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Kinematic Framework for Evaluating Seismic Earth Pressures on Retaining Walls 1 

by 2 

Scott J. Brandenberg1, M. ASCE, George Mylonakis2, M. ASCE, and Jonathan P. Stewart3, F. ASCE 3 

Abstract: During earthquake ground shaking earth pressures on retaining structures can 4 

cyclically increase and decrease as a result of inertial forces applied to the walls and kinematic 5 

interactions between the stiff wall elements and surrounding soil. The application, based on limit 6 

equilibrium analysis, of a pseudo-static inertial force to a soil wedge behind the wall (the 7 

mechanism behind the widely-used Mononobe-Okabe method) is a poor analogy for either 8 

inertial or kinematic wall-soil interaction. This paper demonstrates that the kinematic component 9 

of interaction varies strongly with the ratio of wavelength to wall height (/H), asymptotically 10 

approaching zero for large /H, and oscillating between the peak value and zero for /H < 2.3. 11 

Base compliance, represented in the form of translational and rotational stiffness, reduces 12 

seismic earth pressure by permitting the walls to conform more closely to the free-field soil 13 

displacement profile. This framework can explain both relatively low seismic pressures observed 14 

in recent experiments with /H > ~10, and relatively high seismic earth pressures from numerical 15 

analyses in the literature with /H = 4.  16 
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Introduction 19 

The increment of lateral earth pressure that should be applied during the design of retaining walls 20 

to account for earthquake effects has been a source of confusion among design professionals and 21 

a topic on which there are divergent opinions among researchers. Current guidelines documents 22 

(e.g., NCHRP, 2008) prescribe substantial seismic earth pressures beyond those for the pre-23 

seismic (generally active) condition. These recommendations are based on a limit equilibrium 24 

analysis in which a pseudo-static seismic coefficient (kh) acts upon an active Coulomb-type 25 

wedge in frictional soil, which in turn results in an incremental change in the lateral force applied 26 

to the wall, PAE, over its static counterpart PA. This approach is based on the classical work by 27 

Okabe (1924) and Mononobe and Matsuo (1929) [widely known as the “Mononobe-Okabe” (M-28 

O) method] with modest modification by Seed and Whitman (1970). More accurate variants on 29 

the classical approach using non-planar failure surfaces (Chen, 1975; Chen and Liu, 1990) and 30 

approximate accounting for the phasing of inertial demands within the wedge (Steedman and 31 

Zeng, 1990) are conceptually alike and provide similar results for the active case. 32 

Recent work based on experiments and various dynamic solutions considering elastic soil 33 

behavior has, directly or indirectly, challenged this practice as being both too conservative (e.g., 34 

Al Atik and Sitar, 2010; Lew et al., 2010) and as being un-conservative (e.g., Wood 1973, 35 

Veletsos and Younan 1994, Ostadan, 2005). These conflicting findings, based on different 36 

approaches and assumptions regarding system behavior, drive a good deal of the confusion on 37 

the subject of seismic earth pressures on retaining walls. A fundamental problem is that the M-O 38 

method does not adequately represent interaction of vibrating soil in the free field with an 39 

embedded structure or a retaining wall. This interaction may be best understood using a 40 



conceptual framework, rooted in the principles of soil-structure interaction and wave 41 

propagation, in which kinematic and inertial interaction effects are distinguished. 42 

The next section describes a conceptual framework for defining seismic earth pressures from 43 

kinematic interaction in terms of the ratio of wavelength of vertically propagating shear waves to 44 

wall height. This approach convincingly explains the apparently divergent findings from 45 

centrifuge tests by Al Atik and Sitar (2010) and the numerical results from Ostadan (2005). 46 

Recommendations for rational simplified analysis of seismic earth pressures in engineering 47 

practice are then presented, along with conditions for which more elaborate analyses are needed. 48 

Conceptual Framework 49 

The seismic increment to lateral earth pressures can be considered as having kinematic and 50 

inertial components, as illustrated in Figure 1 for an embedded building foundation with 51 

relatively stiff basement walls. The free-field motion imposed on this system (ug) varies with 52 

depth as indicated in Figure 1(a). In the kinematic problem for which there is no structure or wall 53 

inertia, the motion of the foundation at base depth H is denoted uFIM (FIM is "foundation input 54 

motion"), which differs from the free-field motion at this same depth, ug(H), as a result of 55 

relative foundation/free-field displacements associated with wall-soil contact stresses, as well as 56 

base slab averaging effects that occur in the presence of inclined or incoherent waves (e.g., 57 

Veletsos and Prasad, 1989).  The kinematic component of seismic earth pressures accounts for 58 

the interaction between the free-field motion ug(z) and the structural wall elements, apart from 59 

their inertia and any external inertial loads imposed upon the system. 60 

As shown in Figure 1(b), the inertial interaction problem involves computation of the response of 61 

a structure and its foundation to the kinematic ground motions. Inertial forces from the structure 62 



cause additional relative displacements between the foundation and the free-field, and additional 63 

increments of seismic earth pressure. The springs and dashpots in Figure 1(b) represent the 64 

impedance of the foundation from translation and rocking vibration modes (e.g., Pais and 65 

Kausel, 1988; Gazetas, 1991). 66 

In light of the above soil-structure interaction framework, the soil wedge concept currently used 67 

to evaluate seismic earth pressures will seldom have relevance to the physical mechanisms 68 

producing those pressures. Even in cases where a state of active earth pressure (and its associated 69 

soil wedge) exists prior to seismic shaking, increments of earth pressure from earthquake ground 70 

shaking will arise from relative displacements between the wall and free-field soil associated 71 

with kinematic and inertial interaction, which is not well represented by a seismic coefficient 72 

acting on an active wedge. Inertial interaction can mobilize large relative displacements when, 73 

for example, a massive structure is connected to the wall elements and base shear mobilizes 74 

reaction stresses at the soil/wall interface. Such effects can be evaluated as part of seismic 75 

structural response analysis if soil springs are included in the structural model. Free-standing 76 

walls or basement walls not structurally connected to lateral force resisting elements in structures 77 

would have seismic earth pressures dominated by kinematic interaction, which is the topic 78 

addressed in the remainder of this article.  79 

Model Derivation 80 

Seismic earth pressures arising from kinematic interaction are formulated based on the following 81 

assumptions (Fig. 2): (1) an infinitely long U-shaped structure with rigid walls and rigid base 82 

slab is embedded in a soil profile with a uniform shear wave velocity, (2) a vertically 83 

propagating shear wave interacts with the embedded structure, (3) the soil and wall are in perfect 84 



contact, and a gap does not form at this interface, and (4) the interaction between the soil and 85 

vertical walls is characterized by stiffness intensity terms, ky
i and kz

i (defined below), and 86 

interaction between the soil and base slab is characterized by stiffness terms Ky and Kxx,base. 87 

These stiffness terms satisfy the Winkler assumption that the stiffness values act independently 88 

from one another, which is a simplifying assumption commonly used in soil-structure interaction 89 

problems because it permits development of tractable solutions. The values assigned to the 90 

stiffness terms should account for coupling between various foundation vibrations modes, as 91 

described later. Although these assumptions may appear to be limiting, the method can be readily 92 

extended to a wide range of practical conditions (including non-rigid foundations as well as non-93 

linear and non-uniform soil) in a manner typical of soil-structure interaction applications (NIST, 94 

2012) as illustrated subsequently.  95 

The model derivation is described in two stages. First, wall pressures and their resultant demands 96 

(forces and moments) are derived from the product of differential wall/free-field displacement 97 

and wall-soil stiffness. Second, equations for the stiffness terms are developed, which is essential 98 

for analysis of force/moment demands and differential wall/free-field motions. Fundamental 99 

characteristics of wall-soil interaction derived from these analyses are then described and 100 

illustrated using example solutions, which demonstrate that the wall-soil interaction response 101 

depends strongly on the ratio of wavelength to wall height.   102 

Wall-Soil Interaction Forces and Displacements 103 

A rigid U-shaped structure with vertical walls embedded in a soil profile experiencing vertically 104 

propagating harmonic free-field shear waves is shown in Figure 2. Note that the free-field 105 



ground motion is consistent with the influence of the free-surface since the shear strain is zero at 106 

z=0.  107 

Kinematic wall pressures arise from incompatibility in the displacement of the rigid wall and the 108 

free-field soil column. Accordingly, the integral of the horizontal stress increment over the 109 

height of the wall is the kinematic seismic force increment PE (PE is adopted here instead of PAE, 110 

which is associated with M-O theory, because our solution does not require an active condition). 111 

For ground motion in the y-direction, PE is calculated as a force per unit length as follows: 112 

 

 0

0

cos ( )
H

i
E y g wP k u kz u z dz   (1) 113 

where H = wall height, uw(z) = wall displacement at depth z, ky
i  = soil-wall reaction stiffness in 114 

y-direction (normal stresses) per unit of wall area (superscript i denotes stiffness intensity 115 

measured in units of F/L3; details below), k=2/ = wave number, and  = wavelength of the 116 

shear wave propagating vertically through the soil. The moment applied by the horizontal soil-117 

wall interaction stresses relative to the foundation slab base elevation is: 118 
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E y g wM k H z u kz u z dz    (2) 119 

Equations (1) and (2) can be combined to calculate the location of resultant PE, measured as 120 

distance h upwards from the base of the wall as:   121 

 E

E

Mh

H P H
  (3) 122 

The depth-dependent wall displacement uw(z)  for a rigid wall and foundation system is: 123 



  ( )w FIM FIMu z u H z    (4) 124 

where uFIM and FIM are the base slab translation and rotation, respectively. 125 

For a rigid wall resting on a rigid base, FIM must be zero, base displacement must equal free-126 

field displacement at the base of the wall (i.e., uFIM = ug0 coskH), and the solution for PE, and ME 127 

may easily be obtained from Eqs. 1 and 2 for a free-field ground motion with any particular 128 

wavelength. However, a more general solution for a wall embedded within an elastic layer, 129 

thereby exhibiting base compliance, can also be obtained. The rotational stiffness of the 130 

embedded strip contains contributions from the base slab and from vertical shear tractions and 131 

horizontal normal stresses acting on the walls. The horizontal stresses acting on the walls are 132 

explicitly included in Eqs. (1) and (2). The base slab and vertical traction contributions are 133 

combined as Kxx = Kxx,base + 2kz
iHB2.  134 

To solve for the foundation input motions, horizontal force and moment equilibrium of the 135 

foundation slab are considered, assuming that the free-field ground motion is input to the free-136 

ends of the soil-structure interaction elements. Substituting (4) into (1) and (2), and requiring 137 

horizontal force and moment equilibrium between the wall resultants and base reactions 138 

provides:  139 
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Stiffness terms Ky and Kxx are multiplied by ½ to account for two vertical walls being attached to 142 

a single rigid base. By evaluating the integrals and re-arranging terms, the following solution is 143 

obtained for foundation displacements:  144 
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  (6b) 148 

These foundation displacements can then be inserted into Eq. (5) to obtain PE and ME for a 149 

compliant base condition. 150 

Stiffness of Wall-Soil System 151 

Having formulated the solution for PE and ME, the stiffness terms, ky
i, kz

i, Ky, and Kxx,base, are now 152 

evaluated. Classical inertial SSI literature (e.g., summarized by Gazetas 1983, Mylonakis et al. 153 

2006, and NIST 2012) provides equations for the overall stiffness of embedded foundations 154 

representing the interaction of the soil with the entire foundation system, but the global stiffness 155 

is not partitioned into contributions from the vertical walls and the base slab. Such partitioning is 156 

required to obtain the distribution of earth pressure acting on the vertical walls, which is the 157 

objective. To overcome this problem, available solutions are first used to define stiffness terms 158 

for individual foundation components under the assumption of no interaction between vibration 159 

modes (i.e., the components are independent). Next, modification factors y and xx are 160 

introduced to account for interaction between the translation and rotation terms, respectively, 161 



such that the resulting global foundation stiffness matches published equations for embedded 162 

foundations. For simplicity, the base and wall stiffnesses are both modified by the same y and 163 

xx terms.  164 

Horizontal wall-soil stiffness intensity ky
i 165 

Kloukinas et al. (2012) developed a simple analytical expression for ky
i for kinematic interaction 166 

between rigid vertical walls and an elastic soil layer resting atop a rigid base. Following 167 

correction of their published expression (a clerical error involving omission of the square root in 168 

the denominator) and including the multiplier, y, we obtain the stiffness intensity as:  169 

2
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(1 )(2 )

i

y y

s
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k

H V
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

 

 
   

   
 (7a) 170 

where  is angular frequency (rad/sec). Material damping can be incorporated into the solution 171 

by using complex shear modulus, G(1+i2), and complex shear wave velocity, Vs(1+i), where  172 

is percent material damping. Kloukinas et al. (2012) develop kinematic earth pressures for a rigid 173 

wall resting atop a rigid base, whereas our solution corresponds to soil profiles that are deeper 174 

and compliant under the wall, which is applicable to more realistic conditions. For an ideally 175 

undamped medium, the square root on the right-hand side of Eq. (7a) can be interpreted as a 176 

dynamic stiffness modifier (often denoted by ) that accounts for frequency-dependence from 177 

soil inertia, with the corresponding dashpot equal to zero. At 2sV H   the dynamic modifier 178 

becomes zero and at higher frequencies ky
i becomes imaginary meaning that the spring acts as a 179 

dashpot. This phenomenon is directly related to the rigid base condition used in the solution, 180 

which only allows radiation damping (from wave propagation away from the foundation) beyond 181 



the “cutoff frequency” (e.g., Elsabee and Morray, 1977). For realistic systems involving a 182 

compliant base condition, the cutoff frequency transition is smoother, allowing waves to exist at 183 

a wider range of frequencies (Li, 1999), and material damping results in non-zero real and 184 

imaginary components at all frequencies. Elsabee and Morray (1977) suggest simple expressions 185 

for handling these problems for embedded circular foundations, but there is presently no simple 186 

solution analogous to Eq. (7a) to account for these effects for two-dimensional vertical walls.  187 

Vertical wall-soil stiffness intensity kz
i 188 

Following the method of Kloukinas et al. (2012), the digital supplement presents the derivation 189 

of an expression for stiffness intensity associated with vertical tractions acting on walls (soil-wall 190 

reaction stiffness in z-direction from shear), kz
i. The resulting expression is given below along 191 

with a multiplier, xx, that modifies the vertical stiffness to account for interaction associated 192 

with base rotation and translation: 193 
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 (7b) 194 

Base slab stiffness terms Ky and Kxx,base 195 

Gazetas and Roesset (1976) developed simple analytical expressions for the translational and 196 

rotational stiffness (Ky and Kxx,base, respectively) of a rigid strip footing resting on the surface of a 197 

homogeneous elastic layer of finite thickness overlying a rigid base. Applying the interaction 198 

constants y and xx and adjusting the soil thickness term to be equal to the distance from the 199 

base slab to the rigid base (i.e., using D-H), results in:  200 
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It should be noted that the solution in Eq. (8a) does not extrapolate properly to an infinitely thick 202 

elastic layer, for which the stiffness of a strip footing is zero. On the other hand, under such a 203 

condition the solution in Eq. (8b) is exact (Mushkelishvili, 1963).  204 

Derivation of interaction terms y and xx 205 

The above component stiffnesses can be combined to compute overall static stiffnesses for the 206 

embedded wall-soil system in translation and rocking. For translation, the stiffness is 2ky
iH + Ky, 207 

which includes contributions from the vertical walls and the base slab. For rotation, the stiffness 208 

is ky
iH2 + Kxx,base + 2kz

iHB2, which includes contributions from horizontal and vertical earth 209 

pressures acting on the vertical walls and the rotational stiffness of the base slab.  210 

Values of y and xx were selected such that the global stiffness of the foundation matches the 211 

equations for embedded strip footings by Jakub and Roesset (1977): 212 
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Expressions for y and xx can be obtained by substituting Eqs. (7) and (8) into (9). Figure 3 215 

presents the values of y and xx versus H/B for various values of D/H. The solutions by Jakub 216 

and Roesset are intended for conditions in which D/B > 2 and H/B < 2/3, and may provide 217 

erroneous results for conditions outside these bounds. Extrapolation is bounded by the Kloukinas 218 



et al. (2012) solution for D/H=1, in which case y = 1.0, and the halfspace solution when D/H  219 

∞, in which case y = 0.0. These bounds are presented in Fig. 3, and interpolation from the figure 220 

is recommended for D/H<2 and D/H>20 rather than the values of y and xx implied by Eqs. (7)-221 

(9). 222 

Characteristics of Wall-Soil Interaction Response 223 

Figure 4 shows solutions for PE computed using Eq. (5a) with the expression for foundation 224 

input motion given in Eqs. (6). Results are plotted for various values of Ky/(ky
iH) and 225 

Kxx/(ky
iH2/3) (representing the relative contributions of the base slab and horizontal normal 226 

stresses acting on the walls to horizontal and rotational stiffness, respectively). In addition to the 227 

cases with a compliant base, a rigid base case (Ky and Kxx  ∞) is included for comparison. For a 228 

given /H, the highest values of PE occur for the rigid base case. PE decreases as Ky and Kxx 229 

decrease because a more flexible base condition results in less relative displacement between the 230 

wall and free-field soil along the wall height. 231 

The most important interval of /H in Figure 4 for application to typical structural configurations 232 

and earthquake ground motions is the portion to the right of the longest wavelength (lowest 233 

frequency) peak in PE, which occurs at /H ≈ 2.3. The importance of this interval stems from its 234 

likely proximity to energetic portions of the ground motion spectrum, which occur at the site 235 

resonant frequency or at frequencies controlled by the seismic source and path (which are 236 

typically higher than the site frequency for sites in sedimentary basins).   237 

To support the assertion that the important portion of the plot is typically /H ≥ 2.3, consider 238 

first the case of free field seismic energy that is dominated by site resonance. The site resonant 239 



frequency corresponds to /D = 4, which can be manipulated to /H=4D/H. Since the thickness 240 

of the soil column generally significantly exceeds the wall height (i.e., generally D » H), /H will 241 

typically exceed 4, which falls well to the right of the lowest frequency peak at /H ≥ 2.3. For 242 

this resonant condition, the largest kinematic pressures occur when D=H (i.e., base slab is 243 

founded on stiff rock overlain by soil).  244 

Free-field ground motions are often not dominated by a fundamental-mode site response, 245 

particularly in sedimentary basins where seismic velocities gradually increase with depth without 246 

having a distinct impedance contrast. In such cases, the controlling ground motion period can be 247 

estimated as the mean period (Tm = period at the centroid of the Fourier amplitude spectrum), 248 

which is typically in the range of 0.3 to 0.5 sec for earthquakes in active crustal regions in the 249 

magnitude range of engineering interest (Rathje, et al., 2004). The corresponding wavelenths 250 

(computed as  = VsTm) will seldom place the applicable value of /H below the peak at 2.3 for 251 

typical values of wall height H.  252 

Based on the above considerations, the most useful insights into kinematic wall pressures are 253 

gained by studying the portion of the results in Figure 4 for /H >  2.3. Kinematic pressures are 254 

clearly high near the peak at 2.3 due to large relative deformations of wall and soil. As /H 255 

increases beyond 2.3, PE decreases rapidly. In the limiting case where /H  ∞, the deformed 256 

shape of the free-field soil profile would become vertical and would precisely conform to the 257 

shape of the rigid wall, thereby resulting in zero kinematic interaction. The peaks and troughs in 258 

PE observed for /H < 2.3 are caused by alternation of the direction of the horizontal stress 259 

increment acting along the wall height as frequency changes. 260 



Figure 5 shows kinematic transfer functions Hu and H associated with the solution for the 261 

foundation input motion (Eq. 6). The transfer functions are compared to the recommendation by 262 

Kausel et al. (1978), who used an embedded cylinder geometry, assumed uFIM = ug(H) (this is the 263 

same as assuming Ky  ∞), and approximated high frequency interaction (i.e., at low /H) as 264 

constant with respect to frequency for simplicity. At large /H, the Hu values for the rigid base 265 

case agree perfectly with Kausel et al., whereas base compliance results in increased translation 266 

and rotation. The assumption that uFIM = ug(H) is approximate, even in the presence of vertically 267 

propagating coherent waves, due to the wall-soil interaction force PE that must be balanced by 268 

deflection of the base slab. As H/B increases, translation amplitude decreases and rotational 269 

amplitude increases for a particular /H.  270 

Recommended Methods of Implementation 271 

The solution for PE in Eq. 5a is a function of wave number, k, and is therefore a function of 272 

frequency. The dependence of PE on frequency can be captured with two methods: (1) a 273 

frequency-domain solution that takes as input a time-series of free-field ground surface 274 

displacement [ug0(t)], or (2) a single-frequency solution that takes as input a particular free-field 275 

displacement (ug0) and a single frequency anticipated to dominate dynamic earth pressure 276 

response. Both methods will be useful in design applications and are described below. 277 

The frequency domain solution (FD solution) has the following steps: 278 

1) Compute the Fourier transform of the free-field ground displacement record,  0
ˆ

gu   279 

using a fast Fourier transform algorithm.  280 

2) Compute frequency-dependent values of the stiffness parameters ky
i, kz

i, Ky, and Kxx,base 281 

using Eqns. (7)-(9). Follow typical protocols (NIST, 2012) for selecting representative 282 



shear moduli for use in these expressions, including averaging non-uniform shear-wave 283 

velocities over appropriate depth ranges and using applicable levels of modulus reduction 284 

for nonlinear problems (described further below). Alternative values for embedded 285 

foundation stiffness to those given in Eqs. (9), as derived from site- and structure-specific 286 

analysis or from alternate solutions in the literature, can be readily incorporated by 287 

entering the computed values for Ky_emb and Kxx_emb. This could be particularly important 288 

for foundation geometries that are not well approximated as plane strain for a particular 289 

direction of shaking [e.g., rectangular foundations, for which impedance solutions are 290 

available in Gazetas (1983), Mylonakis et al. (2006) and NIST (2012)]. Material damping 291 

may also be incorporated through the use of complex-valued shear moduli as noted 292 

above.  293 

3) Compute the Fourier coefficients of the frequency-dependent foundation input motions 294 

 ˆ
FIMu   and  ˆ

FIM   using Eqs. 6a and 6b. Note that  0
ˆ

gu   is substituted for ug0 in 295 

these equations for the frequency domain solution. 296 

4) Compute the Fourier coefficients of the seismic earth pressure resultant,  ˆ EP , using 297 

Eq. 5a. Note that  0
ˆ

gu  ,  ˆ
FIMu   and  ˆ

FIM   are substituted for ug0, uFIM, and FIM, 298 

respectively.  299 

5) Compute the time series of the seismic earth pressure resultant,  EP t  using the inverse 300 

fast Fourier transform algorithm. Find the maximum value of this time series. The total 301 

demand on the wall is the sum of PE (at the location indicated by Eq. 3) and the resultant 302 

of the initial earth pressure (typically at z = 2H/3).  303 

Each of the frequency-domain displacements and forces given above is complex valued.  304 



The single-frequency solution (SF solution) is as follows:  305 

i. Estimate the mean period (Tm) of the design earthquake ground motion. For projects 306 

where ground motions are estimated using site-specific probabilistic seismic hazard 307 

analysis followed by the selection of applicable accelerograms, the mean period can be 308 

computed for each record using procedures given in Rathje et al. (2004). When such 309 

accelerograms are unavailable, Tm can be computed from applicable ground motion 310 

prediction equations (e.g., Rathje et al., 2004), or in cases of sites having significant 311 

impedance contrasts giving rise to strongly resonant responses, from the site period 312 

 4 sT H V .  313 

ii. Compute ky
i, kz

i, Ky, and Kxx,base using Eqns. (7)-(9) or alternate solutions as described in 314 

Step (2) above. For many practical situations, static stiffnesses will suffice for these 315 

quantities (zero frequency), although more precision is possible through consideration of 316 

frequency dependence.   317 

iii. Use the results in Fig. 4, or a site-specific solution of Eq. (5), to evaluate the variation of 318 

normalized PE [i.e.,  0

i

E g yP u k H ] versus /H.   319 

iv. Compute /H, based on the mean period from Step (i) (i.e., /H = VsT/H), and compute 320 

the associated normalized value of PE. Kinematic interaction is anticipated to be 321 

significant if the wall under consideration lies near the fundamental-mode peak response 322 

region (i.e., /H  1.5 to 4), and small in regions of lower frequency (e.g., /H > 10).  323 

v. Estimate ug0 so that the dimensionless wall force from (iv) can be dimensionalized. 324 

Ground motion amplitude ug0 should not be perceived as the peak ground displacement, 325 

but rather as a displacement associated with the most energetic portion of the record. 326 



Until more detailed validation exercises can be performed, ug0 should be taken as 327 

PGV/m, where PGV is the peak ground velocity in the free field and m is the angular 328 

mean frequency corresponding to the mean period from (1) ( 2m m
T  ). Energetic 329 

portions of the ground motion spectrum are correlated with PGV (e.g., Akkar and Özen, 330 

2005; Bommer and Alarcón, 2006).  331 

vi. The total demand on the retaining wall is computed from PE and the resultant of the 332 

initial earth pressure, as in the FD procedure. 333 

Several important issues arise when selecting a representative shear wave velocity using either 334 

the FD or SF solutions. First, shear wave velocity typically varies with depth due to pressure-335 

dependence of soil shear modulus and age. For computing ky
i and kz

i, the time-averaged shear 336 

wave velocity (depth/travel time) for the depth interval from the ground surface to the bottom of 337 

the wall should be used. For computing base stiffness terms, the time-averaged shear wave 338 

velocity for the depth interval from z = H to H+B should be used, until more detailed 339 

recommendations can be developed. 340 

Second, strong ground motion induces shear strains that are large enough to reduce the secant 341 

shear modulus in accordance with a modulus reduction curve. Failing to account for modulus 342 

reduction may result in a significant over-prediction of earth pressure since the reduction in 343 

secant shear modulus reduces ky
i, kz

i, Ky, and Kxx,base. A site-specific ground response analysis is 344 

recommended to obtain values of strain-compatible shear modulus (and associated equivalent-345 

linear Vs). An alternative crude approach is to approximate the peak shear strain based on 346 

PGV/Vs. Assuming the standing wave field in Fig. 2 varies in time according to ug(z,t) = 347 

ug0∙cos(kz)∙eit, the ground surface velocity is dug(0,t)/dt = 𝑢𝑔0̇  = i∙∙ug0∙e
it and the shear strain 348 

is dug/dz = -k∙ug0∙sin(kz)∙eit. Therefore the strain field is dug/dz = (𝑢𝑔0̇ /Vs)∙i∙sin(kz), the 349 



amplitude of which is simply PGV/Vs. The imaginary number indicates that shear strain is 90° 350 

out of phase with surface velocity. Furthermore, the maximum values of shear strain occur at the 351 

"nodes" of the standing wave (i.e., at kz = /2 + n, where n is an integer greater than 0). For 352 

more complicated conditions including soil layering and propagation of surface waves, shear 353 

strain has been found to range from 0.2 to 1.7 times PGV/Vs, with 1.0 being a commonly used 354 

value for horizontal-component ground motions (Trifunac et al., 1996; Brandenberg et al., 2009), 355 

which provides an estimate of peak shear strain consistent with the assumed shape of the soil 356 

displacement profile. This peak shear strain can then be converted to a representative uniform 357 

strain by multiplying the peak shear strain by (M-1)/10, where M is moment magnitude (Idriss 358 

and Sun, 1991). The equivalent uniform shear strain would then be used to compute a value of 359 

G/Gmax from a selected modulus reduction curve, from which reduced values of G and Vs can be 360 

obtained for use in the analysis. This equivalent-linear procedure neglects local strains imposed 361 

by the wall, and is reasonable for cases involving free-field ground strains smaller than about 362 

1%. However, the procedure may become erroneous at larger strains corresponding to ground 363 

failure. Free-standing retaining walls that rotate or translate significantly may mobilize such 364 

large shear strains, but this will rarely be the case for stiff building basement walls. 365 

The solution presented herein assumes perfect contact between the soil and the vertical walls. In 366 

reality, a gap might form in cohesive soils at this interface if PE is negative (i.e., the wall is 367 

moving away from the soil) and its absolute value is larger than the initial earth pressure on the 368 

wall. Gapping may theoretically cause pounding and additional stresses on the wall beyond those 369 

considered here. However, it is likely that peak earth pressures will occur when PE is positive 370 

(i.e., when the free-field soil moves toward the wall), which is considered in the present analysis. 371 



The efficacy of the proposed procedure is demonstrated in the following section and will be 372 

tested further over time as additional experimental data become available.  373 

Comparison to Experimental- and Simulation-Based Results in Literature 374 

In this section, two prior studies that reached strongly divergent conclusions about the levels of 375 

seismic earth pressures acting on retaining walls are interpreted using the proposed methodology. 376 

In the first study, Ostadan (2005) performed elastic wave propagation analysis using a numerical 377 

finite element code (SASSI; Lysmer et al. 1999) to investigate the kinematic interaction between 378 

free-field site response and a massless embedded structure connected to a rigid base and fixed 379 

against rotation. Ostadan concluded that M-O earth pressure theory significantly under-predicts 380 

the mobilized earth pressures by factors ranging from 2 to 4 depending on ground motion 381 

characteristics. In the second study, Al Atik and Sitar (2009) performed centrifuge modeling of 382 

embedded U-shaped walls, and concluded that M-O theory significantly over-predicts measured 383 

earth pressures. On the basis of their test results, they reported that dynamic earth pressures 384 

driving flexural demands on the walls are negligible for peak horizontal surface accelerations 385 

less than 0.4g.  386 

Ostadan (2005) Numerical Solution 387 

Ostadan (2005) input six broadband earthquake motions, scaled to a common peak horizontal 388 

acceleration of 0.3g, to the base of an elastic soil layer with Vs = 305 m/s, H = 9.14m, mass 389 

density =2.06Mg/m3, =1/3, and =5%. The elastic layer rests atop a rigid base. This elastic 390 

layer is the backfill behind a rigid wall also supported on the rigid base. The ground motions 391 

generated substantial site response due both to the infinite impedance contrast (from the rigid 392 



base) and significant energy in the input motions at the fundamental frequency of the backfill 393 

(where /H=4).  394 

Five of the free-field surface motions were obtained from Ostadan (pers. communication, 2013) 395 

and used to compute ug0(t) by double-integrating the surface accelerations in time. Those free-396 

field motions were then applied using the proposed FD and SF solutions. Since the base of the 397 

wall was rigidly connected to the ground, only the stiffness term ky
i is needed in the solution, and 398 

the frequency-dependent value was computed using Eq. (7a) with y = 1. Figure 6a compares 399 

maximum earth pressures over the wall height from the FD solution relative to those obtained by 400 

Ostadan (2005) for two of the ground motions (three are omitted for clarity in the figure). Table 401 

1 presents the resultants of these distributions. The resultant forces are in good agreement, with 402 

errors ranging from -10% to +12%.  403 

In the SF solution, the surface displacement is computed as ug0=PGV·T/2, where PGV is taken 404 

from ground-surface motions, and period T is taken as 4H/Vs due to the strong impedance 405 

contrast at the base of the soil layer. The agreement with Ostadan’s solution is reasonable, but 406 

not as good as the FD solution, with errors ranging from -12% to +57%. The Mononobe-Okabe 407 

earth pressure resultant presented by Ostadan (160 kN/m for all of ground motions) 408 

underpredicts the earth pressures in every case.  409 

The conditions considered by Ostadan are nearly optimal for generating large kinematic wall 410 

pressures (i.e., /H = 4, associated with first mode response of the backfill, lies near the peaks of 411 

the curves in Fig. 4). Not surprisingly, such conditions cause the mobilized earth pressures to 412 

exceed those from the M-O theory. Ostadan’s results are broadly consistent with earlier findings 413 



by Arias et al. (1981) and Veletsos and Younan (1994) obtained by analytical closed-form 414 

solutions for similar configurations.  415 

Al Atik and Sitar (2009, 2010) Experimental Results 416 

Al Atik and Sitar (2009, 2010) performed centrifuge experiments on relatively rigid and flexible 417 

U-shaped walls with prototype dimensions of H = 6.5 m and B = 5.3m embedded in a profile of 418 

medium dense sand with thickness D = 19 m, and  = 17 kN/m3. The average small-strain shear 419 

wave velocities given by Al Atik and Sitar were Vs = 170 m/s behind the walls and Vs = 260 m/s 420 

for the depth interval from the base of the wall to the essentially rigid base of the container. The 421 

FD and SF solutions are compared with results of experiments performed using motions denoted 422 

Loma Prieta SC1, Loma Prieta SC2, and Kobe PI2.  423 

For these experiments, ug0 was obtained by digitizing and double-integrating in time the plots of 424 

free-field surface acceleration presented by Al Atik and Sitar (2009). These motions induced 425 

nonlinear response in the sand, and measured shear strains and the interpreted modulus reduction 426 

(G/Gmax) curve by Al Atik and Sitar were used to estimate representative values of G/Gmax = 427 

0.28, 0.25, and 0.10 for the SC1, SC2, and PI2 ground motions, respectively. Comparisons 428 

between computed (FD solution) and measured maximum earth pressures for the three digitized 429 

ground motions are shown in Fig. 6 for SC2 and PI2 (SC1 omitted for clarity). Resultant forces 430 

for all three motions are shown in Table 2. Resultant force errors range from -7% to +23% for 431 

the FD solution and from +6% to +23% for the SF solution. Although the earth pressure 432 

resultants are predicted quite well, the shape of the pressure distributions differ significantly, 433 

with the reported distributions from measurements increasing linearly with depth and the 434 

predicted distributions being approximately zero at the base of the wall and having their 435 



maximum at the ground surface. This mismatch may result in part from the assumption of depth-436 

invariant ky
i, whereas the shear modulus of sand in the centrifuge models increases with depth. A 437 

more robust solution would utilize ky
i values that increase with depth in accordance with the 438 

variation in soil shear modulus, combined with a site response study that captures the influence 439 

of these variations on the free-field displacement profile. We lacked the required data to perform 440 

such an analysis. It should be noted that the modulus reduction was an important part of this 441 

analysis; if taken as unity (linear soil) earth pressures are significantly over-predicted. 442 

Mononobe-Okabe earth pressures presented by Al Atik and Sitar (2009) were computed using 443 

the ground surface PGA and 0.65PGA. For consistency with the Ostadan (2005) comparisons, 444 

the PGA-based M-O estimates are presented here. As shown in Table 2, the M-O pressure 445 

resultants significantly exceed the measurements. It is helpful to visualize these results relative to 446 

the diagrams in Figure 4. If the frequency content of the motions in the centrifuge model are 447 

assumed to be dominated by site response above the essentially rigid base of the container, then 448 

 = 4D, which produces /H=12. This is well to the right of the peak, and therefore anticipated 449 

soil pressures from kinematic interaction are quite small. Not surprisingly, those pressures fall 450 

below the range of M-O pressures.  451 

The results in Figure 6 and Table 1 compare results from the proposed analysis with maximum 452 

kinematic earth pressure increments presented by Al Atik and Sitar (2009) (i.e., total earth 453 

pressure minus initial static earth pressure minus the component from inertia of the wall mass). 454 

However, Al Atik and Sitar (2009) indicate that the peak bending moments in the walls arose 455 

from a combination of kinematic and inertia loading, and peak moments were out-of-phase with 456 

peak kinematic earth pressures. The evaluation of these inertial effects is a straightforward 457 



extension of the proposed methodology, but is not considered here for brevity and because 458 

required data is unavailable.  459 

Effect of Dynamic Modifier on Lateral Wall-Soil Stiffness Terms 460 

Calculations of PE presented above utilized frequency-dependent stiffness terms (Eqns. 7a and 461 

7b) for both the FD and SF solutions. The calculations were repeated omitting the dynamic 462 

component (i.e., setting  = 0). Setting the frequency modifiers to unity increased the computed 463 

earth pressures by about 15 to 20% for the FD solution for both the Ostadan and Al Atik and 464 

Sitar cases. This generally increases model misfit to the data from the literature. Using the SF 465 

solution, comparable pressure increases for the Al Atik and Sitar case are observed, but > 200% 466 

increases are observed for the Ostadan case.  467 

On the basis of these comparisons, until more advanced models for ky
i and kz

i can be developed 468 

that account for soil layering, application of the frequency-dependent terms in Eq. (7a) and (7b) 469 

is recommended when the interaction effects are strong (i.e., near the peak of the transfer 470 

functions in Figure 4, or /H  1.5-5.0). Otherwise, for the common case of /H > 5, 471 

implementation of the dynamic modifier appears to be helpful but not essential.  472 

  473 



Recommendations and Conclusions 474 

We present a kinematic soil-structure interaction approach that provides a unifying framework to 475 

explain the lower-than-M-O seismic earth pressure increments observed by Al-Atik and Sitar 476 

(2009, 2010) and the higher-than-M-O pressure increments computed by Ostadan (2005), 477 

Veletsos and Younan (1994), and others. The approach is admittedly simplified in several 478 

respects; in particular, the effects of wall and foundation inertia are not considered (consistent 479 

with a kinematic assumption), the Winkler assumption is utilized, the single-frequency solution 480 

significantly simplifies the broadband ground motion driving the kinematic demands, soil 481 

nonlinearity can only be indirectly included using an equivalent-linear approximation, and 482 

potential impacts of alternate initial gravity-induced stress conditions (e.g., active, at-rest) on the 483 

seismic earth pressure increment are not considered. Despite those caveats, the approach is 484 

physically sound and provides a clear basis for understanding the factors driving seismic earth 485 

pressures for many practical retaining wall configurations. Additional experimental observations 486 

and numerical simulations are needed to validate the procedure for ranges of ground motion 487 

frequencies and wall configurations, evaluate the relative contributions of inertial effects, and to 488 

formulate detailed recommendations for design application. Nevertheless, the proposed approach 489 

produces estimates of seismic earth pressures that are significantly more accurate than M-O 490 

theory.  491 

Numerical simulations are warranted for cases where the assumptions associated with the 492 

proposed method are expected to produce unacceptably large errors. Seismic earth pressures 493 

from inertial interaction should also be considered in general application, and may be the only 494 

significant source of seismic earth pressures when kinematic interaction is insignificant. Inertial 495 

demands have different origins, and as such, may be out of phase with kinematic demands. 496 



Inertia demands should be evaluated separately using a procedure like that shown in Fig. 1b and 497 

described in detail elsewhere (e.g., NIST, 2012).  498 
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List of Figure Captions 586 

Figure 1. Schematic illustration of the kinematic and inertial interaction components of foundation-587 

soil interaction for an embedded foundation system. FIM = Foundation Input Motion.  588 

Figure 2. Schematic of embedded rigid strip foundation excited by vertically propagating shear wave. 589 

Figure 3. Translational and rotational static stiffness interaction factors, y and xx, respectively, 590 

versus H/B. 591 

Figure 4. Normalized PE versus normalized wavelength /H for various contributions of wall normal 592 

stress to translational and rotational stiffness. 593 

Figure 5. Kinematic transfer functions for translational and rotational Foundation Input Motions 594 

derived from the present study and compared to the simplified approach of Kausel et al. (1978). 595 

Figure 6. Maximum seismic earth pressure increments computed by Ostadan (2005) and Al Atik and 596 

Sitar (2009) compared with full frequency-domain solution by the proposed kinematic methodology. 597 

  598 



Table 1. Resultants of seismic earth pressure increments from Ostadan (2005), the Mononobe-Okabe 599 

solution, and the proposed kinematic methodology. 600 

 Earth Pressure Resultant, PE (kN/m) 

Ground Motion Ostadan (2005) FD solution SF solution Mononobe-
Okabe Solution 

Loma Prieta 414 415 (+0%) 487 (+18%) 160 (-61%) 

ATC 368 341 (-7%) 461 (+25%) 160 (-57%) 

RG1.60 478 451 (-6%) 588 (+23%) 160 (-67%) 

EUS distant 405 362 (-11%) 637 (+57%) 160 (-60%) 

EUS local 179 201 (+12%) 158 (-12%) 160 (-11%) 

 601 

Table 2. Resultant of seismic earth pressure increments from Al Atik and Sitar (2009), the Mononobe-602 

Okabe solution, and the proposed kinematic methodology. 603 

 Earth Pressure Resultant, PE (kN/m), (% error) 

Ground Motion Al Atik and Sitar 
(2009) 

FD solution SF solution Mononobe-
Okabe solution 

Loma Prieta SC1 90 110 (+23%) 95 (+6%) 180 (+100%) 

Kobe PI2 146 164 (+13%) 180 (+23%) ∞ (+∞%)1 

Loma Prieta SC2 101 94 (-7%) 121 (+20%) 235 (+132%) 

1 The M-O prediction of infinite earth pressure is caused by the inertial force exceeding the shear 604 

strength of the sand at the base of the wall, and is a well-recognized unrealistic artifact that makes the 605 

M-O theory difficult to apply in practice for sites with very strong design ground motions. 606 
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Figure 6 620 



Derivation of equation for vertical stiffness intensity kzi 621 

This digital supplement presents the derivation for vertical stiffness intensity, kz
i, for an elastic soil 622 

mass moving vertically relative to a rigid wall. The formulation follows the approach presented by 623 

Kloukinas et al. (2012) for solving ky
i using a special integration technique inspired by the work of Vlasov 624 

and Leontiev (1966). The solution procedure assumes that the free-field soil is vibrating according to a 625 

vertical displacement field, and a vertical rigid wall alters the displacement field thereby mobilizing 626 

shear tractions at the interface between the wall and the retained soil. The free-field vertical 627 

displacement field is assumed to be known, and the horizontal variation in the vertical displacement 628 

field caused by the presence of the rigid wall is subsequently solved to render vertical force equilibrium. 629 

Stresses shown on the hatched region in Fig. 7 represent dynamic stress increments, and we 630 

assume, following several related studies discussed in Kloukinas et al. (2012), that dynamic stresses in 631 

the horizontal direction are zero (i.e., y = 0) throughout the domain, plane-strain conditions apply, and 632 

the displacement gradient 




yu

z
 is small compared to the complementary term 





zu

y
. 633 

Equilibrium of vertical forces on the hatched region results in Eq. (A1). 634 
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 635 

Stress-strain relations are provided in Eqs. (A2), in which G is shear modulus, and  is Poisson ratio. 636 
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 637 

By setting y = 0, the y-direction displacement gradient can be expressed in terms of the vertical 638 

displacement gradient and , as shown in Eq. (A3). 639 
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 640 



After substituting Eq. (A3) into Eq. (A2a) and taking the partial derivative with respect to z, taking the 641 

partial derivative of Eq. (A2c) with respect to y, and substituting into Eq. (A1) considering that 0
yu

z





, 642 

one obtains the governing equation 643 
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 644 

where 
2

1
s










 is a compressibility coefficient, and k = /Vs = wave number. 645 

 646 

Following Kloukinas et al. (2012), we assume that the displacement field in the soil behind the 647 

wall can be written in separable form  648 

( , ) ( ) ( )zu y z Y y z   (A5) 

 649 

where Y is an unknown function of the horizontal variable y, and (z) is a predetermined dimensionless 650 

function of the vertical variable that satisfies the geometric boundary condition (H)=0 and (0)=1. 651 

To eliminate the variable z, Eq. (A4) is multiplied by (z) and integrated over layer thickness to give 652 
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 653 

The first term on the left hand side of Eq. (A6) can be integrated by parts to obtain the weak form 654 
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 655 

Assuming a traction-free boundary condition at the soil surface means that 
0

0
z

d

dz 


 . Combined with 656 

the condition that (H)=0, the first term on the right-hand side of Eq. (A7) must also be zero. By making 657 

appropriate substitutions and re-arranging terms, Eq. (A6) can be expressed as 658 
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 659 

The general form to the solution of Eq. (A8) is  660 
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 661 

where 
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Noting that Y(∞) is finite and Y(0) = uo, one obtains C1 = 0 and C2 = uo. Substitution into Eq. (A5) results in 663 
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 664 

Substituting Eq. (A10) into Eq. (A2c), the expression for shear stress is 665 
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 666 

The vertical stiffness intensity can then be computed as 667 
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 668 

Selecting ( ) cos
2

z
z

H

 
   

 
, the value of ac can be solved as:   669 
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 670 

Substituting Eq. (A13) into Eq. (A12) results in the final expression for kz
i shown in Eq. (A14) and (7b) 671 

from the main text. 672 
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 673 

Material damping can be incorporated into the solution for kz
i by using the complex shear modulus, 674 

G(1+i2), where  is the percent damping. For static loading conditions in which  = 0, one obtains a 675 

static stiffness shown in Eq. (A15). This equation may be appropriate when the loading frequency is 676 

much lower than the natural frequency of the soil deposit. 677 
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 678 

Furthermore, as frequency becomes very high, the stiffness is complex due to the negative sign of the 679 

quantity inside the square root in Eq. (A14), and the imaginary portion dominates and becomes equal to 680 

Eq. (A16) as  → ∞.  681 
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 682 

This indicates that the wall stiffness can be represented by a dashpot cz
i, in accordance with elementary 683 

wave propagation theory (Eq. A17). 684 
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 685 



This suggests the existence of an equivalent propagation velocity, influenced by soil compressibility, in 686 

accordance with Eq. (A4). 687 
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