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ABSTRACT
This paper concerns with the evaluation of methods for the
estimation of both temporal and spatial visual attention us-
ing a head-worn inertial measurement unit (IMU). Aimed at
tasks where there is a wearer-object interaction, we estimate
the when and the where the wearer is interested in. We eval-
uate various methods on a new egocentric dataset from 8 vol-
unteers and compare our results with those achievable with a
commercial gaze tracker used as ground-truth. Our approach
is primarily geared for sensor-minimal EyeWear computing.

ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies; I.5.5 Pat-
tern Recognition: Implementation

INTRODUCTION
Wearer attention, both temporal and spatial, is linked not only
to what is happening now, but importantly, helpful to an-
ticipate what action or object interaction will be carried out
next. In EyeWear computing, attention is commonly com-
puted from tracking eyes, but this involves specialized hard-
ware requiring precise eye-scene calibration that assumes no
misalignment occurs afterwards and thus not immediately
suitable or available for wearables. Current eye-gaze hard-
ware also has limited operational conditions, does not cover
the entire range of eye motions and may be affected by am-
bient lighting levels. An alternative proposition, explored in
this paper, is to investigate how well spatial and temporal at-
tention can be recovered from a head mounted inertial mea-
surement unit (IMU), without requiring any inward or out-
ward looking visual sensor. This has advantages for EyeWear
design simplicity, operational robustness but also energy us-
age. Furthermore, IMUs are already present in many existing
EyeWear devices e.g. Google Glass and Epson’s Moveiro.
Overall, predicting when and where the wearer is paying at-
tention is important for deciding when to (or not to) collect
activity data or provide assistance.

RELATED WORK
Few attempts in the literature aim to predict wearable gaze
(head and or eye-gaze), but two recent works use an outward-
looking head mounted camera (HMC). In [5], eye-gaze is es-
timated from combining a pre-computed task-specific gaze
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Figure 1: Google Glass and Commercial wearable gaze
tracker (for ground-truth) bundle (L) and experimental envi-
ronment setup (R).

centroid and the detection of hands while users do tasks such
as preparing food while seated. Their results do show how
head motion, as observed from the HMC, can be a valuable
cue as well as how the concentration of gaze fixations is spa-
tially tight when compared to non wearable gaze recordings.
They report an average angular error (AAE) of 8.35 degrees.
Requiring hand cues however, constraints the prediction hori-
zon, as attention (via eye-gaze) does precede action by several
milliseconds [3]. The work in [7], estimates eye-gaze from
multiple bottom-up sources including pixel colour, intensity,
gradient and user motion. An AAE is not provided and in-
stead performance is reported using true and false positive
classification according to a saliency map generated by their
method. This map often covers large portions of the image as
it is mainly derived from image cues.

Estimating eye-gaze without a visual sensor has been at-
tempted as a tool for interaction using EOG [1, 2], where
rates of positive detections for eye gestures or activity classi-
fication are reported instead of eye-gaze location accuracy.

On the other hand, usage of IMU signals for wearables has
been widely studied with some key literature covered in e.g.
[6]. We note that head motion has been somewhat less studied
as a source for wearable input and, to our knowledge, the si-
multaneous estimation of the temporal and the spatial visual
attention as we do here from wearable IMUs, has not been
presented before. Compared to [5, 7], our spatial estimation
approach is much simpler as it does not require detection of
bottom up image features or detection of hands, it has been
evaluated in more than a couple of activities, and we com-
pare our results with ground-truth obtained with a commer-
cial gaze tracker.

SENSORS, STATE AND MODELS
We use a Google Glass Explorer Edition 2.0 as it neatly fea-
tures visual and IMU sensors. Furthermore, we attach it to



an ASL Mobile Eye gaze tracker to serve as ground-truth
(Fig 1L).

We recover a head motion vector Ht at time t, where Ht =
(ht, ht−1, . . . , ht−N ) is the sequence of N prior head rota-
tional and translational motions of the tth frame. Each sample
hj represents the motion of the jth frame relative to its con-
secutive jth − 1 frame and h is defined as h = [θ a ω]

>
,

where θ = [θx θy θz]
> is the relative head orientation (∆yaw,

∆pitch, and ∆roll), a is the relative acceleration, and ω is the
relative head angular velocity.

Temporal attention threshold
We are interested in wearer-object interaction attention peri-
ods during no translation motion, that is, when the user is sta-
tioned to interact with objects including standing or seated,
e.g. assembling things. We define our temporal attention as

Tattention =

{
attending, if a 6 τ and ω 6 ν

in motion, Otherwise
, (1)

where τ is the relative acceleration threshold and ν is the rel-
ative head angular velocity threshold for identifying whether
the user is sufficiently stationary or not. The spatial attention
estimator, explained next, only starts its prediction process
when in the attending phase.

Spatial attention model
Our spatial attention estimation is dependant on an initialisa-
tion stage as we will cover later. Lets assume that we know
the user’s spatial attention of the previous frame and it is lo-
cated at pixel ct−1 = [xt−1, yt−1], we need to estimate the
change of user’s attention at the current frame ∆ct regard-
ing the head motion Ht. Therefore, the spatial attention of
current frame is ct = ct−1 + ∆ct and ∆ct is obtained from

∆ct = Φ(F ), (2)

where Φ is an attention estimation model and F = (Ht, ct−1)
is a head motion vector of the current frame Ht accompany-
ing with its previous spatial attention position c(t−1). The
attention estimator can be considered as a conditional expec-
tation given a set of samples H and its known previous spatial
attention ct−1 and their corresponding response values ∆c as
Φ = E(∆c|F).

We choose the Nadaraya-Watson estimator to estimate the
change of user’s attention locations in the scene. Given a
sample of bivariate data {x1, y1}, . . . , {xn, yn}, a so called
non-parametric estimator of ỹ′(x′) is written as follows

ỹ′(x′) =
Σni=1Kα(xi − x′)yi
Σni=1Kα(xi − x′)

. (3)

Each kernel K has its centre located at a sample xi with a
bandwidth α. The observed response ỹ′ at location x′ is a lo-
cally weighted average of its neighbour. Since the estimator
is a non-parametric function and approximates ỹ′ as a locally
weighted average, the estimator does not need any further pa-
rameters, and the function is assumed continuous.

To simplify, we generate two independent estimators for hor-
izontal and vertical directions and then construct n training

Figure 2: (L) True eye-gaze distribution for 8 users operat-
ing on multiple tasks and their centre of gaze (green dots)
and overall centre of gaze (red dot). (R) Function mapping
the relative head’s pitch angle against gaze elevation using
Kernel Regression (red) and a linear regression via RANSAC
(magenta).

pairs
{

∆cj , (Hj , c
t−1
j )

}
. The head motion parameters can

be randomly sampled from the user’s head motion during the
training stage. Therefore, the estimation of the total shift in
spatial attention at the current frame ∆ck is formulated as

∆ck =
Σnj=1djk∆cj

Σnj=1djk
, (4)

where djk is the kernel function and is defined as a Gaussian

density function djk = exp
(
−
∑n
j=1

Fj−Fk

α

)
and Fj−Fk is

the Euclidean distance between current sample k and learned
example j. The bandwidth α controls the shape of the re-
gression. Therefore, the output of sample Fk is a normalised
weighted sum of its nearest neighbour samples.

Spatial attention initialization using head orientation
The model Φ in Equation 2 estimates the change in spatial
attention. This model requires initialisation, i.e. an estimate
of ct−1. To address this, we propose an initialization method
as follows.

The underlying approach we take is based on two observa-
tions from analyzing eye gaze wearable video of daily liv-
ing activities. The first observation is that gaze is relatively
tightly concentrated on the 2D image coordinates of the HMC
as can be seen in Fig 2L where gaze fixations are shown for
all gaze locations for various activities. The centre of gaze
distribution across all users is illustrated by a red dot and the
centres’ of gaze distribution for each individual are shown in
green. To calculate a fixation, we use the method reported in
[4], i.e. angular velocity less than 100 degrees/s. As can be
seen, while fixations are not on a single location as expected,
they are also not evenly spread across the field of view (and
are biased towards the left as we use a HMC worn on the right
side).

Our second observation is that the eye-gaze distribution, as
illustrated in Fig 2L, appears to align along a vertical line and
that there appears to be a consistent relationship between the
head pitch angle and the location of the gaze driven by the
principal location of hand activity. That is, for manipulating
objects on a table, the user’s gaze focuses on a lower part of
the scene but not too low, while operating the upper buttons
on a printer, the gaze is higher up but below its maximum pos-
sible range. This relationship is shown in Fig 2R where we



Algorithm 1: Estimating attention from head motion.
input : The user’s head motion data.
output: Temporal (Tattention) and spatial (ct) attention.
Given IMU data, construct the head motion vector H;
if a 6 τ and ω 6 ν then

Tattention = stationary

while Tattention = stationary do
if This frame is the first frame of Tattention then

Determine the attention starting point;
else

Estimate ∆ck from Fk using Eq. 4;
The current spatial attention ct = ct−1 + ∆ctk;
Assign ct−1 = ct for the next coming frame;

collect the vertical head orientation against the location of fix-
ations (black dots) and apply the Kernel regression in Equa-
tion 3 to obtain the mapping function (red line). We compare
the Kernel regression to a linear regression calculated using
RANSAC.

Our method thus builds on these two observations to estimate
the starting point of user’s attention based on the expected lo-
cation of gaze, and the experimentally obtained mapping of
head pitch angles relative to the ground plane and gaze lo-
cation. This approach for computing the starting point for
estimation is simple and fast to calculate. Algorithm 1 sum-
marises the user’s attention estimation method using the head
motion cues.

EXPERIMENTS AND RESULTS
As described before, we modified an ASL’s Mobile Eye XG
gaze tracker by attaching a Google Glass to it as illustrated in
Fig 1a. This allows us to record the user’s current activities
and gaze positions along with the user’s head motion.

Eight volunteers were asked to wear the bundled device. Time
synchronization was done by asking users to look at a stop-
watch displayed on a computer screen at the start of the trial
while we record the first four seconds of the videos on the
ASL camera and the Google Glass camera. After this, Google
Glass only recorded IMU data. Both devices operate at 30 fps
and we verified the time synchronisation error is constrained
to one image frame.

It should be noted that volunteers performing the activities
were unaware of the variables we use so that head position
or behaviour should not have been biased. The volunteers
then started performing tasks directed by an investigator. The
tasks included normal daily activities such as grabbing ob-
jects, opening doors, writing on a whiteboard, etc. Since
any current wearable gaze tracking hardware is imperfect and
fails to work in various real conditions we used a wand with
a ping-pong ball attached to its tip to point at the location
where we instructed the volunteers to carry the tasks (Fig 1b).
The ping-pong ball thus served as an additional continuously
available ground-truth for the user’s spatial attention. The
wand is also useful to calibrate the system when no gaze

Figure 3: ROC curves and AUC scores (in brackets) for es-
timated spatial attention in generic (left) and personalised
(right) schemes.

tracker is attached to it. Our visuo-IMU dataset is published
in archival form. Please contact authors for details.

Temporal attention results
As described before, the spatial attention process starts es-
timating the user’s attention location if Tattention returns the
stationary state. Therefore, to be able to identify the state
of Tattention, we need the optimal threshold values for τ and
ν. For this we used an ROC analysis. We manually la-
belled frames of the recorded videos indicating the tempo-
ral attention ground-truth as stationary or in motion. The
threshold τ and ν were then varied and we chose the optimal
threshold values from the ROC curve as τ = 3.0 m/s2 and
ν = 0.5 rad/s. In addition, the AUC score is 81.44% and the
false positive rate and true positive rate are 0.144 and 0.79,
respectively.

Spatial attention results and Discussion
We use three measures to evaluate the performance of the pre-
diction of users spatial attention: Area Under (ROC) Curve
(AUC), Average Angular Error (AAE) and attention fixation
Precision and Recall results. The accompanying video illus-
trates the results visually. AUC measures the consistency
between the predicted attention and the ground-truth. AAE
measures the angular distance between the predicted spatial
attention and the ping-pong ball position and the Precision
and Recall measure how well the attention area overlaps with
the area around the groundtruth. Recall the spatial attention
is only considered when the temporal attention is detected.

We use three different starting points: the Kernel regression
(KR) method, the linear regression method, and the centre
of user’s gaze (CoG) distribution. To determine the user’s
KR and linear mapping functions, the user’s gaze fixations
accompanying the head pitch angles are acquired from the
training data when the Tattention is identified as stationary. The
KR and linear mapping functions are then constructed using
the method described before and the CoG is the average (x,y)
positions of all collected fixations. The inclusion of the ping-
pong ball as starting point in the results is to have the “ideal
case” baseline performance for estimating the user’s spatial
attention. But note that to be of more value, our reported
results are not relative to this “ideal case” but instead reported
in absolute terms.

We trained and tested the head motion model using the leave-
one-out cross-validation method. We separated the training
and testing to two schemes – generic (G) and personalised
(P) testing schemes. The generic testing scheme is a test of



Starting point mode
Ping-pong Eye gaze CoG KR Linear

G 8.09 11.10 12.61 12.70 13.98
P 7.17 10.51 10.76 10.33 10.18

Table 1: AAE (degrees) for three starting point methods in
generic (G) and personalised (P) schemes.

Figure 4: Spatial attention results. Ground-truth (blue) and
estimated (magenta) using Kernel regression.

one participant against the remaining while the personalised
testing scheme is a test of one sub sequence to all of the sub
sequences of that volunteer. We chose N = 3 and α = 0.2
as that gave the best prediction performance. Table 1 shows
the AAE results of the generic and personalised scheme and
Fig 3 shows the comparison of ROC curves and AUC.

Using gaze as a starting point results in similar performance
to the three IMU-based methods. Though gaze, being not
very reliable to sense, had 23% of frames with missing data.
The other three starting point methods have no missing data
and give a similar AUC score at 88.98% for the CoG start-
ing point, 87.88% for the KR starting point, and 85.20% for
the linear regression starting point when training data from
all volunteers (generic scheme). However, when considering
individualised mapping functions (personalised scheme), the
results improve overall as the KR head orientation achieves
AUC scores of 92.15%, which is slightly better than CoG at
90.60% and the linear regression model at 91.60%. Fig 5
(left) shows why the individual mapping functions perform
better for the case of KR and by association, the linear re-
gression and CoG methods compared to the average generic
function Fig 5 (right). Note that this is not a real obstacle
for our approach as such individual calibration is relatively
simple and requires the user to gaze at different scene objects
relative to his/her location.

This evaluation indicates there is small angular error differ-
ence between using any of the initialization methods but to
fully test spatial attention fixation, the AAE is insufficient as
it does not encode how accurate the attention is spatially sta-
ble during a period of time. We thus used a Precision and
Recall approach where we define two areas of 200×200 pix-
els which cover most of the objects or parts interacted with.
They are centered at the ground-truth and predicted spatial
attention positions. If these areas overlap using the PASCAL
overlap criteria at 30%, and this overlap lasts 10 frames con-
secutively, a positive fixation is declared. Ten frames are akin
to the 300ms used in eye-gaze for fixation determination [3].
Table 2 shows the results that indicate better performance for
the personalised Kernel Regression over the other methods.

CONCLUSIONS
Estimating the where and when wearers are attending using
non visual or gaze sensors is challenging but our results are

Figure 5: Function that maps head’s pitch angle vs gaze ele-
vation in 3 individuals (left) compared to the overall generic
function for all individuals (right).

Starting point mode
ping-pong CoG KR Linear

G Precision 1.00 0.61 0.50 0.48
Recall 0.82 0.56 0.47 0.44

P Precision 1.00 0.63 0.71 0.65
Recall 0.82 0.57 0.65 0.60

Table 2: Precision and recall for spatial attention.

encouraging as using widely available IMU sensors, allows
to approximate the estimation of these important tasks.

Our data-driven approach uses regression for estimating spa-
tial attention, the where the wearer is looking at, and a prin-
cipled ROC-evaluated approach to select thresholds for the
when the user is stationary. The method achieves high tem-
poral (> 0.8 TPR) and good spatial accuracy (< 10 Deg) as
well as spatial attention stability (> 5% over alternative meth-
ods considered). Results are better with personalised training
which is attained after a simple calibration process.
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goggles: Seamless sensing and context-awareness in
everyday environments. Journal of Ambient Intelligence
and Smart Environments 1, 2 (May 2009), 157–171.

2. Ishimaru, S., Kunze, K., Uema, Y., Kise, K., Inami, M.,
and Tanaka, K. Smarter eyewear: using commercial eog
glasses for activity recognition. In UbiComp14 Adjunct
(2014).

3. Land, M., Mennie, N., and Rusted, J. The roles of vision
and eye movements in the control of activities of daily
living. Perception 28, 11 (1999), 1311–1328.

4. Leelasawassuk, T., and Mayol-Cuevas, W. W. 3D from
looking. In ISWC, ACM Press (2013), 105.

5. Li, Y., Fathi, A., and Rehg, J. Learning to predict gaze in
egocentric video. In ICCV (2013).

6. Ward, J. A., Lukowicz, P., Troster, G., and Starner, T. E.
Activity recognition of assembly tasks using body-worn
microphones and accelerometers. IEEE PAMI 28, 10
(2006), 1553–1567.

7. Yamada, K., Sugano, Y., Okabe, T., Sato, Y., Sugimoto,
A., and Hiraki, K. Attention prediction in egocentric
video using motion and visual saliency. In Adv in Image
and Video Tech. 2012.


	Introduction
	Related Work
	Sensors, state and models
	Temporal attention threshold
	Spatial attention model
	Spatial attention initialization using head orientation

	Experiments and Results
	Temporal attention results
	Spatial attention results and Discussion

	Conclusions
	REFERENCES 

