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Bones adapt their structure to their loading environment and so ensure that they become, and are maintained,
sufficiently strong to withstand the loads to which they are habituated. The effectiveness of this process declines
with age and bones become fragile fracturing with less force. This effect in humans also occurs in mice which
experience age-related bone loss and reduced adaptation to loading. Exercise engenders many systemic and
local muscular physiological responses as well as engendering local bone strain. To investigate whether these
physiological responses influence bones' adaptive responses tomechanical strainwe examinedwhether a period
of treadmill exercise influenced the adaptive response to an associated period of artificial loading in young adult
(17-week) and old (19-month)mice. After treadmill acclimatization,micewere exercised for 30min three times
per week for two weeks. Three hours after each exercise period, right tibiae were subjected to 40 cycles of
non-invasive axial loading engendering peak strain of 2250 με. In both young and aged mice exercise increased
cross-sectional muscle area and serum sclerostin concentration. In young mice it also increased serum IGF1. Ex-
ercise did not affect bone's adaptation to loading in any measured parameter in young or aged bone. These data
demonstrate that a level of exercise sufficient to cause systemic changes in serum, and adaptive changes in local
musculature, has no effect on bone's response to loading 3 h later. This study provides no support for the bene-
ficial effects of exercise on bone in the elderly beingmediated by systemic or local muscle-derived effects rather
than local adaptation to altered mechanical strain.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Bone architecture adapts to changes in themechanical strain engen-
dered within it and by this means ensures that it becomes, and is main-
tained, sufficiently strong towithstand the loads towhich it is subjected
[1]. This negative feedback mechanism is widely known as the
mechanostat. The mechanostat is primarily a local phenomenon with
local changes in loading-engendered strain culminating in local bone
adaptation [2]. However, bone architecture is also influenced by endo-
crine and paracrine changes which may have their effect directly
through the mechanisms of the mechanostat or by influencing the
context in which the mechanostat operates [3].

With age in humans, there is a decline in bonemass and architecture
to the extent that bones become sufficiently fragile that low levels of
trauma can lead to fracture [4]. In animal models, age has been shown
to be associated with reduced function of the mechanostat as shown
by reduced adaptive responses to loading compared with that in
young adults [5–8]. It has been recently suggested that this reduction

in responsiveness does not occur at the stage where osteocytes respond
to strain but at the subsequent stage where osteoblasts proliferate [8].

Although bones' adaptive response to loading is impaired with age,
it is not eliminated in either humans or rodents. A recent meta-
analysis of randomized controlled clinical trials concluded that exercise
can increase bone mineral density in the lumbar spine and femoral
neck, two regions predisposed to osteoporotic fracture [9]. A long-
term exercise study in 14-month-old rats demonstrated that 16 weeks
of exercise was sufficient to increase trabecular bone density [10] and
cortical bone formation primarily on the periosteal surface [11]. Other
studies in rats comparing the responses to resistance [12] and treadmill
exercise [13] found increased bone formation in response to exercise in
aged animals when directly compared with young adults.

However, when comparing results from studies using artificial
loading and exercise in aged experimental animals, it is important to
consider the differences between thesemodels. Both provide amechan-
ical strain stimulus however, with artificial models this is controlled,
well defined and unimodal. In comparison in exercise models it is
usually neither measured nor controlled and includes diverse loading
modalities [14,15]. Exercise also invokes many additional physiological
changes not engendered by artificial loading. These include increased
blood flow and therefore tissue oxygenation [16,17], local muscular
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contraction and the release of endocrine and local paracrine factors
[18–20].

Changes in circulating concentrations of insulin-like growth factor
(IGF)1 could explain the different results between exercise and artificial
loading experiments. Although local concentrations of IGF1 have not
been shown to change following artificial mechanical loading [21,22],
we have shown that loading increases the sensitivity of the IGF1-
receptor to ambient IGF1 in vitro [23]. With age there is a decline in
IGF1 [24–26], although treadmill exercise can lead to its increase in
both young and aged animals [27,28]. Therefore, an age-related decline
in IGF1 could limit bone's response to artificial mechanical loading
whereas its increase during exercise could rescue this impaired re-
sponse. Changes in the expression of the Wnt antagonist sclerostin
and/or glucocorticoids could also explain the impaired exercise-related
response to loading in aged mice. Serum concentrations of sclerostin
have been shown to be elevated in elderly humans with low bone
mass [29,30] and serum sclerostin is lowest in the quartile of women
with the highest levels of physical activity [31]. Glucocorticoids are
known to inhibit bone formation [33,34], and corticosterone has been
shown to be elevated in aged mice [32]. In humans that exercise [35]
andmicewith voluntary access to exercisewheels [36], serumglucocor-
ticoid concentrations are reduced. Since multiple factors known to
influence bone formation appear to be differentially regulated by exer-
cise and aging, we here explored the hypothesis that altering systemic
and muscular factors through exercise will enhance aged bone's dimin-
ished response to artificial loading.

2. Materials and methods

2.1. Animals

Young adult (17-week-old, n = 30) and aged (19-month-old, n =
35) female C57BL/6 mice were obtained from Charles River Inc.
(Margate, UK). All mice were allowed free access to water and a main-
tenance diet containing 0.75% calcium (EURodent Diet 22%; PMI Nutri-
tion International, LLC, Brentwood, MO, USA) in a 12-hour light/dark
cycle, with room temperature at 21 ± 2 °C. All cages contained wood
shavings, bedding and a cardboard tube for environmental enrichment.
Mice were housed in groups of up to five animals [37]. All procedures
complied with the UK Animals (Scientific Procedures) Act 1986
and were reviewed and approved by the University of Bristol ethics
committee (Bristol, UK).

2.2. Exercise training

Micewere acclimatized to the treadmill three times over a oneweek
period (see Supplementary Table 1). Subsequently, theywere exercised
for 30 min three times per week at 23 cm s−1 for young adults and
18 cm s−1 in agedmice. These speedswere selected as they have previ-
ously been shown to be the voluntary running speeds of this age ofmice
on an exercise wheel [38].

2.3. In vivo external mechanical loading

Right tibiae were subjected to external mechanical loading under
isoflurane-induced anesthesia on three days per week for two weeks
to investigate the effect of loading on bone (re)modeling. Loading was
applied 2.5 h after exercise finished as exercise studies in humans indi-
cate IGF1 mRNA concentrations are elevated at this time point [39,40].
Left limbs were used as internal controls as previously validated [41,
42]. The protocol for non-invasively loading the mouse tibia has been
reported previously [14,43]. In brief, the flexed knee and ankle joints
are positioned in concave cups and the upper cup containing the knee
is attached to an actuator arm of a loading device and the lower cup to
a dynamic load cell. The tibia is held in place by a 0.5 N continuous static
pre-load. 40 cycles of dynamic load are superimposed with 10 s rest

intervals between each cycle. The protocol for one cycle consists of load-
ing to the target peak load, hold for 0.05 s at the peak load, and
unloading back to the 0.5 N pre-load. From the strain gage data previ-
ously reported in these ages, strain and sex of mice [8] we applied
14 N to young adult and 11.1 N to aged mice giving a peak strain
stimulus of 2250 με. The strain rate at this sitewas normalized to amax-
imumof 30,000 με s−1 by loading and unloading at a speed of 500N s−1

and 393 N s−1 in young adult and aged mice respectively.

2.4. Serum collection and analysis

Mice were killed by asphyxiation with CO2 and blood removed by
direct cardiac puncture 3 h after the final period of exercise as studies
document a peak increase in IGF1 mRNA concentrations at this
time point[39,40]. Serum was separated by centrifugation and stored
at −80 °C. Serum IGF1, IGF BP3 and sclerostin were measured
using ELISA according to manufacturer's instructions (R&D Systems,
Abingdon, UK). Serum corticosterone was assayed using a competitive
radioimmunoassay as previously reported [44].

2.5. High-resolution μCT analysis

Following sacrifice, lower legswere stored in 70% ethanol andwhole
tibiae imaged using the SkyScan 1172 (Bruker, Kontich, Belgium)with a
voxel size of 4.8 μm (110 μm3). The scanning, reconstruction and meth-
od of analysis has been previously reported [37,45]. We evaluated the
effect of age and sex on both tibiae and changes [(right − left) /
left] ∗ 100 due to loading in bone volume fraction (BV/TV), trabecular
thickness (Tb.Th), trabecular number (Tb.N) and trabecular pattern fac-
tor (Tb.Pf) in the trabecular region (0.25–0.75mmdistal to the proximal
physis) and cortical bone area (Ct.Ar), total cross-sectional area inside
the periosteal envelope (Tt.Ar), medullary area (Ma.Ar) and cortical
thickness (Ct.Th) in the cortical site level demonstrating maximal
bone formation following loading (37% from the proximal end) [41],
according to ASBMR guidelines [46]. Cross-sectional muscle area
(Mu.Ar) was also measured at the tibial mid-shaft using μCT.

2.6. Statistical analysis

Left control and right loaded limbs and change in bodyweight were
compared using a paired t-test. The combined effect of age and exercise
on bodyweight, tibial length, serum, bone and muscle parameters and
on the percentage change in bone mass and architecture due to me-
chanical loading were assessed using a two-way ANOVA with post-
hoc Bonferroni correction where significant interactions were detected.
All data is reported as mean ± SEM. Significance was set at p b 0.05.
Analyses were performed using GraphPad Prism (version 6.0, GraphPad
Software, La Jolla, CA, USA).

3. Results

3.1. Bodyweight and tibial length

There was no significant difference in bodyweight between control
and exercise groups within young adult or aged mice at the start or
end of the study period (p N 0.05, Table 1). Agedmicewere significantly
heavier than young adults (p b 0.001). Both groups of aged mice lost
similar bodyweight during the study period (control −4.4%, exercise
−3.5%, p b 0.001). The tibias of aged mice were significantly longer
than in young adults (3.8%, p b 0.001). Therewas no difference in length
between left control and right loaded tibiae in any group (p N 0.05). All
data is summarized in Table 1.
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3.2. The effect of age and exercise on serum parameters

As expected from previously published data, exercise increased
serum IGF1 concentration in young mice (15%, p = 0.02 by unpaired
t-test) although this increase was no longer significant when the data
was analyzed collectively in the two-way ANOVA. There was no signif-
icant change in IGFI concentration associated with age (p N 0.05). Since
the majority of circulating IGF1 is bound to IGF BP3, this was also
measured. Overall there was a significant decrease in IGF BP3 with age
(p b 0.001) with no overall effect of exercise (p N 0.05).

There was a significant increase in corticosterone in aged compared
to young animals (p = 0.03). This elevation was predominantly in the
non-exercised groups (128% increase) although the interaction did not
reach statistical significance.

Serum sclerostin was overall significantly increased with exercise in
both young and agedmice (p= 0.04). In contrast, therewas no effect of
age alone (p N 0.05).

3.3. The effect of exercise on bone mass and architecture and muscle area

As described in the Materials and methods, we aimed to select a
level of exercise that was not itself osteogenic but was sufficient to
induce some of the systemic changes associated with exercise which
were likely to influence bones' adaptive response to loading. Therefore,
as expected, there was no significant effect of exercise alone on any
calculated parameter in trabecular or cortical bone as assessed by

comparing left tibiae from mice which were subjected to exercise to
those which were not (p N 0.05, data not shown).

In contrast to the lack of effect of exercise on bone mass and archi-
tecture, there was a significant overall effect of exercise on muscle
area (p = 0.04). There was no significant effect of age on muscle area
(p N 0.05).

3.4. The effect of mechanical loading on bone mass and architecture

The effect of loading on bone mass and architecture using the axial
tibial loadingmodel in these ages ofmice has previously been described
[8]. In the current study, we used a sub-maximal strain stimulus of
2250 με so that any additional effect of exercise could be appreciated.
Loading to this magnitude of peak strain produced changes in bone
mass and architecture consistent with previous studies (Table 1) [8,
47]. In trabecular bone, there was a loading related increase in BV/TV
in youngmice (59.6%±4.3, p b 0.001)with a smaller but still significant
increase in BV/TV in aged mice (28.6% ± 15.3, p = 0.03). This increase
was primarily due to an increase in Tb.Th in both ages of mice (young
25.6% ± 2.7, p b 0.001; aged 29.8% ± 7.2, p b 0.001). Tb.N also signifi-
cantly increased with loading in young mice (28.1% ± 4.8, p b 0.001),
although no significant change was observed in aged mice (36.1% ±
28.6, p N 0.05). Tb.Pf, a measure of bone connectivity, was significantly
decreased by mechanical loading in young mice (−23.3% ± 2.7,
p b 0.001) suggesting an increase in connectivity. In contrast there
was no significant change in Tb.Pf in aged mice due to loading
(−7.75% ± 8.14, p N 0.05, Fig. 1A).

Table 1
The effect of age, exercise and loading on bodyweight, tibial length, trabecular and cortical bone parameters and the results of serum analyses. Bones were analyzed using high-resolution
μCT. Serum was analyzed using ELISA (IGF1, IGF BP3, sclerostin) or RIA (corticosterone). Data represented as mean ± SEM (young control and aged n = 15; young exercise n = 9). ap b

0.05, bp b 0.01, cp b 0.001 comparing change in bodyweight during the study period or left control with right loaded limbs using paired t-test. Results of a two-way ANOVA to assess the
effect of age, exercise and their interaction on bodyweight, tibial length,muscle area, serumparameters and the loading-related percentage change in bone parameters are also presented;
significant results (p b 0.05) are in bold.

Age Young adult Aged Two-way ANOVA p-values

Exercise group Control Exercise Control Exercise Age Exercise Interaction

Bodyweight (g)
Start 21.8 ± 0.2 21.7 ± 0.2 27.7 ± 0.8 28.6 ± 0.5 b0.001 0.41 0.47
End 22.0 ± 0.2 21.9 ± 0.3 26.4 ± 0.7c 27.6 ± 0.5c b0.001 0.29 0.29

Tibial length (mm)
Left control 17.7 ± 0.05 17.7 ± 0.05 18.3 ± 0.10 18.5 ± 0.04 b0.001 0.076 0.066
Right loaded 17.8 ± 0.06 17.7 ± 0.04 18.3 ± 0.09 18.5 ± 0.05 b0.001 0.44 0.31

Muscle area (mm2) 0.0402 ± 0.0008 0.0409 ± 0.0005 0.0387 ± 0.0007 0.0413 ± 0.0008 0.54 0.042 0.22
Trabecular bone

BV/TV (%)
Left control 6.56 ± 0.20 6.60 ± 0.38 1.41 ± 0.18 1.49 ± 0.19 0.71 0.64 0.089
Right loaded 10.39 ± 0.27c 9.42 ± 0.18c 1.92 ± 0.27a 2.03 ± 0.31a

Tb.Th (mm)
Left control 0.0464 ± 0.0008 0.0478 ± 0.0010 0.0522 ± 0.0022 0.0541 ± 0.0031 0.64 0.39 0.88
Right loaded 0.0580 ± 0.0007c 0.0575 ± 0.0013c 0.0667 ± 0.0033c 0.0679 ± 0.0046a

Tb.N (mm−1)
Left control 1.423 ± 0.054 1.379 ± 0.067 0.272 ± 0.036 0.263 ± 0.032 0.37 0.61 1.00
Right loaded 1.797 ± 0.055a 1.643 ± 0.041b 0.291 ± 0.039 0.293 ± 0.047
Tb.Pf (mm−1)
Left control 31.8 ± 0.49 32.2 ± 1.16 39.3 ± 2.56 40.3 ± 4.46 0.20 0.63 0.21
Right loaded 24.3 ± 0.78c 26.0 ± 0.63c 34.1 ± 2.79 31.1 ± 4.06a

Cortical bone
Ct.Ar (mm2)
Left control 0.704 ± 0.0067 0.699 ± 0.0094 0.535 ± 0.0106 0.533 ± 0.0107 0.31 0.44 0.18
Right loaded 0.808 ± 0.0089c 0.793 ± 0.0081c 0.596 ± 0.0143c 0.613 ± 0.0121c

Tt.Ar (mm2)
Left control 1.21 ± 0.013 1.22 ± 0.027 1.09 ± 0.022 1.10 ± 0.024 0.002 0.54 0.38
Right loaded 1.31 ± 0.013c 1.28 ± 0.013a 1.12 ± 0.022 1.14 ± 0.018

Ma.Ar (mm2)
Left control 0.510 ± 0.0097 0.519 ± 0.021 0.567 ± 0.022 0.562 ± 0.020 0.16 0.93 0.76
Right loaded 0.498 ± 0.0084 0.491 ± 0.012 0.522 ± 0.017a 0.531 ± 0.019

Serum
IGF1 (ng/ml) 308 ± 12 354 ± 12 357 ± 32 347 ± 17 0.30 0.37 0.17
IGF BP3 (ng/ml) 486 ± 22 534 ± 40 387 ± 24 427 ± 23 b0.001 0.16 0.95
Corticosterone (ng/ml) 133 ± 26 145 ± 46 305 ± 69 172 ± 31 0.030 0.17 0.11
Sclerostin (pg/ml) 95.8 ± 5.6 106.3 ± 3.9 93.9 ± 4.8 110.2 ± 5.6 0.85 0.038 0.66
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In cortical bone, there was a significant loading-related increase in
Ct.Ar in both ages of mice (young 14.8% ± 1.2, p b 0.001; aged
10.1% ± 1.7, p b 0.001). This was due to a significant increase in Tt.Ar
in young mice (7.69% ± 1.2, p b 0.001) with no change in Tt.Ar in
aged mice (1.36% ± 1.4, p N 0.05). In contrast there was no significant
change in Ma.Ar in young mice (−1.84% ± 2.2, p N 0.05) but a signifi-
cant decrease in aged mice (−7.02% ± 3.2, p = 0.03). Ct.Th was signif-
icantly increased by loading in both young adult (13.0%±1.2, p b 0.001)
and aged mice (9.31% ± 2.8, p b 0.001, Fig. 1B).

3.5. The effect of age and exercise on bone's response to mechanical loading

We next investigated whether there were any differences in bones'
adaptive response to loading due to age or exercise. This comparison
showed no additional effect of exercise on bone's response to artificial
loading for any measured parameter in trabecular or cortical bone.

The only significant finding was that aging reduced the loading-
related increase in Tt.Ar (p = 0.002).

4. Discussion

The results of this study demonstrate that levels of exercise in young
and aged mice sufficient to increase local muscle area and engender
measurable changes in serum concentrations of IGF1 and sclerostin
had nomeasurable beneficial effect on the adaptive responses of cortical
or trabecular bone to artificial mechanical loading imposed 3 h later.

The exercise protocol used was intended to engender systemic
changes in circulating hormones and muscle mass but not itself engen-
der any significant osteogenic response. As expected from previous
studies [28,39,40], exercise increased IGF1 in young mice. However,
no such increase was observed in aged mice. This contrasts with the
results from a study byWills et al. [27]. This difference is likely to reflect

Fig. 1. The effect of artificial loading and exercise on trabecular bonemass and architecture in young adult and aged female mice. Representative 3D reconstructions showing the effect of
loading and exercise on the region of (A) trabecular bone and (B) cortical bone analyzed by μCT.
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differences in exercise regimens. In our study there were no overall
changes in total IGF1 with age. However, there was an age-related
decrease in circulating IGF BP3 which mirrors age-related changes in
humans [48,49]. This would suggest an increase in free IGF1 since the
bound fraction is likely to be lower. This contrasts with the decline in
IGF-signaling reported with age in humans [25].

As expected from previous human and rodent studies, corticoste-
rone was elevated in aged mice compared to young controls [32,50].
Interestingly, exercise appeared to reduce this elevation to a level no
different from young control and exercised mice. This is consistent
with studies in young mice but to our knowledge has not previously
been investigated in aged mice [36]. Finally, we examined the effect of
exercise and age on serum sclerostin. There was no overall effect of
age but a significant increase with exercise. This has previously been
documented in humans 1 h after exercise [51] although chronic levels
of increased activity were associated with a lower serum sclerostin
concentration [31]. The role of the osteocyte-specific protein sclerostin
in the serum is still under debate so the significance of this finding is
currently unclear.

In addition to the perturbations in serum hormones, exercise also
caused a significant increase in muscle cross-sectional area at the mid-
shaft of the tibia. This is a further positive indication that the level of ex-
ercise was sufficient to induce both local and systemic effects. There has
been recent interest in the interaction between bone andmuscle so data
showing that a level of exercise sufficient to cause an increase inmuscle
cross-sectional area has no effect on local loading-related bonegain sug-
gests that the two are not causally related. This is consistent with the
finding that the age of mice used in this study had measurable age-
related deterioration in bone mass and architecture but no change in
muscle area compared to young adult mice. One of the potential benefi-
cial effects of exercisewhich could not be explored in this animalmodel
was that of coordination. It is well accepted in human studies that exer-
cise will improve neuromuscular control to reduce the risk of falls and
therefore fragility fractures. Thus our study in no way suggests that
exercise is not valuable in preventing fractures in old people only that
we see no evidence that there is a direct relationship between the
factors associated with increasing or maintaining muscle size with the
responses to mechanical loading associated with regulating bone mass
and architecture.

The changes in bone mass and architecture in response to loading
shown in our current study are consistent with data previously pub-
lished by ourselves [8] and others [5–7,52]. It is now apparent that de-
spite similar increases in trabecular thickness with loading in aged
compared with young adult mice, overall there is a smaller, albeit still
significant, increase in overall BV/TV. This can be accounted for by an
age-related abrogation of the positive effects of loading on trabecular
number and connectivity observed in young adult mice. In cortical
bone, it became more apparent that aging, as well as impairing the
magnitude of bones' adaptive response to loading, also changed the
sites of bone formation. In young adults bone formationwas exclusively
periosteal while in aged mice it was endosteal. This is consistent with
previous histomorphometric studies [53].

The limitations of this study include the length of time selected for
the exercise period. A more protracted period of exercise could have
lead to a greater increase in bone mass and architecture in both age
groups of mice. However, maximizing this response was not the prima-
ry purpose of our study. It is possible that the timing of the exercise was
such that it did not engender any beneficial effects on bones' adaptabil-
ity and that another timing or another exercise regimenwould have dif-
ferent effects. Although the level of exercise selected for this study was
sufficient to cause an increase in muscle area at the tibial midshaft, we
did notmeasuremusclemass or strength. There were also no longitudi-
nalmeasurements of the physiological responses to exercise. In addition
it is possible that artificial mechanical loading itself could induce
systemic changes in addition to those induced by exercise. Although
in our view this is unlikely to be significant and all mice underwent

artificial loading of one limb for consistency, we cannot exclude the
possibility that loading could have influenced the serum analyses in
this study.

We had hypothesized that the systemic and local muscular physio-
logical changes induced by exercise would enhance bone's adaptive re-
sponse to loading, perhaps elevating it in aged mice to a level similar to
that observed in young mice. In fact the data presented here suggest no
beneficial effects of exercise on bones' adaptive to strain. Our conclusion
is therefore that the frequently reported beneficial effects of exercise on
bone mass and architecture in aged animals are likely to reflect bones'
adaptation to changes in local mechanical strain alone rather than any
additional physiological response.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bone.2015.06.026.
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