
                          Chen, L., Huepa, C., & Gross, T. (2016). Adaptive network models of
collective decision making in swarming systems. Physical Review E -
Statistical, Nonlinear, and Soft Matter Physics, 94(2), [022415]. DOI:
10.1103/PhysRevE.94.022415

Peer reviewed version

Link to published version (if available):
10.1103/PhysRevE.94.022415

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via American Physical Society at https://doi.org/10.1103/PhysRevE.94.022415. Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73981321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.94.022415
http://research-information.bristol.ac.uk/en/publications/adaptive-network-models-of-collective-decision-making-in-swarming-systems(6dc89311-07dc-4f37-a5b1-7a5109552fc6).html
http://research-information.bristol.ac.uk/en/publications/adaptive-network-models-of-collective-decision-making-in-swarming-systems(6dc89311-07dc-4f37-a5b1-7a5109552fc6).html


Adaptive network models of collective decision making in swarming systems

Li Chen∗

Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germay

Cristián Huepe
CHuepe Labs, 922 W 18th Place, Chicago, Illinois 60608, USA and

Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA

Thilo Gross
Department of Engineering Mathematics, Merchant Venturers Building,

University of Bristol, Woodland Road, Clifton, Bristol BS8 ITR, United Kingdom

We consider a class of adaptive network models where links can only be created or deleted between
nodes in different states. These models provide an approximate description of a set of systems
where nodes represent agents moving in physical or abstract space, the state of each node represents
the agent’s heading direction, and links indicate mutual awareness. We show analytically that the
adaptive network description captures the phase transition to collective motion in swarming systems
and that the properties of this transition are determined by the number of states (discrete heading
directions) that can be accessed by each agent.

PACS numbers: 05.90.+m, 89.75.Hc, 87.23.Cc

I. INTRODUCTION

Adaptive networks define a versatile class of models
that have been recently applied to a wide variety of sys-
tems [1, 2]. They combine processes that change the
structure of a network, such as growth or rewiring, with
dynamics taking place on the network. This results in a
feedback between topology and dynamics that can lead
to different forms of self-organization. Following the pi-
oneering work of Bornholdt and Rohlf [3] adaptive net-
works have been applied to a wide range of systems, in-
cluding neural networks [4, 5], mobile sensor networks
[6, 7], epidemics [8, 9], and the evolution of cooperation
[10, 11], among many others [12].

In the study of adaptive networks, a special role is
played by opinion formation models and, in particular,
by the adaptive voter model and its variants [13–20].
The adaptive voter model describes the process through
which a population of agents forms an opinion. A group
of nodes representing agents are connected by links that
describe social interactions. Each node is associated to
a variable that can take values representing all possible
opinions. At every iteration, the network is updated by
propagating these values along the links (social adjust-
ment) and by rewiring links (social segregation). One
typically considers nodes that rewire their connections
to surround themselves by like-minded agents that hold
the same opinion. This common type of social dynam-
ics is called homophily. Its opposite heterophily, where
agents seek connections to different-minded agents [16],
has received much less attention.

∗Electronic address: chenli@pks.mpg.de

Extensions of the adaptive voter model have been re-
cently proposed to describe collective motion in groups of
animals [21, 22], a basic social phenomenon that occurs
in a broad variety of species. Examples include insect
swarms, fish schools, bird flocks, herds of quadrupeds
[23], and even crowds of people [24]. Here, we will re-
fer to all these, generically, as swarming systems. The
process through which such systems self-organize into
coordinated collective motion is still poorly understood.
There has been much debate, for example, regarding the
nature of the swarming transition that marks the onset
of collective motion [25].

Most theoretical studies investigate swarming by either
analyzing detailed agent-based models [26] or represent-
ing the swarm as a continuous medium [27, 28]. Adaptive
network models provide an alternative route: the swarm
is represented as an adaptive network by an approxima-
tion that captures the agents’ headings and interactions
but neglects their trajectories in space. In such models,
each agent is represented by a node, its heading direction
is treated as an internal state, and mutual awareness be-
tween two agents is represented by a link. But, there is
no explicit representation of space, i.e. no variable keeps
track of each agent’s position in space.

Network swarming models are reminiscent of the stan-
dard adaptive voter model if we view the heading di-
rections as the different potential opinions in an opinion
formation process. A notable difference, however, is that
in the swarming case having different opinions (i.e. mov-
ing in different directions) increases, both, the probabil-
ities of creating and of destroying links between agents
(Fig. 1). The adaptive swarming models thus constitute
a third class of opinion formation systems comprising as-
pects of both homophily and heterophily. We refer to
such systems as the swarming systems class of adaptive
network models. This type of approach was originally
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proposed [21] to model experiments on the collective mo-
tion of groups of locusts marching on a ring-shaped arena
[29]. A slightly extended version of this model was later
used to predict the outcome of decision-making experi-
ments with fish [22].

We note that the swarming systems class of adaptive
network models may also be relevant for other applica-
tions that consider motion in abstract (rather than physi-
cal) space. For instance, if translated into a social context
where different heading directions correspond to different
opinions, it describes individuals that create or destroy
social connections mainly with those who have a different
opinion. While this is not the most common social dy-
namics, it may describe situations where original opinions
are strongly valued and attract new social interactions
but also create tensions within established interactions,
leading to dissolution.

The previously proposed adaptive network models for
swarming systems considered only cases where each agent
was restricted to choose between two heading directions,
corresponding to clock-wise or counter-clockwise motion
on the circular arena [21] or to swimming towards one of
two targets [22] in the collective decision-making exper-
iment. These investigations thus focused on situations
where the internal opinion state was a binary variable,
akin to the adaptive voter model. While several multi-
state extensions to the voter model have been explored
[13, 19, 30, 31], the present paper is the first to analyze a
similar extension for the swarming system class of adap-
tive network models. This extension is intuitive, as real
swarms typically move in two or three-dimensional space,
where the heading direction can be discretized into more
than two node states.

In this paper we show that the swarming system
class of adaptive network models displays a symmetry-
breaking ordering transition that can be likened to col-
lective motion. This transition can be either continuous
or discontinuous, depending on the number of accessible
states (e.g. the dimensionality of the embedding space).

The paper is organized as follows. Section II introduces
the swarming system class of adaptive network models.
Section III analyzes its mean field approximation. Sec-
tion IV computes its analytical and numerical solutions.
Section V compares our adaptive network results with
the standard swarming transition to collective motion.
Finally, Section VI presents our conclusions.

II. ADAPTIVE NETWORK SYSTEM

We consider a system of N nodes, representing agents,
connected by links representing mutual awareness. Each
agent has an internal variable that encodes its opinion
state (or, equivalently, its heading direction) as one of M
potential discrete states. For convenience, we denote the
set of all possible opinion states by Ω = {1, 2, ...,M} and
the complement of a given state X with respect to Ω by
Ω{X} = Ω\{X}. The initial states of the agents are drawn

state dynamics link dynamics 

w0 

w2 

a 
d 

FIG. 1: Model illustration. The diagram presents nodes (cir-
cles) displaying two different opinions (black/white) out of
M possible choices. The state dynamics (left column) con-
sists of spontaneous fluctuations of individual nodes (top) and
of three-body processes (bottom), with rates w0 and w2, re-
spectively. The link dynamics (right column) consists of the
creation and deletion of links only between nodes in differ-
ent states, with rates a and d, respectively. These dynamics
take place irrespective of any additional links, which may be
present but are not shown in this figure, or of the total number
of links connected to the node in the w0 process.

from Ω with equal probability. The network is initialized
as an Erdős-Rényi random graph with inital mean degree
〈k〉 = 3. The network then evolves in time as follows (see
Fig. 1):
State dynamics — The state of each node is updated

according to one of the following two processes. (i) Every
node changes its state spontaneously at a net rate of w0

changes per node, picking one of the M − 1 other states
in Ω{X} with equal probability. (ii) In every triplet of
nodes Y −X− Y , where two nodes on the same state Y
are linked to a single node on a different state X, the
central node switches its state to Y with a probability
that amounts to a net rate of w2 transitions per triplet
[32].
Link dynamics — Links are established or removed

only between pairs of nodes that are in different states,
with probabilities that amount to a net creation and dele-
tion rates of a (per pair) and d (per link), respectively.

All numerical network simulations were carried our us-
ing an event-driven (Gillespie) algorithm that yields a
very good approximation of the continuous-time dynam-
ics at the link level [33].

III. MEAN FIELD SOLUTION

Before carrying out an adaptive network analysis, it is
instructive to gain some intuition by considering a mean
field approximation. This approximation is equivalent
to neglecting the link dynamics and assuming that the
density of links connecting nodes in given states is pro-
portional to the product of the densities of these states.
While crude, it leads to a picture that is qualitatively
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FIG. 2: Bifurcation diagram of the mean field approximation
of the density of agents in each state as a function of normal-
ized noise w̃0/w̃2 in the M = 2 (a) and M = 3 (b) cases. The
curves represent stable (solid) and unstable (dashed) branches
of the steady state solutions. The M = 2 case (a) undergoes a
continuous transition in the form of a supercritical pitchfork
bifurcation. The M = 3 case (b), presents two sets of stable
solutions: one set (I) appears through a discontinuous tran-
sition and corresponds to a single majority opinion and two
minority opinions with the same number of agents, the other
set (II) results from a continuous transition and corresponds
to two majority opinions with equal number of agents and a
single minority opinion.

similar to the adaptive network results described in Sec-
tion IV.

For simplicity, we denote by x the density of any given
state and by yi the density of all other M−1 states. The
mean field approximation then leads to

dx

dt
=

w0

M − 1

(
M−1∑
i=1

yi

)
−w0x+w2〈k〉2

M−1∑
i=1

(
x2yi − y2i x

)
,

(1)
where 〈k〉 is the mean degree, i.e. the mean number of
links per network node.

In the equation the first two terms describe the gain
and loss of nodes in state x due to spontaneous switch-
ing, respectively, and the last term captures the gains and
losses resulting from the triplet process. The conserva-

tion of the total node density implies that x+
∑

i yi = 1.
Basic intuition and preliminary numerical simulations
suggest that the system will either converge towards a
disordered (mixed) solution where all node states occur
with the same probability or to an ordered solution where
a preferred direction emerges and its corresponding state
is overexpressed in the population, while the other states
remain at an equal, lower density. We can thus make
analytical progress by assuming y1 = y2 = . . . =: y. This
leads to the simplified system

dx

dt
= w̃0 (y − x) + w̃2 (M − 1)

(
x2y − y2x

)
, (2)

where we defined w̃0 = w0 and w̃2 = w2〈k〉2, to sim-
plify the expression. We now compute the steady state
solutions of this system by setting the left-hand side of
Eq. (2) to zero. Factorizing y − x we obtain

0 = (y − x)[w̃0 − w̃2(M − 1)xy]. (3)

From this equation it is apparent that we get a symmetric
solution x = y and asymmetric solutions that satisfy

xy =
w̃0

w̃2(M − 1)
. (4)

Using the normalization condition (M−1)y + x = 1, we
find that the symmetric solution is given by x = 1/M ,
and the asymmetric pair by

x =
1

2
±
√

1

4
− w̃0

w̃2
, (5)

which is independent of the number of states M . The
constant symmetric solution represents a disordered state
where all heading directions are equally probable. The
parabolic asymmetric solutions in Eq. (5), ordered cases
with preferred heading directions.

As the noise level is increased, the system undergoes
a transition from the ordered to the disordered state
(Fig. 2). Even before carrying out a linear stability
analysis [34], direct visual inspection reveals the bifur-
cation points at which the stability of these steady state
branches changes: Bifurcations occur both at the tips of
the parabolas and at the intersection point of the differ-
ent solutions.

The tip of the parabola corresponds to the point
w̃0/w̃2 = 1/4, where the stable and unstable solution
branches meet through a saddle-node bifurcation. The
intersection of the two solutions occurs at w̃0/w̃2 =
(1 − 1/M)/M where a degenerate transcritical bifurca-
tion takes place.

In the context of the full system, the bifurcation points
correspond to phase transitions. For any M > 2,
the destabilization of the mixed state occurs through a
subcritical bifurcation, corresponding to a discontinuous
transition. Only in the M = 2 case the two bifurcation
points coincide at w̃0/w̃2 = 1/4 and become a supercrit-
ical pitchfork bifurcation, corresponding to a continuous
transition.
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A detailed stability analysis [35] of Eq. (2) verifies the
results above and shows an additional set of stable so-
lution branches in Fig. 2(b) (labeled by II). In these
branches two majority opinions are represented in an
equal number of nodes and while a single minority opin-
ion is held by a smaller number of nodes. However, in the
next section we show that the stability of these branches
is lost when a more accurate approximation is used. This
suggests that the stability of the 2-majority/1-minority
branches is a spurious result of the mean field approxi-
mation, which appears due to an excessive reduction of
the dimensionality of the state space. In the full system
these branches must thus be unstable to certain pertur-
bations that involve a dynamical redistribution of links,
which is not captured by the mean field.

IV. ADAPTIVE NETWORK SOLUTION WITH
PAIR-LEVEL CLOSURE

We now derive a system of equations that takes the
dynamics of link densities into account, using a moment

expansion [36]. The basic idea of this expansion is to
write differential equations that capture the density of
small subgraphs. These densities are also called network
moments. Each subgraph can be classified by its order,
which is equal to the number of links it contains. For
example, if we have three distinct states X,Y,Z ∈Ω, the
density of nodes in the X state, denoted by [X], is a
zeroth-order moment; the per-capita density of X−Y
linked pairs [XY ], a first-order moment; and the X−Y−Z
triplet density [XY Z], a second-order moment. With
these definitions, the dynamics of the zeroth and first
order moments are captured by

d

dt
[X] =

w0

M−1

{ ∑
Y∈Ω{X}

[Y ] −(M−1)[X]
}

+w2

∑
Y∈Ω{X}

{
[XYX]−[YXY ]

}
, (6)

d

dt
[XX] =

w0

M−1

{ ∑
Y∈Ω{X}

[XY ]−2(M−1)[XX]
}
+w2

∑
Y∈Ω{X}

{
2[XYX]+3[XY X

X ]−[XXY
Y ]
}
, (7)

d

dt
[XX ′] =

w0

M−1

{
2([XX]+[X ′X ′])+

∑
Y∈Ω{X,X′}

([XY ]+[X ′Y ])−2(M−1)[XX ′]
}

+w2

{
− 2[XX′X] − 2[X ′XX ′] + [XXX′

X′ ]

+[X
′
X′

X
X ]−3[X

′
XX′

X′ ]−3[XX ′
X
X ]+

∑
Y∈Ω{X,X′}

(
[X

′
Y X
X ]+[XY X′

X′ ]−[XX ′
Y
Y ]−[X

′
XY

Y ]
)}

+a[X][X ′]−d[XX ′],
(8)

where X,X ′ ∈Ω (with X 6=X ′), and [XYW
Z ] denotes the

density of motifs with a central node in state Y connected
to three other nodes in states X, W , and Z. In all these
equations, the first right-hand side term corresponds to
noise-driven state dynamics and the second, to three-
body interactions. The remaining terms in Eq. (8) result
from the link creation and deletion processes. These ex-
pressions summarize a larger system of equations, with
(6), (7) and (8) representing M , M , and M(M − 1)/2
equivalent equations, respectively. Note that each equa-
tion describing the dynamics at a given order involves
higher order terms. We thus need to close the system
through a moment closure approximation. We use a pair-
level closure [8, 37] of the form

[XYZ] =
h([XY ])h([YZ])

h([XYZ])

[XY ][YZ]

[Y ]
,

[XYZ
W ] =

h([XY ])h([YZ])h([YW ])

h([XYZ
W ])

[XY ][YZ][YW ]

[Y ]2
,

where h([XY ]) = 1 + δXY , h([XYZ]) = 1 + δXZ and
h([XY Z

W ]) = 1+δXZ +δXW +δZW +δXZδZW +δXW δZW ,
with δ the Kronecker delta.

To make analytical progress, we assume that the
creation and deletion rates of every type of link can-
cel each other independently in the stationary solution,
i.e. a[X][X ′]=d[XX ′]. This is confirmed below by com-
paring our analytical results to direct agent-based numer-
ical simulations of the full network dynamics. In analogy
to the mean field case, we assume that all states have
identical densities except for a single focal state. We de-
note by [x] the density of nodes in this focal state and
by [j] the density of all other states. Using this notation,
we can rewrite Eq.(6) as

d[x]

dt
=w0 ([j]−[x])+

w2

2
(M−1) [xj]2

(
1

[j]
− 1

[x]

)
. (9)
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FIG. 3: (Color online). Bifurcation and phase diagrams of
adaptive network systems with M = 2 (left) and M = 3
(right) available states per node. The bifurcation diagrams
(top) show the density of nodes in a given state for the stable
(solid) and unstable (dashed) stationary solutions. In both di-
agrams, the system undergoes a transition from a disordered
solution to an ordered one as the noise level w0 is decreased.
For M = 2 (a) this transition occurs through a supercritical
pitchfork bifurcation and for M = 3 (b), through a trans-
critical one, corresponding to a continuous or a discontinuous
transition, respectively. Analytical results using a pair-level
closure approximation (lines) are in good agreement with nu-
merical network simulations (circles) using N = 104 nodes.
The phase diagrams (bottom) as a function of noise w0 and
link creation rate a display a region of bistability only in the
M ≥ 3 case. Parameters: a = 0.5 (top panels), w2 = 0.2,
d = 0.1.

By imposing the conservation law
∑M

i=1[i] = 1, we find
the stationary solutions

[x] = [j] = 1/M (10)

and

[x] =
1±

√
1− w0/c1
2

, (11)

[j] =
1∓

√
1− w0/c1

2(M − 1)
. (12)

Here, c1 = w2a
2/(8d2) and Eq. (12) represents M − 1

identical equations for the node densities of all states
other than x.

The results of the analysis (Fig. 3) are similar to
those obtained with the mean field approximation: at
low noise the disordered state becomes unstable and sta-
ble branches appear that correspond to the symmetry-
broken solution. However, there are two differences.
First, only the ordered solution that has one majority
opinion and M − 1 minority opinions is stable; the re-
versed case with one minority opinion and M−1 majority
opinions (set II in Fig. 2) is unstable. Second, the bifurca-
tion points now depend on the density of linked pairs, and
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FIG. 4: (Color online). Bifurcation diagrams of the order
parameter Φ in Eq. (15) as a function of noise w0. The curves
were computed using Eqs. (10-12) for M = 2, 4, and 6 po-
tential heading directions, corresponding to D = 1, 2, and 3
dimensions, respectively. For M = 2, the transition is contin-
uous. For M > 2, the critical value of the control parameter
where the Φ = 0 branch loses stability (c2) becomes smaller
than the point where the upper branch vanishes (c1). This
results in a discontinuous transition and a region of bistabil-
ity, which gives rise to the hysteresis cycles indicated by the
arrows. The inset displays c1 and c2 as a function of M ; the
bistable region is broader for larger M values.

are therefore a function of the link creation and deletion
rates. The saddle-node bifurcation (for M > 2) where
the ordered states vanish now occurs at c1, whereas the
transcritical bifurcation where the disordered state loses
its stability is at

c2 =

[
1−
(
M − 2

M

)2
]
c1. (13)

We therefore have c2 < c1 for all systems with more than
two available states. Thus, the transition is generally of
first order and has a bistable region in the w0 interval
given by c2 < w0 < c1. In the limit of a large number
of possible states, c2 → 0 and the region of bistability
extends to the origin. A continuous transition is only
observed in the special case of two opinions, where M = 2
implies c1 = c2 and the two transitions coincide to form
a pitchfork bifurcation.

These analytical predictions are in good agreement
with results from large agent-based simulation runs
(cf. Fig. 3 panels a,b). Only near the critical points a
small difference is observed, which may be due to the
moment closure approximation or finite size effects.

V. COMPARISON TO THE SWARMING
TRANSITION

In this Section, we will relate the ordering transition
described above to the collective motion transition ob-
served in swarms [25]. For this purpose, each node is
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interpreted as a self-propelled agent, its state as its head-
ing direction, and linked nodes as interacting agents. An
advantage of this approach is that it does not require
specifying the details of the interactions. While collec-
tive motion can result from a broad variety of interac-
tions (such as aligning [26], attraction-repulsion [38, 39],
or escape-pursuit [40]), the adaptive-network perspective
can treat all of these equally by focusing on the exchanges
of information that lead to consensus on the collective
heading direction, without considering the details of the
interactions. In particular, if we assume that interac-
tions can only occur within a given distance, the limit
case studied in this paper (where the linking and un-
linking rates between agents in the same state is set to
zero) can be mapped to a situation where agents that ad-
vance in a common direction do not change their relative
positions and therefore do not create or destroy interac-
tions between them. We also focus on the simplest limit
case where the linking and unlinking rates (correspond-
ing here to the encounter and disbanding rates at which
agents start or stop interacting with each other) are con-
stant and equal for all agents in different states (i.e. with
different headings).

In order to compare our adaptive network system to
collective motion, we start by associating each node state
[h] with an agent’s heading v̂ in a space where agents can
only move in discretized directions that are perpendicu-
lar to each other. Each v̂ is thus a unit vector pointing
in a direction that is either opposite or orthogonal to all
others. The number of potential headings M therefore
depends on the dimensionality of the space, with M = 2
in one dimension, M = 4 in two dimensions, M = 6 in
three dimensions and, in general, M = 2D in D dimen-
sions. The usual polarization order parameter used to
describe the degree of alignment and of collective motion
in swarming systems is given by

Φ =
1

N

∣∣∣∣∣
N∑
i=1

v̂i

∣∣∣∣∣ , (14)

where N is the total number of agents and v̂i is a unit
vector indicating the heading direction of agent i [25].
With this definition, Φ = 1 if all agents are perfectly
aligned and swarming in the same direction, whereas Φ =
0 if they are randomly oriented. In the discretized space
with only orthogonal heading directions that we consider
here, Φ can be expressed as

Φ =

√√√√M/2∑
h=1

([2h]− [2h− 1])
2
. (15)

This relationship allows us to plot the polarization order
parameter Φ as a function of w0, which serves as a proxy
for the amount of noise in the agent motion (Fig. 4).

In the context of swarms, the symmetry-breaking bi-
furcations computed above correspond to ordering phase
transitions to collective motion. For agents moving in
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FIG. 5: (color online). Per-capita density of linked pairs as
a function of noise w0, computed analytically for M = 2 (a)
and 3 (b) using the same parameters as in the corresponding
bifurcation diagrams in Fig. 3. Blue dashed lines: Density of
linked pairs with both nodes in the same state of majority
(labeled [11]) or minority opinion ([22] and [33], the lowest
branch at left side of the bifurcation in both plots). Red solid
lines: Density of linked pairs with one node in the majority
and one in the minority opinion ([12] and [13]), or both in the
minority opinions ([23] in panel (b), the lowest red line at the
left side of the bifurcation). Black dotted lines: Total density
of linked pairs. The bifurcation features displayed in Fig. 3
are mirrored here in these link density plots.

one-dimensional space (M = 2), the transition is contin-
uous (second order), whereas for agents moving in more
dimensions (M ≥ 4), the transition is discontinuous (first
order). A region of bistability appears for M ≥ 3 and be-
comes broader for higher values of M (Fig. 4, inset).

Although the adaptive network approach includes sev-
eral approximations, the results above provide insights
into the more complex problem of understanding general
features of the transition to collective motion in swarms.
The question of whether the actual swarming transition
to collective motion is continuous or discontinuous, for
example, has been the subject of intense debate [26].
While in the initial numerical explorations the transition
appeared to be continuous (second order), it was later
shown through theoretical arguments and large-scale nu-
merical simulations that it is, in fact, discontinuous (first
order) and has a bistable transition region where ordered
and disordered swarming states coexist [26, 41, 42]. The
results presented in Fig. 4 would suggest that, generi-
cally, this transition should be continuous in one dimen-
sion and discontinuous in two or three dimensions, with
a more prominent bistable region in the 3d case.

To the best of our knowledge, there has been no sys-
tematic analysis of the properties of the ordering transi-
tion as a function of the embedding space dimensionality
for different types of swarming models. In one dimension,
various approaches have concluded that the transition is
either absent or first order [43–46]. In two dimensions,
the transition has been much better studied and shown
to be first order, as in three dimensions, but the size of
their bistable regions has not been compared [25, 28].

We can further examine the connection between our
adaptive network model and swarming systems by con-
sidering the per-capita densities of linked pairs displayed
in Fig. 5. These match the interaction frequencies that
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are expected to occur in swarms. For example, the total
number of links decreases monotonically with noise level,
which corresponds to the observation that higher noise
values will produce less clustering and therefore fewer in-
teractions between agents in swarming systems [25, 47].
We also see that the density of heterophilic links [12] (and
[13] in the M=3 case) increases with noise. This can be
explained by an increasing rate of encounters at higher
noise levels.

Furthermore, we find that for all cases with M > 2
(such as the M = 3 case displayed in the figure) the den-
sity of heterophilic links in the ordered branch, [12] and
[13], continues to increase as a function of noise within
the bistable region, where it becomes higher than that of
the disordered branch. Despite this high number of het-
erophilic links, the ordered branch persists because the
density of homophilic links [11] is also high. This can
be related to what is observed in the bistable region in
swarms, where it is known that a higher density of in-
teractions between agents in the majority heading state,
which corresponds to the formation of high-density bands
(oriented perpendicular to the heading direction) in two
or more dimensions, stabilizes the ordered state [41, 42],
leading to a bistable region and thus to a discontinuous
transition. This analogy could provide an alternative way
to understand the details of the swarming transition as
a function of the dimension of the embedding space.

VI. CONCLUSIONS

In this paper, we analyzed the swarming systems class
of adaptive network models, where links can only be cre-
ated or deleted between nodes in different states. We
showed analytically that this class displays a symmetry-
breaking transition with properties that depend on the

number of states M accessible to each node. If M = 2,
the transition occurs through a supercritical pitchfork
bifurcation; if M ≥ 3, through a subcritical one. Con-
sequently, only this latter case displays a bistable region
near the bifurcation point. Note, however, that previous
work [21] had shown that bistable solutions can also be
obtained in the M = 2 case if we allow link creation and
deletion processes to occur between nodes in the same
state, a situation that was not studied here.

The results above, taken together, provide insights on a
potential direct connection between link dynamics, their
dependence on internal states, and the resulting proper-
ties of this type of symmetry-breaking transitions. We
also discussed in this paper their implications for the
analysis of the collective motion transition in swarms.

The parallels between the adaptive-network approach
presented here and agent-based dynamics are not re-
stricted to swarming systems. They can be extended to
any group of agents moving in an abstract phase space
with similar dynamical rules. These rules must consider
agents with an internal state (as the heading direction
in the swarming case) that determines their trajectory in
this phase space, in which their relative positions deter-
mine whether they interact. It is thus conceivable that
the proposed model could be extended to study social
processes involving heterophily, such as the diffusion of
innovations and technologies [48] or job seeking through
weak interpersonal ties [49].

We would like to thank Gerd Zschaler and Güven
Demirel for their assistance in using the XPPAUT and
largetnet library. The work of CH was supported by
the US National Science Foundation under Grant No.
PHY-0848755. No empirical data was produced in this
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