

influence on the NLG shimmy dynamics, the two DOF fuselage model can also be extended to further explore

its effects on the NLG dynamics. The current fuselage model represents the motion of the fuselage as a local

displacement at the NLG-fuselage attachment point. To further investigate the effects of fuselage dynamics

on shimmy onset it would be of interest to extend the model to analyse the dynamics of the NLG when it

is coupled to pitch, heave, yaw, roll, as well as flexible modes of the entire fuselage.
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A. Appendix

The functions and coefficients for the EOMs given in equations (25)-(28) are as follows, where we use the

notation Cx = cosx and Sx = sinx for x = φ, δ, ψ, θ:

For equation (25):

G1 = G11δ̈ +G12ψ̈ +G13ÿA +G14z̈A,

G2 = G21ψ̇
2 +G22δ̇ψ̇,

G3 = Sφ(rAC.XΛCθ + rAC.Y ΛSθ − Ckα) + Cφ(rAC.ZλCθ + rAC.Y ),

G4 = mgSδCφlζ ,
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where

G11 = ml2ζ + JξξC
2

ψ + JηηS
2

ψ − 2JξηSψCψ,

G12 = JξζCψ − JηζSψ,

G13 = −mCδlζ ,

G14 = mSδCφlζ ,

G21 = − (JηζCψ + JξζSψ) ,

G22 = 2
(

(Jηη − Jξξ)SψCψ + JξηS
2

ψ

)

.

For equation (26):

H1 = G12δ̈ +H11ψ̈,

H2 = (Jξξ − Jηη)SψCψ + Jξη(C
2

ψ − S2

ψ),

H3 = Sφ (rAC.Y Cδ + ΛrAC.ZCδCθ) + Cφ (CkαCδ − ΛSθrAC.Y Cδ − ΛCθrAC.XCδ)− ΛSθSδrAC.Z ,

where

H11 = Jζζ .

For equation (27):

J1 = J11δ̈ + J12ÿA,

J2 = mSδlζ ,

J3 = −ΛCθ,

where

J11 = −mCδlζ ,

J12 = m.
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For equation (28):

K1 = K11δ̈ +K12z̈A,

K2 = mCδCφlζ ,

where

K11 = mSδCφlζ ,

K12 = m.

The functions and coefficients of the EOMs given in equations (37)-(38) are:

M1 = J11δ̈ +M11ÿA +M12ÿ, (47)

and

R1 = K11δ̈ +R11z̈A +R12z̈, (48)

where

M11 = J12 + µ,

M12 = µ,

R11 = K12 + ν,

R12 = ν.
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