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ABSTRACT 

 

The Bright Band (BB) is a region of enhanced reflectivity in weather radar scans associated with frozen 

hydrometeors forming a liquid coating as they fall through the melting layer. This enhancement can cause the 

radar to overestimate precipitation quantities at the surface. The main objective of this study is to develop a 

hydrometeor classification algorithm that can use dual-polarisation measurements as the only input to classify 

the BB area. An effort has been made to replicate the current UK Met Office operational method for BB 

classification. This involves the use of Numerical Weather Prediction outputs of freezing level heights with an 

assumption of a constant BB thickness.  Vertical Profiles of Reflectivity (VPR) can then be used to correct for 

the reflectivity enhancement. A mean apparent VPR computed from reflectivity measurements at multiple 

elevation angles is compared to two idealised VPR methods. For validation the corrected 1.5º elevation scans 

are compared to surface rain gauge observations and lower elevation scans over the course of 7 events. The 

hydrometeor classification methods showed the greatest error reductions, with the freezing level forecast 

method performing well when the BB thickness was within 700 m, but poorly when there was more variation. 

Overall the idealised VPRs allowed for the greatest BB corrections in comparison to the mean profile. 
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 1. Introduction  
 

Quantitative estimation of precipitation by weather radars is affected by many sources of error, as described 

in reviews by Joss and Waldvogel (1990) and Villarini and Krajewski (2009). A significant error source is through 

uncertainties caused by variation in the vertical profile of reflectivity (VPR). This can be due to orographic 

enhancement, evaporation below the beam, and particularly the Bright Band (BB); which was observed at an early 

stage by Austin and Bemis (1950) and Atlas and Banks (1950). The BB is located in a region, several hundred 

meters deep, below the 0°C isotherm in which falling snow flakes or graupel will gradually melt and form a liquid 

coating which will give the appearance of intense rain in reflectivity scans. An in-depth study by Fabry and 

Zawadzki (1995) revealed the nonsphericity of melting hydrometeors and density effects are additional important 

causes of the reflectivity enhancement. Overall this will cause overestimation of rainfall by a factor of 2-5 (Joss 

and Waldvogel 1990), and could lead to false alarms of flood events. Additionally, snow above the melting layer 

can cause reductions by 1 to 2 dB in comparison to rain below (Fabry and Zawadzki 1995).  

 

The current UK Met Office operational algorithm to identify the freezing level height, and so the BB region, 

is described by Kitchen et al (1994) and Harrison et al (2000). The Met Office Unified Mesoscale Model is used 

to forecast the freezing level height with an RMSE of 150m (Mittermaier and Illingworth 2003) which is within 

the 200m error range suggested by Kitchen et al. (1994). Sanchez-Diezma et al. (2000) proposed a method for BB 

identification that input averaged VPRs from volumetric scans of previous BB events to create simulated VPRs.  

They concluded that with enough elevations, and an efficient scanning strategy, identification was possible within 

70 km of the radar. Beyond that distance the amount of elevations intersecting the radar decreased and beam 

spreading caused too great a loss in resolution. Alternately, the BB region can be determined through hydrometeor 

classification directly from dual-polarisation radar measurements (Herzegh and Jameson 1992; Straka et al 2000; 

Liu and Chandrasekar 2000) or from Range Height Indicator (RHI) polarimetric observations (Schusse et al 

2011). These measurements contain information on the size, shape, and spatial orientation of hydrometeors 

(Bringi and Chandrasekar 2001). A distinct minimum in the cross correlation coefficient (ρhv) (Matrosov et al. 

2007; Park et al. 2009; Qi et al. 2013) and maximum in the differential reflectivity (Zdr) are found to be coincident 

with the 1° isotherm (Aydin et al 1984; Ryzhkov and Zrnic 1998). The linear depolarisation ratio (LDR) also has 

a very distinct signal in melting snow (Caylor et al. 1990; Rico-Ramirez et al. 2005). Some of the methods to 

classify melting snow include fuzzy logic systems (Rico-Ramirez et al. 2005), neural networks or decision tree 

methods (Liu and Chandrasekar 2000). 

 

There are several approaches for the correction of VPR variation. A widely used method involves the creation 

of an apparent VPR formed from azimuthally averaged scans (Koistenen 1991; Matrosov et al 2007; Zhang et al 

2008). Preferably multiple elevations or volumetric scans would be used, with only the initial 40 km being 

averaged (Andrieu and Creutin 1995). Zhang and Qi (2010) suggest a different approach in which the BB area is 

determined from radar reflectivity distributions and all ranges within this BB area are averaged. Kitchen et al 

(1994) created a parameterised profile that includes low-level orographic growth, the BB, and reduction in 

reflectivity due to snow. This method assumes a fixed 700m BB thickness and applies the reflectivity reduction 

to pixels within the scan individually. Kitchen (1997) refined the previous method implementing a dual layer 

exponential decay profile above the melting layer to improve upon the original usage of a climatological profile. 

The decay profile is split due to accelerated aggregation of snow particles above the -6oC layer (Fabry and 

Zawadzki 1995). Tabary et al (2007) use a similar idealised profile formed from 4 parameters that can take a 

limited number of values based upon climatology. Rico-Ramirez et al (2005) built equations to form idealised 

profiles from a substantial amount of S-band radar data.  Vignal et al (2000) compare three methods to correct for 

VPR uncertainty in complex terrain in Switzerland. A climatological profile, formed from several years of data, 

significantly improved the accuracy of the rainfall estimations, and a mean VPR formed over a radius of 70km 

improved the accuracy further. For the third approach localised apparent VPRs over areas of 20km by 20km were 

created, although this method was more computationally intensive and less robust, so it was suggested the mean 

profile is optimal for operational usage. Kirstetter et al (2013) implement a novel VPR identification technique, 

in similarly difficult terrain, with good results by using physically based constraints and continually updating VPR 

characteristics. Delrieu et al. (2009) implement algorithms by Steiner et al. (1995) and Sanchez-Diezma et al. 

(2000) to initially separate rain events into stratiform and convective, before applying BB corrections methods. 

They find an inversion VPR technique, initially proposed by Andrieu and Creutin (1995), results in a more positive 

impact upon bias reduction when compared to an apparent normalised VPR. Illingworth and Thompson (2012) 

propose the use of LDR for BB correction after finding correlations between LDR and difference in Z between 

the BB peak and the rain below.  Hazenberg et al (2013) compare the correctional abilities of VPRs estimated 

using Eulerian compared to a new Lagrangian implementation. They also present an approach to identify the 

impact of uncertainty within the VPRs on rainfall estimation. 
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The majority of previous research has used S- or X- band measurements whereas the UK operational radar 

network consists predominantly of C-band radars. At C-band wavelengths the detection of wet aggregates could 

be enhanced in comparison to S- band due to a greater contrast in LDR, Zdr and ρhv (Zrnic and Ryzhkov 1999). 

This paper assesses the ability of two different BB classification and removal methods that will use hydrometeor 

classification and BB correction using idealised and averaged VPRs. The benefit of these methods is the lack of 

reliance upon surface observations and computationally expensive forecasts and instead the utilisation of data 

only from operational polarimetric radars. Section 2 presents characteristics of the radar and rain gauge data sets. 

Section 3 explains the two BB classification methods that will be compared. Section 4 describes the four different 

BB correction methods using mean and idealised reflectivity profiles. Section 5 addresses the radar and rain gauge 

validation comparisons. Conclusions and summary of the work are presented in section 6. 

 

2. Data Processing and Method  

 

Scans from an operational C-band polarimetric radar located in Chenies, UK, have been analysed. This radar 

has been recently upgraded to dual-polarisation by the UK Met Office. The radar makes multiple dual-polarisation 

measurements, including ρhv, ZDR, and LDR. The scanning strategy for the Chenies radar includes 5 PPI scans 

with long pulse (600 ms) measurements, of which only the lowest two, at 0.5° and 1.4°, include LDR 

measurements. The lower scan at 0.5° suffers greatly from ground clutter and beam blockage. There are also 6 

short pulse scans (300 ms) which are utilised when forming an average VPR. Range bin lengths are 600 m with a 

total range of 255 km and a radar beam width of 1°.  

 

A total of 14 rainfall events from between December 2013 and June 2014 were used. The events were selected 

as having suitable characteristics due to the appearance of annular regions of enhanced reflectivity, enhanced 

LDR, decreased hv, and increased Zdr, as in Figure 1. Each event lasts on average for over 2 hours, and contains 

at least 20 scans each. Four methods for classification and correction of the BB will be used, which will be detailed 

in the following subsections. An initial study documented in Hall et al (2014) provides the initial research for this 

project into melting layer classification. 

 

FIG. 1. Example of an observed BB on 12/02/2014 from measurements of Zh (a), LDR (b), hv (c), and ZDR (d). 

 

The Environment Agency (EA) provided 12 gauges located within 250km of the radar site in Chenies, and the 

Met Office provided 50 gauges as part of the Met Office Integrated Data Archive System (MIDAS) that are located 

in the same region. The 62 gauges are shown on the map in Figure 2. The MIDAS gauges have hourly time steps 

with measurements from tipping bucket type gauges. The EA gauges have recordings every 15 minutes and are 

tipping bucket gauges. Rain gauge data sets were manually checked to remove gauges that repeatedly produced 

unrealistic values. The EA gauge data was already quality controlled with the data quality labelled. Habib et al 

(2001) and Ciach (2003) investigated errors in multiple co-located tipping bucket rain gauge measurements, 

finding relative standard errors of between 2.3% and 2.9% for moderate rainfall intensity at a 15 min timescale. 

Rain gauge sampling errors occurred during very light as well as intense rainfall due to the tipping sampling 

mechanism, though when time scales of more than 15 minutes were used these decreased greatly. To make an 

allowance for this the EA gauges will be accumulated hourly, as only scattered single gauges are available which 

makes more in depth analysis difficult. Attenuation can be a major contribution to radar error, and enhanced by 

radome wetting (Steiner et al 1999), however it has been checked by analysing the differential phase shift (ΦDP) 

for each of the events used. Within the BB regions ΦDP remained below 10°, though this could still cause minor 

underestimation of rainfall quantities.  
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FIG. 2. MIDAS (red) and EA (blue) rain gauge locations (dots), with the all gauges falling within the 250 km 

radius of the radar (blue triangle). 

 

 

 

In order to evaluate and compare the BB classification and correction methods, that will be described in detail in 

the subsequent sections, the following statistical metrics will be used, 

Mean Absolute Error: 

                                            𝑀𝐴𝐸 =    
1

𝑛
∑(𝑟𝑘 − 𝑔𝑘)

𝑛

𝑘=1

                                                                         (1) 

 

 

Root Mean Square Error: 

                                       𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑟𝑘 − 𝑔𝑘)2

𝑛

𝑘=1

                                                                      (2) 

 

Relative Mean Bias: 

  

                                       𝑅𝑀𝐵 =  

1
𝑛

∑ (𝑟𝑘 − 𝑔𝑘)𝑛
𝑘=1

𝐺̅
                                                                     (3) 

   

 

where n is the number of gauge-radar observation pairs, rk is the radar estimated rainfall at gauge location k, 

and gk is the co-located rain gauge measurement. 𝐺̅ is the mean of the rain gauge measurements for that hour.  

 

 

3. Classification of Bright Band Region 

 

It is difficult to classify precipitation based on strict boundaries from polarimetric variables because 

hydrometeor observation sets are not mutually exclusive (Doviak and Zrnic 1993; Liu and Chandrasekar 2000; 

Park et al 2009). Fuzzy logic is a method that provides an alternative to Boolean logic type methods (Straka and 

Zrnic 1993) for hydrometeor classification due to the ability to handle uncertainty naturally (Mendel 1995; 

Vivekananden et al 1999). The selected events were split into a group of 7 for validation purposes and 7 for a 

calibration database of values to make up the membership functions. Clutter was removed using an algorithm 

demonstrated in Rico-Ramirez and Cluckie (2008) which utilises fuzzy and Bayes classifiers trained using C-band 

dual-polarisation measurements.  

 

Regions of rain, snow and melting snow were manually classified with reference to the dual-polarisation 

measurements, enhanced reflectivity, and knowledge of the freezing level from model reanalysis temperature 
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profiles. Vertical profiles of various polarimetric measurements were formed by Brandes and Ikeda (2004) which 

aided in classification. From the 7 calibration database events more than 180,000 data points were selected that 

were safely within these regions. Without direct, in situ measurements in the vertical of drop size distribution and 

air temperatures it is difficult to precisely classify the different hydrometeor regions. However with the large 

database size and knowledge from previous research this method for hydrometeor classification is generally 

proven to be robust. Data points were selected with a program which allowed the user to highlight individual 

pixels and output their associated values into a separate file. The values associated with the four measurements 

(Zh, ZDR, LDR, and ρhv) are then formed into Membership Functions (MFs) as shown in Figure 3. Initially, three 

probability density functions were used to cover rain, snow and melting snow however as the focus was solely on 

the melting snow classification it proved to be more robust to use only two MFs; one for melting snow and one 

for a rain and snow mixture.  

 

 

 

At all points the MFs are non-zero so that the product of all four MFs cannot be nullified. A fuzzy logic system, 

explained in detail by Mendel (1995) is used to map measurements of the four variables into hydrometeor types. 

The BB region begins when moving outwards from the centre along an azimuth an average of 4 in 5 are pixels 

classified as melting snow and ends when this average drops below 4. This average makes an allowance for noise 

or incorrectly identified pixels. A moving average filter is applied, which assigns lower weight to outliers, to the 

top and bottom boundaries of the BB area to smooth inconsistencies. Pixels that contain anomalous values or 

erroneous data are set as ‘undefined’. 

 

 

The hydrometeor classifier has been tested against 110 validation scans from 7 events in which over 200,000 

pixels were originally classified into melting snow or ‘Rain/Snow’. Many radar sites do not measure LDR due to 

the inability to measure other polarimetric variables simultaneously; so the classifier was tested using different 

combinations of variables. Figure 4 shows the hydrometeor classification results using each measurement, 

overlaid with the freezing level output from reanalysis data, which will be explained further in section 3.1. Results 

from Zrnic et al (2001) showed that using a combination of Zh and Zdr hydrometeors could be successfully 

(d) (c) (b)  (a) 

FIG. 3. Membership functions for Zh (a), ZDR (b), LDR (c), and ρhv (d) to classify hydrometeors. 

FIG. 4. Hydrometeor classification using ZDR (a), LDR (b), ρhv (c), and LDR and ρhv (d), in which dark blue represents 

melting snow, and the rain/snow mixture as  light blue. Black rings indicate the freezing level output from reanalysis data 

with the inner ring indicating 700m below the freezing level. 

ZDR (a)                                    LDR (b)                                           ρhv (c)                        LDR and ρhv (d) 

Melting Snow = 

 
Rain or Snow =                        
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classified due to their strong discriminating power. Figure 4a seems to show the opposite case, with only Zdr 

being used, however this is due to the mixing of snow and rain observations creating a far weaker signal. Zh is 

poor as a sole classifier when only one scanning elevation is used because high reflectivities could be intense 

rainfall rather than melting snow. Zh can still be useful for BB classification on its own, but only when higher or 

lower elevations are utilised, such as in (Zhang et al 2008; Delrieu et al 2009). LDR shows a good classification 

performance, however if the freezing levels were higher for the validation events it could perform more poorly 

due to this measurement suffering from propagation effects (Chandrasekar et al 1994; Bringi and Chandrasekar 

2001). LDR greatly aids in determining the full extent of the BB whereas ρhv had a stronger signal for the inner 

section of the BB. The signal at the edges could potentially be enhanced through conversion of the ρhv 

measurements in to a log scale similarly to LDR, as in Bringi and Chandrasekar (2001). A combination of LDR 

and ρhv measurements (Figure 4d) is beneficial for robustness of the algorithm. 

 

3.1. Convective and Stratiform Segregation 

 

Before a correction method is applied, convective and stratiform regions should be segregated and convective rain 

cells should be classified (Zhang et al. 2008; Delrieu et al. 2009; Hazenberg et al. 2013). Steiner et al. (1995) 

present an algorithm with three criteria, in which any pixel with a reflectivity greater than 40 dBZ is classified as 

convective, and any pixel that is greater by a variable quantity than an average of the surroundings is also classed 

as convective. In addition, any pixel within a small area surrounding these classified pixels is then determined to 

be convective. Delrieu et al. (2009) find that the first criteria was too low leading to spurious misidentification, 

and that the final criteria exacerbated this error. In order to test this classification scheme the initial reflectivity 

cut-off has been raised to 43 dBZ, as in Delrieu et al. (2009), and the final criteria has been removed. Figure 7 

shows the results of the classification during a mixed stratiform, BB, and convective event. The Steiner et al 

(1995) algorithm can be seen to classify some of the BB as convective precipitation, as it seems to be best applied 

to error-corrected scans, which was also found to occur by Zhang et al. (2008) and Delrieu et al. (2009). Smyth 

and Illingworth (1998), and Zhang et al. (2008) use temperature soundings to aid in the precipitation type 

segregation, however this work aims to only use radar scan data, so a different form will be used. 

 

The output from the melting snow classification algorithm, described previously, can be utilised. The BB 

correction scheme will only be applied if a consistent BB region of more than 45° in azimuth is observed. Figure 

8 shows three different types of unusual events, with a half of a distinct BB (Figure 8a, 8b), a convective situation 

(Figure 8c, 8d), and a mixed convective and stratiform event (Figure 8e, 8f). The first event does not initially 

appear to be a BB, however after using the polarimetric measurements the melting snow band appears, and only 

this region would then be corrected. The second event contains separated rain clouds with intense reflectivity 

cores, and there is some sparse classification of melting snow, with a larger region of melting snow 75km to the 

south of the radar. This section would not be corrected for using this algorithm. The third event shows a convective 

front in the centre of the radar scan which is not classified as melting snow, however the surrounding region has 

been classified, and as such the correction algorithm would be applied. 

 

FIG. 5. Output of the Steiner et al (1995) algorithm to classify convective regions, shown in red in (b), 

with the corresponding radar reflectivity scan in (a).  
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b) 

d) 

f) 

c) 

a) 

e) 

FIG. 6. Three events with different atmospheric conditions. Part (a) shows a stratiform rain band that only partially covers the radar 

scan, part (c) shows a convective region, and part (e) shows a mixed convective and stratiform rain event. The hydrometeor 

classification outputs are in parts (b), (d), and (f) for the corresponding radar scans, with dark blue representing melting snow 

(BB), light blue as rain or snow, and dark grey as unclassified. 
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3.2 Freezing Level Identification using a Numerical Weather Model 

 

This paper attempts to replicate the BB correction method used operationally by the Met Office in the UK as 

this will be the benchmark from which to compare to the hydrometeor classification method. The current Met 

Office operational algorithm identifies the freezing level from Met Office Unified Mesoscale Model forecasts. 

Data outputs from this model were not available so the 5th generation National Centre for Atmospheric Research 

(NCAR) mesoscale model (MM5) has been operated instead. This model is widely used and described in (Grell 

et al 1994). Boundary conditions to run the model are from the European Centre for Medium Range Weather 

Forecasting (ECMWF) ERA-Interim data set. This contains reanalysis data at 1º resolution. Downscaled 

reanalysis data should output freezing levels to a higher accuracy in comparison to Numerical Weather Prediction 

forecasts, so this should counter the effect of using an older NWP model. Freezing level heights are output from 

the MM5 model over approximately a 300 km region surrounding the Chenies radar with a 6 km resolution and 

40 pressure levels. The time step of the model outputs is 1 hour and with over 12 hours allowed either side of the 

event time for the model to spin up and slow down. The freezing level heights output are converted into polar co-

ordinates to compare to the radar scans, instead of assuming homogeneity as in Kitchen (1997). The BB thickness 

was suggested to be 500 m from the method described in Kitchen (1997) and Kitchen et al (1994) suggest a 

thickness of 700 m. The two thicknesses are compared in Figure 7a in which it can be seen that the 500 m 

suggestion cuts out the inner portion of the BB whereas the 700 m thickness encloses the whole of the BB area. 

The MM5 freezing level output compares well with the freezing level from the hydrometeor classification in both 

images, though the output does not capture the azimuthal variation in the BB thickness, as can be seen in Figure 

7b. Figure 8 shows the variation in mean and standard deviation of the BB thickness output by hydrometeor 

classification through the 7 validation events. The mean thickness reaches 1200 m during an event in May in 

which there is considerable variation as shown by the large standard deviation.  Zhang et al (2008) show similar 

BB thicknesses with monthly mean thicknesses of 820 m for a latitude of 45-50N.  

 

(a)               (b) 

FIG. 7. Comparison of BB classification techniques, with hydrometeor classification (white), MM5 freezing level (black) and 

BB thicknesses of 500 m (dark blue) and 700 m (light blue) for two events. 
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4. Bright Band Correction Schemes 

 

Five different BB classification and correction schemes are implemented and outlined in Figure 9. Three use 

hydrometeor classification to identify the BB region before applying idealised profiles for correction (HCRR and 

HCMO) or a mean profile for correction (HCMean). HCRR relies on an idealised VPR defined in Rico-Ramirez 

et al (2005), and explained further in the following section. HCMO relies on an idealised VPR proposed by 

Kitchen et al (1994) and implemented in the Met Office BB correction scheme. The final two schemes 

(UKMOMean and UKMO700) use freezing level heights output from the MM5 model using reanalysis data. The 

Kitchen et al (1994) idealised VPR is then used for correction for UKMO700 with the fixed BB thickness set as 

700 m. UKMOMean uses the same mean profile correction scheme as HCMean. In addition to rain gauge 

comparison, the performance of the VPR corrections will be tested by comparing the corrected scan to an unaltered 

lower scan. The lower scan will be affected by BB contamination at a further range from the radar and so should 

display similar reflectivity values at the same range.   

 

 
FIG. 9. Outline of the five algorithms, including the two classification techniques described in section 3, and the correction 

techniques utilising the different VPR formats. 

 

4.1. Idealised VPRs 

 

 Idealised VPR 1 (ID1), shown in Figure 10a, is based on extensive experiments conducted using S-band radar 

at Chilbolton by Rico-Ramirez et al (2005). A database of observed VPRs from Range-Height Indicator (RHI) 

scans, from which the following equations are formed, 

 

   

            ID1:       𝑍𝑝𝑒𝑎𝑘 = 11.74 + 0.91 ∗ 𝑍𝑟𝑎𝑖𝑛   [in dBZ]  (4) 

 

𝑍𝑡𝑜𝑝 = 2.23 + 0.69 ∗ 𝑍𝑟𝑎𝑖𝑛   [in dBZ]  (5) 

   

where Zrain is a value of reflectivity in rain expected below the BB that changes iteratively between 10 and 50 

dBZ. Ztop is the reflectivity at the BB top; above this the reflectivity decreases linearly at a rate of 5 dBZ km-1 
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with increasing height. Idealised VPR 2 (ID2), shown in Figure 10b, based on Kitchen (1997) uses a different 

equation to form the triangular shaped BB area, 

  

  ID2:     𝑍𝑝𝑒𝑎𝑘 = 𝑍𝑟𝑎𝑖𝑛 +
252∗𝑍𝑟𝑎𝑖𝑛1.42

∆ℎ𝑏𝑏
  [in mm6m-3]  (6) 

  
where Δhbb is the BB thickness (mm) and Zrain is in units of mm6m-3. Above the BB top Kitchen (1997) uses two 

decay constants to describe the exponential decrease in reflectivity. The focus of this paper is not on resolving 

VPR variations above the BB, so for simplicity the equation for the decay of reflectivity is shown by 

  

  ID2:    𝑍(ℎ) = 𝑍𝑓𝑙 ∗ 𝑒𝑎(ℎ−ℎ𝑓𝑙)         [in mm6m-3]     (7) 

 

where a is the decay constant, Zfl is the reflectivity at the freezing level, and h represents the height in the VPR 

above the freezing level height (hfl). 

 

Figure 10 displays the two simple idealised profiles in which Zpeak is centralised between the BB top and 

bottom. Idealised profiles have also been tested in which Zpeak is matched to the maximum of Zh within the BB 

area. In Figure 10a, the Ztop value at the BB top is not equal to Zrain below which differs from techniques used 

by Fabry and Zawadzki (1995) and Kitchen et al (1994), as in Figure 10b.  

 

 

 

 The parameterised VPRs cannot be compared directly to radar values due to the nature of the radar beam. The 

width of the beam increases with distance so the beam could intersect part of the bright band and the snow above 

yet only have one value of reflectivity. To resolve this a method proposed by Brown et al (1991) and applied by 

Kitchen et al (1994) can be utilised in which the VPR is averaged through the upper and lower limits of the radar 

beam using the following equations, 

 

𝑍𝑎𝑣𝑒 = ∫ 𝑍(𝜃)𝑓(𝜃)𝑑𝜃 
𝛽

𝛼
   [dBZ]  (8) 

 

where Z(θ) is the modelled VPR value at the angle θ within the beam,  α and β represent respectively the bottom 

and top elevation of the radar beamwidth and 𝑓(𝜃)𝑑𝜃 is the fractional beam power at angle θ, as shown in,  

 

𝑓(𝜃)𝑑𝜃 =  
𝑃(𝜃)𝑑𝜃

∫ 𝑃
𝛽

𝛼 (𝜃)𝑑𝜃
     (9) 

 

𝐹𝑟𝑜𝑧𝑒𝑛 

𝐵𝑎𝑛𝑑  

𝑅𝑎𝑖𝑛 

Zrain Zpeak Ztop Zrain Zpeak 

Δhbb 𝐵𝑟𝑖𝑔ℎ𝑡  

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑒𝑐𝑎𝑦 

𝐻𝑦𝑑𝑟𝑜𝑚𝑒𝑡𝑒𝑜𝑟𝑠 

𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑒𝑐𝑎𝑦 

(a) ID1       (b)        ID2 

FIG. 10. ID1 (a) and ID2 (b) through stratiform precipitation with the bright band indicated by the lateral dashed 

lines. 
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where P(θ) is the beam power profile, as shown in equation 10, in which k is a constant that will vary according 

to the beamwidth. 

 

𝑃(𝜃) = [
sin (𝑘𝜃)

𝑘𝜃
]

4

        (10) 

 

For each of the three methods, the idealised profile, after correction based on beam characteristics, is compared 

to the observed Zh at every pixel and replaced by the corresponding Zrain value.  

 

4.2 Mean VPR method 

 

The mean VPR method utilises long pulse scanning elevations at 1.4° and 3.0°, and short pulse at 0.9°, 2.0°, 

4.0°, 6.0°, and 9.0°. The lowest beam at 0.5° has been ignored as even after clutter has been removed it was found 

that inclusion of this elevation lead to a poorer performance. The region of data chosen to form the average VPR 

includes a total of 252,000 points from 7 scanning elevations. The points are averaged azimuthally using a similar 

method to Zhang et al (2008) and Joss and Lee (1995), with all reflectivities in the log (dBZ) units. The maximum 

range of 70 km was chosen after comparing error reduction capabilities with other ranges. Andrieu and Creutin 

(1995) suggest not exceeding 40-50 km, though their results also show that if using a radar with 1° beam width 

and 1.4° scanning angle this range should be extended. This range needs to have limited variability in precipitation 

for the average VPR to be representational.  

 

 

 

The 7 elevation scans are averaged azimuthally to form multiple profiles. These are then split into multiple 

height bands with 75 m thicknesses and points within the individual bands are averaged over the 60 km range to 

form one averaged VPR, as shown in Figure 11. A band thickness of 75 m was chosen after experimentation with 

different numbers. Larger bands with up to 200m thickness, as used in Zhang et al (2008), resulted in a far poorer 

ability to reduce error, whereas 50m and below introduced large variability because too few points were averaged 

per band.  Interpolation between bands further increased the ability of the mean VPR to reduce error.   

FIG. 11. Averaged VPRs for several elevations (coloured 

lines), and the total mean profile in dashed black. 

             Average 
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For quality control purposes reflectivity values below 10 dBZ are excluded and similarly to Zhang et al (2008) 

there must be a minimum of 10 data points when averaging. Once averaged, the profile is normalised with respect 

to the minimum reflectivity below the BB peak. When there are high reflectivity values below the BB, usually 

due to convection, normalisation is made difficult due to the small difference between Zh at the BB peak and Zh 

below. The value of Zh at the top of the BB can be used to counter this. Once the normalised mean VPR is formed 

it is applied azimuthally, rather than pixel by pixel, in the BB area. The BB top and bottom, identified by 

hydrometeor classification, are shown by the two horizontal lines in Figure 11.  

 

Beam spreading at longer ranges will cause a reduction in the averaged VPR quality, which is a problem not 

encountered by the idealised profiles. Vignal et al (1999) show how the VPR quality remains high at ranges of 

30km but is significantly affected by smoothing at ranges beyond 90km resulting in a less distinct BB curve. At 

further ranges there will also be discretisation of the profiles due to a decreased number of beams close enough to 

the ground to capture the precipitation and BB effect (Andrieu and Creutin 1995). 

 

5. Results 

 

The corrected reflectivity scans are converted into rain rate through the Marshall and Palmer (1948) Z-R equation 

(Z = 200 R1.6), which is widely used for stratiform rain in the UK (Harrison et al 2000). The rain rates at a single 

elevation of 1.4° are then accumulated hourly in order to compare to the hourly co-located rain gauge 

measurements. Figure 12 shows a scatter plot of initial and corrected radar rainfall estimations, using the HCMO 

method, against surface based gauge rainfall measurements. The large overestimations by the radar are reduced 

to be in line with the gauge measurements, however initial underestimations by the radar lead to an increased 

error. These errors are in part due to the inherent inaccuracies when comparing radar and rain gauge 

measurements. It can be difficult to quantify these errors without a dense network of gauges, such as in Villarini 

and Krajewski (2008), but this would be beyond the scope of this paper. However, attempts have still been made 

to reduce the comparison errors by only using gauges that fall within 90 km of the radar. Beyond this the beam 

thickness reaches nearly 2 km which can lead to underestimations as a part of the beam may be above the 

hydrometeors. Beyond 90 km from the radar the original MAE is 1.06 mm and the corrected is 0.87 mm, however, 

within 90 km the original and corrected MAEs are 0.80 and 0.59 mm. 

 

 

 

Figure 13 displays the variation in RMSE between radar estimations and gauge observations over the course 

of the validation events. At 23:00 on 04/02/14 the UKMO700 method over corrected the rainfall amounts due to 

the smaller BB thickness. This method performed well in general, but showed a larger variation, with poor 

corrections when the BB mean thickness exceeded 700 m. HCRR and HCMO performed consistently well, with 

HCMean showing a greater variation, sometimes resulting in poorer error reductions than the UKMO700 algorithm. 

Table 1 shows the total errors over all measurement pairs for all samples in addition to points in which the radar 

initially overestimated the rainfall in comparison to the rain gauge. The hydrometeor classification methods show 

large improvements; HCMO, which utilises the Kitchen (1997) idealised VPR, decreasing the RMSE by 64% and 

RMB by 91% when there was an initial over estimation. Similarly to Vignal et al (2000) the idealised profiles 

allowed the greatest error reductions. The UKMO700 method shows a good error reduction in MAE by 49% and 

FIG. 12. Scatter plot of rainfall estimated by radar before correction (blue circles) and after correction (red cross) against 

gauge observations within 90km (a) and beyond 90km (b). Radar scans corrected using the HCK method. 

(a)                             (b) 
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an especially good RMB reduction. It should be noted however that there is a small sample size with only 142 

total rain gauge to radar observation pairs available within the BB areas over the 7 events. The positive bias in the 

original data, before correction, shows the effect of the BB with increased estimations of rainfall. Looking at all 

of the data each algorithm then over corrects to obtain a negative bias, but this is likely due to initial 

underestimation by the radar. 

 
TABLE 1. Statistics for radar to gauge comparisons for 

uncorrected scans and the correction algorithms. There 

are 142 total samples and 104 samples in which the radar  

initially overestimated. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to increase the number of comparison samples to measure performance, the BB corrected values can 

be compared to lower elevation scans that are unaffected by the BB at the same range. This will also avoid the 

errors associated with the Z-R equation and gauge sampling errors. The reflectivities are transformed into rain-

rates with the Marshall-Palmer equation to allow a better comparison with the previous results. This 

transformation will not affect the results as both scans will be converted with the same equation. Table 2 shows 

the error statistics when corrected scans are compared to lower scans. There is a much larger sample and the two 

hydrometeor classification methods with idealised profiles (HCRR and HCMO) show large improvements, with 

HCRR reducing the MAE by 70% compared to 60 % by UKMO700. Figure 14 shows a similar error distribution 

 Algorithm MAE (mm) RMSE (mm) RMB (mm) 

All data Original 

HCRR 

0.89 

0.63 

1.34 

0.90 

 0.29 

-0.19 

 HCMO 0.61 0.86 -0.24 

 HCMean 0.66 0.95 -0.09 

 UKMOMean 0.72 1.08 -0.03 

 UKMO700 0.66 1.03 -0.19 

     

Initial Over-

estimations 

Original 

HCRR 

1.03 

0.45 

1.57 

0.70 

1.31 

0.27 

 HCMO 0.40 0.56 0.19 

 HCMean 0.53 0.83 0.47 

 UKMOMean 0.63 1.10 0.60 

 UKMO700 0.51 1.00 0.22 

     

FIG. 13. The RMSE values for uncorrected radar estimates (black dashed) and corrected (coloured) against rain gauge 

measurements. 
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along the events compared to Figure 13, indicating that the events with large errors are not due to larger rain gauge 

inaccuracies. 

 
TABLE 2. Statistics for comparisons between 1.4º and 0.5º 

scans for the correction algorithms. There are over 180,000 

pixel pairs that are compared. 

 

 

 

 

 

 

 

 

 

 

FIG. 14. The RMSE values for uncorrected radar rain rates (black dashed) and corrected (coloured) against lower level scan 

measurements. 

 

6. Conclusions 

 

Multiple methods were formed for the classification and correction of the BB effect. An algorithm similar to the 

current UK Met Office method was produced. This involved the input of ECMWF reanalysis data to the MM5 to 

output freezing level heights along with an assumption of constant BB thickness. Due to the recent adoption of 

operational dual-polarimetric radars in the UK a real time algorithm was formed as an alternative method for 

classification of the BB region. A fuzzy logic system was used with a large database of input vales to classify 

melting snow. The ability of two idealised profiles are compared to a mean profile for BB correction. 

 

The correction schemes were tested through comparison of the corrected radar rainfall estimations against 

surface rain gauge measurements and lower level uncorrected scans. A total of 14 events were used for the project, 

7 of which were used in validation. Following the Met Office method the RMSE was reduced by a factor of 2 in 

comparison to lower scans. When using the same idealised profile for correction the hydrometeor classification 

method for BB identification reduced the error by a further 11%. Hydrometeor classification makes an allowance 

for variation in the size and shape of the BB area, whereas the freezing level forecast method relies on a constant 

thickness. The main benefit of hydrometeor classification is that it relies only on measurements from the radar 

itself, rather than inputs from computationally intensive model runs. 
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