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ABSTRACT 

An approach is presented for the robust stacking sequence optimisation of composite plate wings with 

uncertain ply orientations. An aeroelastic model is constructed using the Rayleigh-Ritz technique 

coupled with modified strip theory aerodynamics. Gaussian process emulators are used in conjunction 

with Support Vector Machine classifiers to construct a surrogate for the discontinuous and non-smooth 

aeroelastic instability speed, across the space of lamination parameters. The surrogate model is used to 

estimate the probability that instability occurs at a given design speed, which is minimised using a 

genetic algorithm. For each evaluation of the objective function, existing data points are reused and the 

surrogate is updated when required using an adaptive Design of Experiments based upon a modified 

Latin Hypercube. Optimised stacking sequences are compared to deterministic optima for maximum 

instability speed. Three layup strategies are undertaken; (i) a benchmark in which ply orientations are 

limited to 0°, ±45° and 90°, (ii) in which values of ±30° and ±60° are also permitted, and (iii) in which 

orientations are fixed to 5° increments. Improvements in reliability of at least 83% are achieved using 

the benchmark layup strategy, with at least 95% and 97% improvements for the second and third 

strategies respectively. A factor of twenty reduction in the required number of model runs is achieved 

by using the adaptive surrogate, though this only corresponds to a factor of four reduction in computation 

time due to the additional time required to fit the surrogate. 

1 INTRODUCTION 

Composite materials are being used to an increasing degree in aerospace structures due to a number 

of useful attributes including high specific strength and stiffness, and anisotropic behaviour which may 

be exploited to tailor properties. Aeroelasticity is concerned with the static and dynamic response of 

structures subject to aerodynamic loads. Aeroelastic tailoring [1-6], seeks to exploit anisotropy through 

selection of designs which achieve minimum-weight designs subject to aeroelastic, loads and 

aerodynamic design constraints.  Example applications have included divergence [1] and flutter [2-4], 

as well as gust and manoeuvre loads [5, 6]. 

Computer models can represent aeroelastic behaviour to a high degree of accuracy, however, in 

reality all materials and processes are subject to variability. Composite materials require complex 

manufacturing techniques which can introduce parametric uncertainty from a number of sources 

including material non-homogeneity, fibre misalignment, waviness and wrinkling [7-8]. Accounting for 

this uncertainty by using safety margins can be overly conservative and a need for aeroelastic models 

which incorporate uncertainty has been identified [9]. More efficient designs can be sought through 

robust optimisation [10] in which the sensitivity of model outputs to uncertainty is minimised. 

Numerous approaches can be taken to optimise structures under uncertainty. Reliability measures the 

probability of survival within the design envelope, and is often maximised or used as a constraint in a 
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Reliability-Based Design Optimisation (RBDO) [11]. A robust design seeks to find a compromise 

between minimising the variability and optimising the mean performance of the structure [10, 12]. 

Robust design and RBDO can be highly computationally expensive due to the number of model runs 

required to accurately quantify the effects of uncertainty [13]. The First Order Reliability Method 

(FORM) requires less computational effort due to the use of an approximate reliability index, based 

around a first order Taylor series expansion about the most probable parameter values [14]. 

Alternatively, a surrogate model [15-16] can be constructed to reduce the computational expense. 

Gaussian processes can be used as surrogate models to reduce effort required for uncertainty 

quantification [17] and robust design [16] through interpolation of known model outputs at a small 

number of data points [18]. Using global Gaussian process surrogates, updated by adaptive sampling 

criteria [19], can further reduce the number of model runs required for optimisation [20] and reliability 

analysis [21]. Gaussian processes are limited to modelling smooth functions, however, they can be 

applied in a piecewise fashion by using classification techniques such as decision trees [22]. A thorough 

review of classification techniques can be found in [23]. 

This paper investigates the use of adaptive sampling techniques and surrogate modelling for the 

efficient robust optimisation of composite plate wings with uncertain ply orientations. A genetic 

algorithm is used to minimise the probability of aeroelastic instability at design airspeeds. A surrogate 

model composed of Gaussian processes combined with a Support Vector Machine classifier [23] is 

constructed to incorporate mode-switching behaviour between different instability mechanisms. This 

surrogate is updated for each evaluation of the objective function using a variant of an optimal Latin 

Hypercube [19]. Reliability of optimised robust and deterministic designs are compared, and efficiency 

of the proposed approach is compared with that of one which uses non-adaptive surrogates. 

2 MODEL DEFINITION 

In this paper a composite wing is idealised as a flat, rectangular, cantilever plate as shown in Figure 

1. The dimensions and material properties used throughout the paper are given in Table 1. The effect of 

ply orientation uncertainty is included by adding an independent and identically distributed Gaussian 

error, with zero mean and standard deviation of five degrees, to each ply orientation. 

 

Figure 1: Composite plate geometry 

Semi-span 

(m) 

Chord 

(m) 

E11 

(GPa) 

E22 

(GPa) 

G12 

(GPa) 
υ12 

ρ 

(kg/m3) 

Ply Thickness 

(mm) 

Laminate 

Thickness (mm) 

0.3048 0.0762 140 10 5 0.3 1600 0.125 2 

Table 1: Dimensions and material properties used in examples 

3 AEROELASTIC MODEL 

The aeroelastic response of the plate is modelled using the Rayleigh Ritz method coupled with strip 

theory [24]. Polynomial shape functions are assumed for the out-of-plane displacement in order to 

approximate energy terms, which are in turn minimised. Kinetic energy of the plate is given by 

𝑇 = −
1

2
𝜌𝑡∬�̇�2𝑑𝑥𝑑𝑦 (1) 
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where ρ is the material density, t the laminate thickness, w is the out-of-plane displacement and a dotted 

parameter denotes a derivative with respect to time. Strain energy is given by 

𝑈 =
1

2
∬𝜿𝑇𝐷𝜿𝑑𝑥𝑑𝑦 (2) 

where κ is the curvature. The out-of-plane laminate stiffness D, is expressed as a linear combination of 

material invariants U1-5, thickness t, and out-of-plane lamination parameters ξ9-12 in accordance with [25] 
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where the lamination parameters are a function of ply orientations θ(u), defined as 

{𝜉9, 𝜉10, 𝜉11, 𝜉12} =
3

2
∫ {𝑐𝑜𝑠2𝜃(𝑢), 𝑐𝑜𝑠4𝜃(𝑢), 𝑠𝑖𝑛2𝜃(𝑢), 𝑠𝑖𝑛4𝜃(𝑢)}𝑢2𝑑𝑢
1

−1

 
(4) 

where 𝑢 =
2𝑧

𝑡
 

Lift and pitching moment are applied to infinitesimal strips at the quarter chord and integrated over 

the span of the plate wings. The loads applied to each strip are given by 

𝑑𝐿 =
1

2
𝜌𝑎𝑉

2𝑐𝑎𝑤 (𝜃 +
�̇�

𝑉
)𝑑𝑥 (5) 

𝑑𝑀 = 
1

2
𝜌𝑎𝑉

2𝑐2 (𝑒𝑎𝑤 (𝜃 +
�̇�

𝑉
) +𝑀�̇�

�̇�𝑐

4𝑉
)𝑑𝑥 (6) 

where ρa and V denote the air density and velocity, c the chord length, e the eccentricity between quarter 

chord and flexural axis, aw the effective lift curve slope, and θ the elastic twist. A simplified analysis is 

used wherein the unsteady aerodynamic derivative 𝑀�̇� is assumed to be constant with respect to 

frequency changes. Previous work has validated the use of this modified strip theory for high aspect 

ratio composite wings at low airspeeds through comparison with the standard Doublet Lattice approach 

[26]. Work done by the applied load is given by 

W=∫(-dLδw+dMδ𝜃)dx (7) 

Application of Lagrange’s equation [24] to Equations (1-2) and (7) gives the equation of motion as 

𝐴�̈� + 𝜌𝑎𝑉𝐵�̇� + (𝜌𝑎𝑉
2𝐶 + 𝐸)𝒒 = 𝟎 (8) 

where A is the inertia matrix, B and C are the aerodynamic damping and stiffness matrices, E is the 

stiffness matrix, and q are generalised displacements. Equation (8) is solved as an eigenvalue problem 

to assess the stability of the wing at different air-speeds. An eigenvalue with positive real part indicates 

instability; this instability is flutter if the imaginary part is non-zero and divergence otherwise. 

4 DETERMINISTIC AEROELASTIC BEHAVIOUR 

Aeroelastic tailoring exploits changes in the characteristics of the aeroelastic stability of a structure. 

Different composite layups result in distinct instability mechanisms, which can be observed across the 

space of lamination parameters. Plots of the critical instability speed (Vcrit) form a piecewise smooth and 

continuous surface, with boundaries at which the surface is either non-smooth or discontinuous. Figure 

2 displays contours of instability speed with respect to different lamination parameter planes. 
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Figure 2: Contours of instability Speed (m/s) with respect to the a) uncoupled lamination parameter 

(ξ9-10) plane, ξ11-12 = 0 b) bend-twist coupling lamination parameter (ξ11-12) plane, ξ9-10 = 0 

Three types of behaviour are evident in Figure 2; divergence (Div), and two flutter modes which are 

henceforth referred to as ‘flutter 1’ (F1) and ‘flutter 2’ (F2). Through examination of the mode-shapes, 

flutter 1 can be attributed to coupling of the first bending and torsion vibration modes, and flutter 2 to 

coupling of the second bending and first torsion modes. 

4 OPTIMISATION METHOD 

4.1 Benchmark Deterministic Optimisation 

A benchmark deterministic design for maximum instability speed is initially obtained for comparison 

with the robust designs. The design space of ply orientations contains many local optima, and is often 

fixed to discrete values. A genetic algorithm has therefore been chosen as the most appropriate 

optimisation method. The MATLAB global optimisation toolbox [27] is used for this purpose.  

Laminates are fixed to be symmetric with 16 plies. The ply orientations θ = {θ1,…,θ16}, are used as 

design variables, which are fixed to discrete angles based upon each of following the layup strategies: 

(i) 0°,  ±45°, and 90°, (ii) 0°,  ±30°, ±45°, ±60° and 90°, and (iii) all orientations between -85° and 90° 

at 5° increments. Only half of the plies in each layup are parameterised as a result of the symmetry 

constraint, therefore the total number of design variables for all examples in this paper is eight. Ply 

contiguity constraints ensure no more than four plies of a given orientation are stacked together [28]. 

4.2 Robust Optimisation 

Numerous interpretations of robust design can be found in the literature. In this paper a strategy is 

adopted where the probability that aeroelastic instability occurs at design air speeds is minimised [15], 

which is equivalent to maximising the reliability of the structure [13]. This objective can be stated as 

min
𝜽
𝑃(𝑉𝑐𝑟𝑖𝑡(𝜽) < 𝑉𝑑𝑒𝑠) (9) 

subject to the previously defined layup constraints. Several design instability speeds, Vdes, are considered 

in order to observe the effect upon the resulting robust optima. The probability of failure is estimated 

using Monte Carlo Simulation as 

P(𝑉𝑐𝑟𝑖𝑡 < 𝑉𝑑𝑒𝑠) ≈
1

𝑛
∑𝐼(𝑉𝑐𝑟𝑖𝑡 < 𝑉𝑑𝑒𝑠)

𝑛

𝑖=1

 

(10) 

where,                 𝐼(𝑉𝑐𝑟𝑖𝑡 < 𝑉𝑑𝑒𝑠) = {
1, 𝑉𝑐𝑟𝑖𝑡 < 𝑉𝑑𝑒𝑠
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

This optimisation strategy is equivalent minimising the area of the instability speed Probability 

Density Function (PDF) which lies below the design speed.  
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5 SURROGATE MODEL 

5.1 Surrogate Model Overview 

Using Monte Carlo Simulation for reliability analysis can be computationally expensive, as this 

requires a large number of model runs for sufficiently accurate results. It is therefore desirable to use a 

surrogate model to emulate the aeroelastic instability speed at reduced computational cost. Since the 

surrogate is required for many evaluations of the objective function, efficiency can be improved by 

storing known model outputs from previous iterations. This approach is enabled through constructing 

the surrogate across lamination parameter space, thereby reducing the dimension and simplifying the 

space such that learning about the stability in one region of lamination parameters corresponds to a large 

number of composite layups. An overview of this adaptive surrogate is presented in Figure 3. 

 

Figure 3: Surrogate model overview 

Gaussian processes form the main part of the surrogate, and are described in Section 5.2. These are 

fitted to aeroelastic model outputs at a small number of lamination parameter training data points, and 

used to predict the instability speed for a Monte Carlo population of test points. A Support Vector 

Machine classifier is used to predict the critical instability mechanism of the test points, thereby 

accounting for the mode-switching behaviour. This technique is outlined in Section 5.3. 

The surrogate model is updated for each evaluation of the objective function. Existing data which 

falls within the bounds of the current Monte Carlo population is used to form an initial set of training 

data points. Cross validation is used to assess whether the emulator is sufficiently accurate, and an 

adaptive variant of an optimised, maximin Latin Hypercube Design of Experiments is used to generate 

additional data points if required. This modified Latin Hypercube and its associated stopping criteria are 

discussed in section 5.4. 

5.2 Gaussian Processes 

A Gaussian process is a distribution over functions [18]. Rather than representing model outputs at 

each point with a deterministic value, a Gaussian process returns a Gaussian distribution. This 

distribution represents the uncertainty associated with the emulator fit. 

The model output y, can be considered a function of input vector x, y = f(x). If the value of f(x) is 

known for a set of n training data points, {x(1),…, x(n)}, uncertainty about these data points can be 

represented as a multivariate Gaussian distribution. The mean of this distribution can be parameterised 

by basis functions h(x)T as [17] 

𝐸{𝑓(𝒙)|𝜷} = 𝒉(𝒙)𝑇𝜷 (11) 

where β is the regression weight hyperparameter, and h(x) is taken as (1, xT) for linear regression. 

By assuming the output is smooth, such that the value of f(x) for point x gives some indication of 

f(x’) for x’ close to x, the covariance function of the Gaussian process is defined as 
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𝑐𝑜𝑣{𝑓(𝒙), 𝑓(𝒙′)|𝜎2, 𝐵} = 𝜎2𝑐(𝒙, 𝒙′) 
(12) 

where, 𝑐(𝒙, 𝒙′) = 𝑒𝑥𝑝{−(𝒙 − 𝒙′)𝑇𝐵(𝒙 − 𝒙′)} 

and σ2 is a scaling factor. The roughness matrix, B, is a diagonal matrix of length-scales which govern 

how much output y varies with changes to input x. Maximum Likelihood Estimation gives the roughness 

values most likely to result in the training data. 

The Gaussian process defined by Equations (11-12) is conditioned upon the output for each of the n 

data points. Taking prior distributions on hyper-parameters β and σ2, a posterior distribution is obtained 

through Bayesian inference, and the hyper-parameters integrated out to give the student-t process [17] 

[
𝑓(𝒙) − 𝑚∗(𝒙)

�̂�√𝑐∗(𝒙, 𝒙)
| 𝒚, 𝐵]~𝑡𝑛−𝑞 (13) 

where m*(x), c*(x,x’) �̂�, and �̂� are defined as 

 𝑚∗(𝒙) = �̂�𝑇𝒉(𝒙) + (𝒚 − 𝐻�̂�)
𝑇
𝐴−1𝒕(𝒙) (14) 

𝑐∗(𝒙, 𝒙′) = 𝑐(𝒙, 𝒙′) − 𝒕(𝒙)𝑇𝐴−1𝒕(𝒙′) + [𝒉(𝒙) − 𝐻𝑇𝐴−1𝒕(𝒙)]𝑇(𝐻𝑇𝐴−1𝐻)−1[𝒉(𝒙′) − 𝐻𝑇𝐴−1𝒕(𝒙′)] (15) 

�̂�2 = 𝒚𝑇{𝐴−1 − 𝐴−1𝐻(𝐻𝑇𝐴−1𝐻)−1𝐻𝑇𝐴−1}𝒚. (16) 

�̂� = (𝐻𝑇𝐴−1𝐻)−1𝐻𝑇𝐴−1𝒚, (17) 

noting that t is a vector of covariances such that ti = c(x,x(i)), A is the training data covariance matrix 

such that Aij = c(x(i),x(j)), matrix HT = {hT(x(i)),…,hT(x(n))}, x denotes a test point for which the value of 

f(x) is to be predicted, and {x(1),…,x(n)} are the training data points for which {f(x(1)),…,f(x(n))} is known. 

5.3 Classification of Instability Mechanism 

A separate Gaussian process is fitted to each of the instability mechanisms identified in Figure 2 to 

account for the mode-switching behaviour. At the training data points the model output is known, and 

instability mechanisms are distinguished based upon the eigenvalue which becomes unstable. 

A Support Vector Machine classifier [23, 29] is used for prediction of the instability mechanism at 

the test points, where the model output is unknown. A binary decision rule is used, which maps x ∈ ℝd 

onto y ∈{-1,1}, where y = 1 corresponds to a region of the design space in which a particular instability 

mechanism is possible and y = -1 where it is not possible. If the data is linearly separable, a decision 

boundary can be defined by the hyperplane given by 

ℎ(𝒙) = 𝒘𝑇𝒙 + 𝑏 (18) 

where w is a vector of weights and lies normal to the hyperplane, and b is the intercept with the origin 

as illustrated in Fig. 4.  

 

Figure 4: Linear Support Vector Machine in two dimensions 
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The classifier is fitted to the training data by placing the decision boundary as far as possible from 

each category of training data thereby maximising the margin. This approach can be shown [29] to be 

equivalent to the minimisation 

𝑚𝑖𝑛𝒘,𝑏  
1

2
‖𝒘‖2 

subject to  𝑦(𝑖)(𝒘𝑇𝒙(𝑖) + 𝑏) ≥ 1, 𝑖 = 1,… , 𝑛 

(19) 

The MATLAB function ‘svmtrain’ is used to fit the classifier [27]. A cubic polynomial is used to 

project training data onto a higher dimensional space, thereby making it easier to separate the data. 

 

5.4 Adaptive Design of Experiments 

Throughout the optimisation process, known model outputs from previous iterations are inherited for 

construction of the surrogate model in the current iteration. Initial training data is selected from existing 

samples which fall within the bounds of the current lamination parameter PDF. If no samples exist 

within these bounds an initial maximin Latin Hypercube is used to generate a small number of points. 

Additional sample points are generated iteratively until a stopping condition is met. Since the 

aeroelastic model is relatively inexpensive to run, sampling criteria based upon the emulator uncertainty 

(e.g. [21]) are undesirable as this requires re-fitting the emulator for each new data point which is 

generated. A sampling technique which can generate new data points in batches is therefore preferred. 

A variant of an optimised maximin Latin Hypercube [19] is adapted in order to supplement existing 

sample points. The process is as follows: 

1) Generate a set of candidate points from a much larger Latin Hypercube than is required, 

combined with the existing data points. 

2) For each of the new design points, calculate the distance to the nearest point in the candidate set. 

3) Remove the point with the smallest minimum distance. 

4) Repeat steps 2-3 until the desired number of points remain. 

Leave-one-out cross validation is used to determine a stopping condition, such that no further data is 

generated once the emulator is sufficiently accurate. In this approach, one of the training data points is 

left out of training the Gaussian process, and the resulting emulator is used to predict the model output 

for this data point. This process is repeated for each of the data points and used to approximate the Root 

Mean Square Error (RMSE) as  

𝑅𝑀𝑆𝐸 ≈ √
1

𝑛
∑ (𝑦(𝑖) −𝑚∗(𝒙(𝑖)))

2𝑛
𝑖=1   (20) 

where m* is the emulator mean defined in Equation (14). A RMSE of 0.25 m/s is considered sufficient 

accuracy, as this is of similar magnitude to the resolution of the aeroelastic model. An example plot of 

RMSE with emulator convergence is shown in Figure 5 for a quasi-isotropic laminate.  

 

Figure 5: Convergence of an emulator with increasing number of data points, with reference to the 

instability speed PDF for a [±452, 02, 902]S laminate  
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The long tail of the PDF in Figure 5 is a consequence of mode-switching, where the uncertainty 

causes a switch from divergence in the tail of the distribution to flutter which makes up the peak.  

  

5 RESULTS 

Deterministic and robust optima for the three layup strategies and design speeds of 145m/s (Vdes1) 

and 150m/s (Vdes2), are shown in Table 2 along with the number of model runs and computation time 

required to find the optima. Table 3 shows the nominal value, mean and standard deviation of the 

instability speed as well as the failure probability of each design. Figures 6-8 compare the PDFs for the 

critical instability speed of the optimised laminates for each of the objectives. The genetic algorithm 

used a population of 20 and was run for 50 generations for the first two layup strategies, and 75 

generations for the third strategy due to the larger design space. 

Layup 

Strategy 
# Objective Layup 

Model 

Runs 

Time 

(s) 

0°, ±45°, 

90° 

1 Deterministic [-452, 452, 02, ∓45]S - - 

2 Robust, Vdes = 145 m/s [-452, 45, -453, 452]S 2933 13544 

3 Robust, Vdes = 150 m/s [-452, ±45, 0, 45, 0, -45]S 3776 18201 

0°, ±30°, 

±45°, 

±60°, 90° 

4 Deterministic [-452, 30, -45, 302, 45, 30]S - - 

5 Robust, Vdes = 145 m/s [-45, -30, 452, -45, -30, -452]S 4055 17115 

6 Robust, Vdes = 150 m/s [45, -30, -452, -30, -45, -30, 45]S 3583 16253 

5° 

increments 

7 Deterministic [-402, 40, 35, 40, -30, -45, 35]S - - 

8 Robust, Vdes = 145 m/s [45, -402, -353, -45, -25]S 3808 17623 

9 Robust, Vdes = 150 m/s [∓40, -35, -40, -45, 40, 50, -25]S 3670 18876 

Table 2: Optimised stacking sequences for different layup strategies and objectives 

# 
Instability Speed (m/s) Probability of Failure 

Nominal Mean Std. Dev. Vdes = 145 m/s Vdes = 150 m/s 

1 163.9 153.4 9.3 0.28 0.38 

2 155.6 154.2 2.8 0.018 0.078 

3 158.2 155.7 3.6 0.013 0.065 

4 166.6 156.1 8.7 0.16 0.31 

5 159.3 157.3 3.6 0.0007 0.027 

6 160.2 158.3 3.8 0.0003 0.017 

7 169.1 157.3 9.1 0.11 0.32 

8 163.6 160.4 4.1 0.0001 0.015 

9 162.3 159.3 3.8 0.0002 0.011 

Table 3: Statistics relating to the instability speed of the optimised stacking sequences 

 

Figure 6: Comparison of instability speed PDFs for different optimised stacking sequences with 0°, 

±45° and 90° plies 
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The required number of model runs lies between 2900 and 4100, typically taking between 13,500 

and 19,000 seconds to complete the optimisation using a single core of an Intel® Core™ i7-2600s 

processor. Results are compared to a non-adaptive approach [30] wherein a new set of data points is 

generated for each evaluation of the objective function, for which a typical optimisation required 80,000 

model runs taking 60,000 seconds. This constitutes a factor of 20 reduction in model runs, but only a 

factor of 4 reduction in overall computation time, due to the extra time required to fit the emulator in 

the early stages of the optimisation. It is anticipated that the reduced number of runs would be more 

advantageous if this approach were used with a more computationally expensive model. 

 

Figure 7: Comparison of instability speed PDFs for different optimised stacking sequences with 0°, 

±30°, ±45°, ±60° and 90° plies 

 

Figure 8: Comparison of instability speed PDFs for different optimised stacking sequences with 

potential ply orientations at 5° increments 

The failure probabilities for each of the deterministic optima are notably high. It can be seen from 

Figure 2 that the optimal instability speed is on the boundary between two flutter modes and therefore 

at the edge of a discontinuity. When uncertainty is present, this results in bi-modal PDFs as shown in 

Figures 6-8. The high probability of switching to a flutter mode with lower instability speed, indicated 

by the lower peak of the PDFs, results in a high probability of failure. The robust optimisation 

substantially reduces the probability of failure by selecting designs further away from the discontinuity, 

thereby reducing the size of the lower peak of the PDF and with it the probability of a mode-switch. 

The robust optimisation both reduces the standard deviation and increases the mean of the instability 

speed. This behaviour is atypical of robust design which is often considered to be a trade-off between 

mean and variance [12]. The improved average performance is due to the extent to which the mean 

instability speed is reduced from nominal values in the bi-modal PDFs of deterministic designs. 

From Figures 6-8 it can be seen that increasing the size of the design space of ply orientations has 

the general trend of shifting the PDFs to higher instability speeds. This results in modest improvements 

to the nominal performance of deterministic designs, with much more substantial improvements to the 

reliability of robust designs. In comparison to the design space with only 0°, ±45°, 90° plies, the nominal 

instability speed of deterministic optima is increased by 1.6% through additional use of ±30° and ±60° 
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plies, and by 3.2% through permitting ply orientations at 5° increments. For the 145m/s robust design 

objective, a further reduction in the failure probability of 61% is achieved by using the second layup 

strategy and a reduction of 99% achieved through use of the third. For the 150m/s objective, use of 

strategies two and three give reductions of 74% and 83% respectively.  

For the first layup strategy, different design speeds lead to significantly different robust designs due 

to a tradeoff between reducing the size of the lower peak of the PDF, and shifting the upper peak to 

higher instability speeds. No significant differences exist for the robust designs drawn from larger design 

spaces, as the entire PDF is shifted to higher instability speeds almost entirely eliminating instability at 

145m/s. It should be noted that design number 6 performs better than number 5 for the 145m/s robust 

design as a result of the fact that the genetic algorithm does not guarantee finding a global optimum. 

5 CONCLUSIONS 

An efficient approach has been presented for the robust optimisation of composite plate wings with 

uncertain ply orientations. Gaussian process emulators are used in conjunction with Support Vector 

Machines to construct a surrogate for the discontinuous and non-smooth aeroelastic instability speed, 

across the space of lamination parameters. The probability of failure is estimated for different design 

speeds using the surrogate, and minimised using a genetic algorithm. For each iteration, previously 

obtained model outputs are retained by the surrogate, and additional data points are generated when 

required using an adaptive variant of a Latin Hypercube. Results have been determined for three 

different layup strategies and compared to deterministic optima to make the following observations: 

 A factor of 20 reduction in the required number of model runs is achieved compared to a non-

adaptive surrogate in which results are not re-used. This only corresponds to a factor of four 

reduction in computation time due to the increased time required to fit the emulator, however, this 

would be improved further if more computationally intensive aeroelastic models were considered. 

 Benchmark deterministic optima have high probabilities of failure due to close proximity to a 

discontinuity, such that small variations in ply orientation lead to a flutter mode-switch. 

 Through robust design a minimum reduction in probability of failure of 83% is achieved for 

laminates with 0°, ± 45° and 90° plies, of 95% when ±30° and ±60° plies are introduced, and of 

97% when plies are permitted at 5° intervals. This has an added benefit of also increasing the 

average instability speed of the designs. 

 In comparison to the first layup strategy, the second and third strategies increases nominal 

instability speed by 1.6% and 3.2% respectively, and improves reliability by at least 59% and 

83% respectively. 
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