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Introduction  

Conjugated polymers have attracted extensive attention 

because of their potential industrial applications, due to their 

unique semiconducting and optoelectronic properties.
1-3

 Among 

the conjugated polymers, polythiophenes and polypyrroles are 

centrally important and have been widely investigated as 

potential materials for organic electronics.
4-8

 The properties of 

polythiophene and polypyrrole are different: polypyrrole has a 

larger band gap (ca. 3 eV
9
 compared to ca. 2 eV for 

polythiophene
10

), resulting in a relatively low conductivity;
11,12

 

and has a lower oxidation potential,
13,14

 which makes it highly 

reactive toward oxygen. As the copolymerization of the 

monomer containing several distinct units can lead to an 

interesting combination of the properties observed in the 

corresponding homopolymers,
15-18

 it is interesting to obtain 

copolymers that contain both heterocycles simultaneously. Cava 

and coworker described the poly(thienylpyrrole) showed tailored 

electroactive properties.
19

 

Copolymers of thiophene and pyrrole have mainly been 

prepared via electrochemical polymerization of 2,5-di(thiophen-

2-yl)-1H-pyrrole derivatives.
20-30

 However, this method may lead 

to significant branching and regioirregular polymers. In addition, 

organometallic polycondensations have recently been employed 

to obtain copolymers via a bis(trimethylstannyl)thiophene 

monomer and a dibromo pyrrole monomer.
31-33

 However, the 

polymers obtained by the Stille polycondensation had a very low 

molecular weight. There was no report on preparing 

poly(thiophene-alt-pyrrole) via a single monomer which contains 

a metal functional group and a halogen group. However, this kind 

of monomer is highly desirable as it has the potential to proceed 

via a quasi-living chain growth mechanism.
34-43

 Herein, we report 

the highly chemo-selective synthesis of difunctional 

thienylpyrrole monomer containing a metal functional group and 

a bromo group. Based on the monomer, π-conjugated alternating 

poly(thienylpyrrole) was prepared via palladium catalyzed 

Kumada polycondensation. 

Results and Discussion 

Synthesis of the pre-monomer 4 

The precursor monomer 4 was synthesized by an electrophile-

selective Stille cross-coupling
44

 between the 2-bromo-3-hexyl-5-

iodothiophene 1 and the tributyltin substituted pyrrole 2, 

followed by iodination of the pyrrole unit with an excess N-

iodosuccinimide (NIS) in a yield of 62% over two steps. 
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Although we initially planned to use 3 directly as a monomer 

precursor by lithiation through deprotonation as a lithiated 

monomer or followed by lithium-metal exchange if required, 

several metalation experiments using lithium diisopropylamide 

(LDA), and 1-lithio-2,2,6,6-tetramethyl-piperidine (LTMP) failed 

(For details see in the SI). 

Scheme 1. Synthesis of precursor monomer 4. 

 

 
 

A more reliable route seemed the lithiation of 4 by iodine-

lithium exchange using different alkyl lithium reagents such as n-

BuLi, t-BuLi or MeLi under different conditions (Table 1) (For 

details see the SI). In order to analyze the success of the lithiation 

procedure, the lithiated heterocycles were quenched with MeI, 

which could be easily identified by gas chromatography-mass 

spectrometry (GC-MS) and 
1
H NMR spectroscopy. However, 

lithiation and quenching with MeI did not give the product 2-(5-

bromo-4-hexylthiophen-2-yl)-1-hexyl-5-methyl-1H-pyrrole; on 

the contrary, 2-bromo-1-hexyl-5-(4-hexyl-5-methylthiophen-2-

yl)-1H-pyrrole 5 was obtained as main product. This suggests a 

“halogen dance reaction”,
45

 in which the initial iodo-lithium 

exchange on the pyrrole moiety was followed by bromination 

from the brominated thiophene moiety. This observation is 

unusual because in hexylthiophene, a bromide substituent is 

much more favoured in the 2 position adjacent to the n-hexyl 

group, but metallation is favoured in the 5 position (which in 4 is 

blocked by the pyrrole).
46-48

 In addition, n-BuLi and t-BuLi 

(entries 1-3) also gave another byproduct 1-hexyl-2-(4-hexyl-5-

methylthiophen-2-yl)-5-iodo-1H-pyrrole 6. This is a consequence 

of a bromo-lithium exchange without a halogen dance. Although 

MeLi just gave trace amount of 6 (entry 4), other unidentified 

compounds was shown from the NMR (For details see in the SI). 

Table 1. Lithiation of precursor monomer 4. 

 

entry lithium 

reagents 

solvents T (°C) ratioa 5 : 6 

1 n-BuLi THF -78 6 : 1 

2 n-BuLi THF -100 10 : 1 

3 t-BuLi Me-THF -129 0.5 : 1 

4 MeLi THF -78 >99:1b 

a Estimated by 1H NMR spectroscopy and identified by GC-MS.  

b A trace amount of compound 6 was detected only by GC-MS. 

 

Synthesis of the Grignard type monomer 7 

Surprisingly then, the Grignard-type monomer 7 could be 

synthesized by treating the precursor monomer 4 with 1 equiv of 

iPrMgCl at 20 °C for 10 min via a fast magnesium-iodine 

exchange reaction (100% yield based on analytical GC with 

analysis of the protonated species 3 (Scheme 2). The metalation 

occurred selectively at the α-position of the thiophene, leaving 

the aryl bromide intact.  

Scheme 2. Synthesis of Grignard-type monomer 7 by 

magnesium-iodine exchange. 

 

 

Synthesis of poly(thiophene-alt-pyrrole) (PTP) with 7 

Based on the Grignard-type monomer 7, polymerization was 

carried out firstly by the addition of 2 mol% of [Ni(dppp)Cl2] at 

20 °C for 24 h. These conditions are well established for the 

synthesis of well-defined poly(3-hexylthiophene) by Kumada 

catalyst-transfer condensation polymerization.
34,35

 However, the 

yield was only 65% and the molecular weight of the polymer (Mn 

= 3.9 kDa, Mw/Mn = 1.5, GPC calibrated against polystyrene) was 

also quite low. Analysis of the polymer by MALDI-TOF 

revealed a series of peaks suggesting an isopropyl end group 

(Figure 1A). This could arise from quenching the metallated 

monomer by isopropyl iodide, which is the product from the 

previous magnesium-iodine exchange. In view of the fact that 

this reaction was not observed without a transition metal catalyst, 

also it is more likely that this end group arises as a cross-coupling 

product. This problem has been reported for other polymers, such 

as poly(9,9-dioctyfluorene).
49

 In that case, the use of the 

magnesium complex [tBuMgCl·LiCl·15-crown-5] as the 

metallating species prevented any further substitution most likely 

because the tert-butyl cation is more stable compared to 

isopropyl cation. Treatment of 4 with 1 equiv of 

[tBuMgCl·LiCl·15-crown-5] at 20 °C for 10 min in THF gave 7 

(100% yield based on analytical GC-MS with analysis of the 

protonated species 3). The polymerization was then carried out 

by adding of 2 mol% of [Ni(dppp)Cl2] to the reaction mixture. 

After 24 h at 20 °C the polymer was obtained in a yield of 43% 

(Mn = 6.3 kDa, Mw/Mn = 1.5, with a conversion of 99%). The 

MALDI-TOF MS spectra of the oligomer showed no evidence 

for a tert-butyl end group, with H/H, H/Br and Br/Br being the 

major end groups (Figure 1B). The obtained Br/Br terminated 

polymer was presumably as a result of the dissociation of the 

associated Ni
0
-arene π complexes according the proposed 

mechanism by Yokozawa
50-53

 and McCllough.
54,55

 Although 

preventing the quenching reaction of polymerization, the 

relatively high polydispersity and only moderate yield led us to 

analyze further reaction conditions. 

Palladium catalysts are generally less reactive than nickel 

catalysts for Kumada coupling with alkyl halides. In this instance, 

we decided to use [Pd(tBu3P)2] as catalyst as it has been shown to 

be a suitable catalyst for chain growth polymerization of 

alternating copolymers based on Stille or Suzuki coupling 

reactions.
56,43

 Although inefficient at 20 °C, (Table 2, entry 1) 

this catalyst was more efficient at 50 °C. The reaction was 

performed in the etherical solvents MTBE, DME, THF, and 

dioxane (Table 2, entries 2-5). In all cases, polymeric products 

were obtained. The highest molecular weight polymer was 

obtained by using MTBE as solvent (Table 2, entry 3) with a 

weight average molecular weight of Mn = 7700. However, in all 

cases, the polymers’ polydispersities were relatively high 
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Figure 1. MALDI-TOF MS spectra of the poly(pyrrole-alt-thiophene): (A) polymer synthesized with iPrMgCl and [Ni(dppp)Cl2]; (B) polymer synthesized with 

tBuMgCl,·LiCl, 15-crown-5 and [Ni(dppp)Cl2]; (C) polymer synthesized with iPrMgCl and [Pd(tBu3P)2] (Table1, entry 6); (D) polymer synthesized with 

[iPrMgCl·LiCl] and [Pd(tBu3P)2] (Table1, entry 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Polymerization of 7 with various ether solvents and different catalyst loadings
a
 

 

 

 

 

entry cat. loading 

[mol%] 

solvent T (°C) time (h) yield (%) Mn 
b Mw/Mn

b Expected 

Mn
c 

1 2 MTBE 20 24 - - - 15700 

2 2 MTBE 50 18 91 7700 1.6 15700 

3 2 DME 50 18 38 4000 1.5 15700 

4 2 THF 50 18 49 5000 1.6 15700 

5 2 Dioxane 50 18 73 5600 1.6 15700 

6 2 MTBE 50(MW) 6.5 94 13200 2.2 15700 

7 1 MTBE 50(MW) 5 14 1700 1.4 31500 

8 2 MTBE 50(MW) 5 27 2100 1.4 15750 

9 

10 

5 

5 

MTBE 

MTBE/LiCl 

50(MW) 

50(MW) 

5 

5 

97 

99 

17800 

29500 

2.8 

4.6 

6300 

6300 

a The polymerizations were carried out by treatment of 4 with 1.0 eq. of iPrMgCl at 20 °C for 10 min to form 7, followed by addition of 
[Pd(tBu3P)2].  

b Estimated by GPC calibrated against a polystyrene standard (eluent: CHCl3, 1 mL/min).  

c If the polymerization was a quasi-living chain-growth polymerization. 
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between 1.5 and 1.6 and molecular weights stayed behind the 

expected molecular weights, which should not be expected for 

living polymerizations. To increase the rate of polymerization, 

the reaction in 4 mL of MTBE was conducted under microwave 

irradiation at 50 °C for 6.5 h. The conversion was 100% and 94% 

of the polymer was obtained with a higher molecular weight than 

under thermal conditions (Mn = 13.2 kDa, Mw/Mn = 2.2) (Table 2, 

entry 6). Different catalysts loadings (1, 2, 5 mol%) were also 

investigated for the polymerization catalyzed by [Pd(tBu3P)2] at 

50 °C for 5 h under microwave irradiation (Table 1, entry 7-9), 5 

mol% of [Pd(tBu3P)2] afforded the longest polymer chain (Mn = 

17.8 kDa, Mw/Mn = 2.9). In general, higher catalyst loadings gave 

higher yields and polymers with higher molecular weights, but 

also with increased polydispersities (Mw/Mn), which is counter 

indicative of a quasi-living chain growth polymerization. The 

polymers synthesized with [Pd(tBu3P)2] also had H/H, H/Br and 

Br/Br end groups (Figure 1C), which proves the polymerization 

process did not undergo the quenching with isopropyl iodide. 

However, the dissociation of the associated Pd
0
-arene π 

complexes occurred, which could lead to the Br/Br terminated 

polymer. Stefan and coworkers reported the palladium-mediated 

polymerization of 2-bromo-5-chloromagnesio-3-hexylthiophene 

proceeded by a step-growth mechanism and with lower 

regioirregularity as various side reactions of dissociated Pd(0) 

catalyst.
57

 It has been shown the addition of LiCl to Kumada 

catalyst transfer polycondensation could have beneficial effects 

on the chain-growth polymerization characteristics of aryl-

Grignard monomers.
41,36

 Bielawski and coworkers reported the 

addition of LiCl led to controlled chain-growth polymerization of 

2-(4-bromo-2,5-bis(2-ethylhexyloxy)phenyl)-5-chloromagnesio-

thiophene to afford poly(thiophene-alt-p-phenylene).
41

 However, 

in our case, LiCl did not show this effect; on the contrary, the 

Mw/Mn (4.6) value was much higher with much bigger Mn (29500) 

(Table 2, entry 10). The polymer had only H/H as the main end 

group in the presence of LiCl (Figure 1D). Based on these results, 

the best reaction conditions for the polymerization of 7 was 2 

mol% of [Pd(tBu3P)2] in MTBE as the solvent at 50 °C for 6.5 h 

under microwave irradiation.  

The conversion vs. time plot (Figure 2A) shows that the 

polymerization of 7 catalyzed by 2 mol% of [Pd(tBu3P)2] in 5 mL 

of MTBE at 50 °C under microwave conditions went smoothly in 

the first 390 min, up to a conversion of about 70%. However, 

after 390 min, the apparent conversion increased sharply and 

reached 100% in 25 min.  The Mn and Mw/Mn values of the crude 

PTP (without purification by precipitation and fractionation) at 

each conversion in this polymerization were analyzed by GPC to 

evaluate the polymerization in detail. The Mn values did not 

increase in proportion to the conversion, and the Mn increased 

sharply toward the end of the reaction. Both of these observations 

suggest a step-growth polymerization. The Mw/Mn values of the 

collected polymer samples increased along with the consumption 

of monomer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Conversion vs. time (A), and Mn and Mw/Mn vs. conversion (B) 

plots for the polymerization of 7 with 2 mol% of [Pd(tBu3P)2] in MTBE ([4]0 

= 0.1 mol/L) at 50 °C under microwave conditions. The conversion was 

defined as amount of compound 3 (from the quenching of a sample with 

ethanol) and determined by GC using naphthalene as internal calibration 

standard. 

 

Optical Properties of PTP 

The polymer samples were analyzed with respect to their 

absorption properties and their photoluminescence spectra 

(Figure 3, a representative example of a polymer prepared under 

the conditions of Table 2, entry 6). The absorption spectra of 4 in 

diethyl ether solution showed maximal peaks at 306 nm. The 

absorption peaks of the polymers PTP (Table 2, entries 6, 9 10) 

in diethyl ether solution were all observed at ca. 348 nm, largely 

irrespective of the chain length obtained. If the polymers were 

processed as a film prepared by spin-coating, the absorption 

peaks were all at ca. 354 nm. The absorption bands of the 

polymer PTP in both solution and processed as a film were 

relatively narrow compared to regioregular  poly(3-

alkylthiophene) (rr-P3AT) (λmax ≈ 450 nm).
58

 This may be 

attributed to the effect of steric interactions of neighboring n-

hexyl groups that reduce the conjugation length of the polymers. 

In fact, DFT calculations suggest a torsion angle between the 

planes of the two heterocycles of ca. -143 ° in the anti-

conformation of thiophene and pyrrole and 46 ° for the syn-

conformation. These values are similar in the tetramers in all 

possible conformations (see Supporting Information). 

Irrespective of the chain length obtained (Table 2, entries 6, 9 10), 

the ether solutions of PTP all give a bright-green fluorescence 

with the maximum emission wavelength of ca. 487 nm, 

corresponding to the onset of π-π* transition of the electronic 

absorption spectra, which is at significantly higher energy than 

the rr-P3AT (λmax ≈ 570 nm).
58
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Figure 3. UV-vis spectra of 4 and PTP in diethyl ether and as a film, PL 

spectra (λexc = 348 nm) of PTP in diethyl ether. 

 

Thermal behavior of the polymer PTP 

The thermal stability of the polymer (a representative example 

of a polymer prepared under the conditions of Table 2, entry 6) 

was studied by thermogravimetric analysis (TGA) and derivative 

thermogravimetry (DTG) under N2 at a heating rate of 4 °C/min 

(Figure 4). The polymer showed a 2% weight loss at 201 °C and 

a 38% weight loss at 451 °C. The first mass loss might be traced 

back to the removal of volatile species from the polymer, 

whereas the second mass loss can be due to the decomposition of 

the polymer. On the other hand, a DSC thermogram suggested a 

glass transition temperature at ca. -14 °C (see SI), which is quite 

low comparing to other semiconducting polymers. This lower 

transition temperature may caused by the torsion between 

thiophene and pyrrole, which renders the material very flexible. 

Figure 4. TGA and DTG curves of PTP. 

Conclusions 

A difunctional thienylpyrrole monomer containing a 

magnesium group and a bromo group was synthesized via a 

chemo-selective halogen-magnesium exchange. All halogen 

lithium exchange reactions on the dihalogenated starting material 

(with bromide on the thiophenyl moiety and iodide on the pyrrole 

moiety) proved unselective, leading to halogen dance or 

quenching with the alkyl halide that forms in situ. By using a 

magnesiated monomer, alternating copolymers PTP containing 

3-alkylthiophene and N-alkylpyrrole was prepared by palladium 

catalyzed Kumada polycondensation. The molecular weights 

were high and a moderate polydispersity was found. The Mn vs. 

conversion plot indicated that the polymerization proceeded via a 

step-growth mechanism, presumably due to the dissociation of 

the associated Pd
0
-arene π complexes. The absorption bands of 

the polymer PTP in both solution and processed as a film were 

relatively very narrow due to the effect of steric interactions of 

neighboring n-hexyl groups that reduce the conjugation length of 

the polymers. This study highlights the difficulties for 

introducing pyrroles into semiconducting polymers. It points out 

optimal reaction conditions for the selective metallation of 

pyrroles in spite of the presence of competing thiophenes. The 

optical and thermal properties suggest a wide band gap polymer, 

with a very low Tg for such materials. 

Experimental section 

General Methods and Materials 

All syntheses were carried out using standard Schlenk 

techniques or in glovebox under a dry and inert nitrogen 

atmosphere unless stated otherwise. Glassware and NMR-tubes 

were dried in an oven at 200 °C for at least 2 h prior to use. 

Reaction vessels were heated under vacuum and purged with 

nitrogen three times before adding reagents. 

All solvents that were used for reactions were used freshly 

distilled after refluxing for several hours over the specified 

drying agent under nitrogen and were stored in a J. Young’s tube. 

If no drying agent is noted, the solvents were used for 

chromatography only and distilled for purification purposes. 

Instruments and measurements 

1
H NMR and 

13
C NMR spectra were recorded at 300 K. 

1
H 

NMR spectra were recorded on a Bruker DRX 500 (500 MHz) 

spectrometer. 
13

C NMR spectra were recorded on a Bruker DRX 

500 (125 MHz) spectrometer. All 
1
H NMR and 

13
C NMR spectra 

were referenced against the residual solvent peak. The exact 

assignment of the peaks was proved by 
1
H, 

13
C DEPT and two-

dimensional NMR spectroscopy such as 
1
H COSY, 

13
C HSQC or 

1
H/

13
C HMBC when possible. 

IR spectra were recorded on a Perkin Elmer Paragon 1000 FT-

IR spectrometer with a A531-G Golden-Gate-ATR-unit. Ultra 

High resolution EI mass spectra were run on a VG Analytical 

Autospec apparatus. MALDI-MS analyses were performed using 

Bruker Daltonics UltrafleXtreme 2.The analyte (DCM, 1 mg/ml) 

was pre-mixed with the Dithranol matrix (MeOH, 10 mg/ml) in a 

1:1 (v/v) ratio immediately prior to analysis. UV/Vis spectra 

were recorded on a Perkin Elmer Lambda14 spectrometer. 

Luminescence spectra were recorded on a Perkin Elmer LS55 

spectrometer. 

Mn and Mw were determined on a Viscotek GPCmax VE2001, 

equipped with a Viscotek VE3580 RI detector (columns: 

ViscotekLT5000L 300 x 7.8 mm and LT4000L 300 x 7.8 mm). 

The DTA-TG measurements were performed in Al2O3 

crucibles using a Netzsch STA-409CD instrument. All 

measurements were performed under N2 and were corrected for 

buoyancy and current effects. The instruments were calibrated 

using standard reference material, DSC was performed in a 

Perkin Elmer Pyris apparatus. 

GC-MS analysis was performed on a Hewlett Packard 5890A 

gas chromatograph, equipped with a Hewlett Packard 5972A 

mass selective detector and an Agilent Technologies 

dimethylpolysiloxane column (19091S-931E, nominal length 15 

m, 0.25 mm diameter, 0.25 µm grain size). 

GC analysis was performed on an Agilent Technologies 

6890N gas chromatograph, equipped with an Agilent 

Technologies 7683 Series Injector, an Agilent Technologies 
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(5 %-phenyl)-methylpolysiloxane column (19091J-413, 

nominal length 30 m, 0.32 mm diameter, 0.25 µm grain size) and 

a flame ionization detector (FID). 

Reactions under microwave irradiation were carried out using 

a Biotage
®
 Initiator+ SP Wave synthesis system, with continuous 

irradiation power from 0 to 300 W (Organic Synthesis Mode). 

The temperature was measured with an external IR sensor during 

microwave heating. All reactions were carried out in 5 mL oven-

dried Biotage microwave vials sealed with an aluminum/Teflon
®
 

crimp top, which can be exposed to a maximum of 250 
°
C and 

20 bar internal pressure.  

For chromatographic purifications, silica gel (Macherey-Nagel 

Inc., grain size 0.040 - 0.063 mm) was used. Thin layer 

chromatography was performed using pre-coated plates from 

Macherey-Nagel Inc., ALUGRAM
®
Xtra SIL G/UV254. 

Chromatographic purification for compounds (3, 4, 5, 6, 8) were 

carried out using an InterchimPuriflash 430 system, where 

cartridges by Interchim (silica HC, grain size 50 µm, 40g, 80 g or 

120 g) were used. 

Synthesis 

2-Bromo-3 -hexy l -5-iodo th iophene (1 )  

2-Bromo-3-hexyl-5-iodothiophene 

was prepared similarly to a method 

described by Koeckelberghs and co-

workers
59

 and was modified as followed: 

2-bromo-3-hexylthiophene (5.00 g, 20.2 

mmol) (For the synthetic procedure and 

analytic data see in the SI) was dissolved in a mixture of 

chloroform (100 mL) and acetic acid (50 mL) and shielded from 

light under an air atmosphere. Then, N-iodosuccinimide (6.75 g, 

30.0 mmol) was added in one portion. The reaction was stirred 

for 16 h at 20 °C. The solution was poured into water (100 mL) 

and the water phase was extracted with n-hexane (3 x 100 mL). 

The combined organic phases were washed with aqueous NaOH 

(2 M, 1 x 500 mL), water (2 x 200 mL), brine (1 x 100 mL) and 

were dried over MgSO4. After the solvent was removed in vacuo, 

the crude product was purified by Kugelrohr distillation (110 °C, 

1.7 x 10
-1

 mbar) to get 6.8 g (89%, lit.
59

 78%) of the product as 

yellow oil. 

1
H NMR (500 MHz, CDCl3): δ = 6.96 (s, 1 H, H-c), 2.52 (t, 

3
J 

= 7.6 Hz, 2 H, H-e), 1.59-1.50 (m, 2 H, H-f), 1.37-1.24 (m, 6 H, 

H-g, h, i), 0.89 (t, 
3
J = 6.7 Hz, 3 H, H-j) ppm. 

13
C NMR (126 

MHz, CDCl3): δ = 144.3 (C-b), 138.0 (C-c), 111.7 (C-a), 71.0 (C-

d), 31.6, 29.6, 29.2, 28.8 (C-e, f, g, h), 22.6 (C-i), 14.1 (C-j) ppm. 

HRMS (EI-sector) m/z: [M]
+
 Calcd for [C10H14BrIS]

+ 
371.9044; 

Found 371.9032. IR (ATR): ṽ = 2953 (m), 2923 (s), 2854 (s), 

1534 (w), 1456 (m), 1403 (m), 1377 (w), 1275 (w), 1261 (w), 

1191 (w), 1095 (w), 995 (s), 909 (w), 826 (s), 750 (s), 724 (m), 

694 (w), 650 (w), 578 (w), 470 (s) cm
-1

. 

1-Hexyl -2- ( tr ibuty ls tanny l) -1H-pyrrole  (2 )  

n-Butyllithium (12.48 mL, 31.20 

mmol, 2.50 M in hexanes) was added 

to a stirred solution of N,N,N',N'-

tetramethyl-ethane-1,2-diamine (4.710 

g, 31.20 mmol) in n-hexane (90 mL) at 

0 °C within 5 min. The reaction 

mixture was stirred for 1 h at 0 °C. N-

(n-hexyl)-pyrrole (3.620 g, 24.00 mmol) 

(For the synthetic procedure and analytic data see in the SI) was 

added dropwise to the solution at this temperature over the course 

of 10 min. The reaction mixture was allowed to warm up to 

20 °C and stirred for 18 h. The reaction mixture was cooled back 

to 0 °C and tri-n-butyltin chloride (10.28 g, 36.00 mmol) was 

added dropwise over the course of 20 min and warm up to 20 °C 

and stirred for another 8 h. Then the reaction was quenched with 

saturated NH4Cl aqueous solution (50 mL). The aqueous layer 

was extracted with n-hexane (3 x 50 mL) and the combined 

organic phases were washed with water (3 x 100 mL). The 

organic phase was dried over MgSO4 and the solvent was 

removed in vacuo. The crude product was filtered over silica gel 

(which was pretreated by stirring it in a 5% Et3N in n-hexane 

solution to deactivate it). After removal of the solvent, the 

mixture was purified by bridge distillation (190 °C, 5 mbar) to 

receive 9.7 g (91 %) of colorless oil. 

1
H NMR (500 MHz, CDCl3): δ = 6.90 (t, 

3
J = 1.9 Hz, 1 H, H-

d), 6.32-6.15 (m, 2 H, H-b, c), 3.83 (t, 
3
J = 7.6 Hz, 2 H, H-e), 

1.77-1.71 (m, 2 H, H-f), 1.55-1.49 (m, 6 H, H-k), 1.36-1.28 (m, 

12 H, H-g, h, i, l), 1.06-1.02 (m, 6 H, H-m), 0.90 (t, 
3
J = 7.3 Hz, 

12 H,
 
H-j, n) ppm. 

13
C NMR (126 MHz, CDCl3): δ = 131.6 (C-a), 

123.9 (C-d), 118.6 (C-b/c), 108.5 (C-b/c), 51.5 (C-e), 32.4, 31.6 

(C-f, g), 29.1 (C-k), 27.3, 26.7, 22.5(C-h, i, l), 13.9, 13.6 (C-j, n), 

10.3 (C-m) ppm. 
119

Sn NMR (187 MHz, CDCl3): δ = - 64.0 ppm. 

HRMS (EI-sector) m/z: [M]
+
 Calcd for [C22H43NSn]

+ 
441.2434; 

Found 441.2418. IR (ATR): ṽ = 2955 (m), 2925 (s), 2854 (m), 

1510 (w), 1462 (m), 1417 (w), 1376 (w), 1282 (m), 1072 (m), 

1001 (w), 960 (w), 864 (w), 765 (m), 749 (m), 710 (s), 690 (m), 

665 (m), 613 (w), 596 (m), 504 (m) cm
-1

. 

2-(5 -Bromo-4-hexyl th iophen-2 -yl ) -1-hexyl -1H-
pyrrole  (3 )  

[Pd(PPh3)4] (866 mg, 750 µmol) 

was added to a solution of 1-hexyl-

2-(tributylstannyl)-1H-pyrrole (6.60 

g, 15.0 mmol) and 2-bromo-3-

hexyl-5-iodothiophene (5.60 g, 15.0 

mmol) in DMF (60 mL) at 20 °C. 

The reaction mixture was stirred at 

70 °C for 32 h and then poured into 

water (100 mL). The aqueous layer 

was extracted with diethyl ether (3 x 50 mL) and the combined 

organic phase was washed with water (3 x 80 mL) before drying 

over MgSO4. The volatiles were removed in vacuo. The crude 

product was purified by column chromatography over silica gel 

(n-hexane/DCM 14:1, Rf = 0.51) to obtain 4.50 g (76%) of a 

yellow oil. 

1
H NMR (500 MHz, CDCl3): δ = 6.73 (t, 

3
J= 2.2 Hz, 1 H, H-

a), 6.67 (s, 1 H, H-f), 6.23 (dd, 
3
J = 3.6 Hz, 

4
J = 1.7 Hz, 1 H, H-

c), 6.14 (t, 
3
J = 3.2 Hz, 1 H, H-b), 3.94 (t, 

3
J = 7.5 Hz, 2 H, H-i), 

2.55 (t, 
3
J = 7.5 Hz, 2 H, H-o), 1.72-1.66 (m, 2 H, H-j), 1.62-1.56 

(m, 2 H, H-p), 1.38-1.22 (m, 12 H, H-k, l, m,q, r, s), 0.91-0.84 (m, 

6 H, H-n, t) ppm. 
13

C NMR (126 MHz, CDCl3): δ = 142.2 (C-g), 

134.6 (C-e), 126.5 (C-f), 125.8 (C-d), 122.9 (C-a), 110.4 (C-c), 

107.9 (C-b), 107.7 (C-h), 47.5 (C-i), 31.7, 31.5, 31.4 (C-j, k, l), 

29.7, 29.6 (C-o, p), 28.9, 26.4, 22.6, 22.5 (C-m, q, r, s), 14.1, 14.0 

(C-n, t) ppm. HRMS (EI-sector) m/z: [M]
+
 Calcd for 

[C20H30BrNS]
+ 

395.1282; Found 395.1275. IR (ATR): ṽ = 2955 

(m), 2925 (s), 2854 (m), 1573 (w), 1525 (w), 1457 (m), 1432 (m), 

1408 (w), 1377 (w), 1291 (m), 1195 (m), 1113 (w), 1071 (m), 

1032 (w), 1002 (w), 835 (m), 783 (m), 750 (m), 710 (s), 643 (w), 

612 (m), 584 (w), 497 (w), 478 (w) cm
-1

. 

2-(5 -Bromo-4-hexyl th iophen-2 -yl ) -1-hexyl -5 -iodo-
1H-pyrrole  (4 )  

N-Iodo-succinimide (896 mg, 4.00 mmol) was added in one 

portion to a stirred solution of 2-(5-bromo-4-hexylthiophen-2-yl)-

1-hexyl-1H-pyrrole (794 mg, 2.00 mmol) in THF (15 mL) at 

20 °C. The reaction was stirred at 20 °C for 48 h. The reaction 

mixture was quenched with and aqueous solution of Na2S2O3 (1 
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M, 10 mL) and the organic phase 

was extracted with diethyl ether (3 x 

15 mL) before drying it over 

MgSO4. The solvent was removed 

in vacuo. The crude product was 

purified by column chromatography 

over silica gel (n-hexane, Rf = 0.64) 

to give 866 mg (83%) of a yellow 

oil. 

1
H NMR (500 MHz, CDCl3): δ = 6.78 (s, 1 H, H-f), 6.33 (d, 

3
J 

= 3.8 Hz, 1 H, H-c), 6.23 (d, 
3
J = 3.8 Hz, 1 H, H-b), 4.02 (t, 

3
J = 

7.8 Hz, 2 H, H-i), 2.59 (t, 
3
J = 7.5 Hz, 2 H, H-o), 1.64-1.57 (m, 4 

H, H-j, p), 1.38-1.21 (m, 12 H, H-k, l, m, q, r, s), 0.91-0.86 (m, 6 

H, H-n, t) ppm. 
13

C NMR (126 MHz, CDCl3): δ = 143.7 (C-g), 

135.8 (C-e), 129.6 (C-d), 128.5 (C-f), 119.8 (C-c), 114.1 (C-b), 

109.3 (C-h), 72.8 (C-a), 49.0 (C-i), 32.8, 32.4, 32.1 (C-j, k, l), 

30.8, 30.4, 29.8 (C-o, p, q), 27.1 (C-m), 23.7, 23.5 (C-r, s), 14.4, 

14.3 (C-n, t) ppm. HRMS (EI-sector) m/z: [M]
+
 Calcd for 

[C20H29BrINS]
+ 

521.0249; Found 521.0238. IR (ATR): ṽ = 2954 

(s), 2924 (s), 2854 (s),1573 (w), 1521 (w), 1455 (s), 1402 (s), 

1375 (m), 1288 (m), 1199 (m), 1102 (w), 1035 (w), 1002 (w), 

967 (w), 867 (w), 839 (m), 754 (s), 725 (m), 661 (w), 584 (w), 

475 (w) cm
-1

. 

Typical  procedure  o f  l i th ia t ion  o f  precursor  
monomer 4  

4 (261 mg, 0.50 mmol) was added in one portion to THF (15 

mL) and the solution was cooled to -78 °C. n-BuLi (0.2 mL, 0.50 

mmol, 2.5 M in hexanes) was added dropwise to the solution 

over the course of 1 min and stirred for 10 min. Then MeI (426 

mg, 0.2 mL, 3 mmol) was added in one portion and stirred for 2 h 

at -78 °C. The reaction was quenched with water (5 mL) and the 

aqueous phase was extracted with ether (2 x 15 mL). The 

combined organic phase was dried over MgSO4. The solvent was 

removed in vacuo and the crude product was checked by GC-MS 

and NMR. The isolated products are shown as follows: 

2-Bromo-1 -hexy l -5- (4-hexyl -5 -methy l th iophen-2 -
yl )-1H-pyrrole  (5 )  

1
H NMR (500 MHz, MeOD): δ = 

6.72 (s, 1 H, H-f), 6.14 (d, 
3
J = 3.8 

Hz, 1 H, H-b/c), 6.11 (d, 
3
J = 3.8 Hz, 

1 H, H-b/c), 4.05-3.95 (m, 2 H, H-i), 

2.53 (t, 
3
J = 7.5 Hz, 2 H, H-o), 2.34 

(s, 3 H, H-u), 1.65-1.54 (m, 4 H, H-j, 

p), 1.38-1.19 (m, 12 H, H-k, l, m, q, 

r, s,), 0.93-0.83 (m, 6 H, H-n, t) 

ppm. 
13

C NMR (126 MHz, MeOD): δ = 139.8 (C-g), 133.7 (C-h), 

131.1 (C-e), 129.3 (C-a/d), 129.2 (C-f), 111.6(C-b/c), 111.4 (C-

b/c), 103.7 (C-a/d), 46.9 (C-i), 31.8 (C-j/p), 31.6 (C-j/p), 29.0 (C-

o), 32.9, 32.4, 30.0, 27.1, 23.7, 23.6 (C-k, l, m, q, r, s), 14.4, 14.3 

(C-t, n), 12.7 (C-u) ppm. HRMS (EI-sector) m/z: [M]
+
 Calcd for 

[C21H32BrNS]
+ 

409.1339; Found 409.1442. IR (ATR): ṽ = 2954 

(s), 2924 (s), 2855 (s), 1458 (s), 1428 (m), 1402 (w), 1377 (m), 

1289 (m), 1194(m), 1158 (w), 1109 (w), 1030 (w), 961 (w), 892 

(w), 839 (m), 750 (vs) cm
-1

.  

1-Hexyl -2- (4 -hexyl -5 -methyl th iophen-2 -y l) -5 -iodo-
1H-pyrrole  (6 )  

1
H NMR (500 MHz, MeOD): δ = 6.70 (s, 1 H, H-f), 6.29 (d, 

3
J 

= 3.7 Hz, 1 H, H-b/c), 6.16 (d, 
3
J = 3.7 Hz, 1 H, H-b/c), 4.03-3.98 

(m, 2 H, H-i), 2.53 (t, 
3
J = 7.5 Hz, 2 H, H-o), 2.34 (s, 3 H, H-u), 

1.65-1.53 (m, 4 H, H-j, p), 1.38-1.19 (m, 12 H, H-k, l, m, q, r, s,), 

0.93-0.83 (m, 6 H, H-n, t) ppm. 
13

C NMR (126 MHz, MeOD): δ 

= 139.7 (C-g), 133.9 (C-h), 131.1 (C-d/e), 131.1 (C-d/e), 129.2 

(C-f), 119.5 (C-b/c), 113.2(C-b/c), 

71.2 (C-a), 49.0 (C-i), 
60

 32.1 (C-

j/p), 31.6 (C-j/p), 29.0 (C-o), 32.9, 

32.4, 30.0, 27.1, 23.7, 23.6 (C-k, l, 

m, q, r, s), 14.4, 14.3 (C-t, n), 12.7 

(C-u) ppm. HRMS (EI-sector) m/z: 

[M]
+
 Calcd for [C21H32INS]

+ 

457.1300; Found 457.1292. IR 

(ATR): ṽ = 2954 (s), 2924 (s), 2855 

(s), 1458 (s), 1420 (m), 1396 (w), 1376 (m), 1289 (m), 1194(m), 

1158 (w), 1102 (w), 1030 (w), 961 (w), 889 (w), 839 (m), 752(vs) 

cm
-1

. 

2-Bromo-5 - (5-bromo-4-hexy l th iophen-2 -y l) -1 -hexyl -
1H-pyrrole  (8 )  

1
H NMR (500 MHz, MeOD): δ 

= 6.80(s, 1 H, H-f), 6.22 (d, 
3
J = 3.8 

Hz, 1 H, H-b/c), 6.16 (d, 
3
J = 3.8 

Hz, 1 H, H-b/c), 4.06-4.01 (m, 2 H, 

H-i), 2.63-2.56 (2 H, H-o), 1.67-

1.57 (m, 4 H, H-j, p), 1.41-1.20 (m, 

12 H, H-k, l, m, q, r, s,), 0.94-0.84 

(m, 6 H, H-n, t) ppm. 
13

C NMR 

(126 MHz, MeOD): δ = 143.8 (C-g), 135.8 (C-e), 128.5 (C-f), 

127.9 (C-d), 112.4 (C-b/c), 112.0 (C-b/c), 109.0 (C-h), 105.0 (C-

a), 46.9 (C-i), 32.8, 32.4, 31.8, 30.8, 30.4, 29.9, 27.1, 23.7, 23.6 

(C-j, k, l, m, o, p, q, r, s), 14.4, 14.3 (C-t, n) ppm. HRMS (EI-

sector) m/z: [M]
+
 Calcd for [C20H29Br2NS]

+ 
473.0388; Found 

473.0411. IR (ATR): ṽ = 2955 (s), 2925 (s), 2856 (s), 1577 (w), 

1524 (w), 1461 (s), 1411 (m), 1378 (w), 1290 (m), 1202 (m), 

1111 (w), 1034 (w), 971 (w), 869 (w), 839 (m), 751(vs) cm
-1

. 

General  procedure for  po lymeriza t ion  o f  7  

In a microwave vial, iPrMgCl 

(0.25 mL, 2.00 M in THF, 0.50 

mmol) was added dropwise to a 

solution of precursor monomer 4 

(261 mg, 0.50 mmol) in dry MTBE 

(3.0 mL) via a hamilton syringe in 

the glove box at 20 °C over the 

course of 1 min. After stirring the 

reaction mixture for 10 min at 

20 °C, a solution of [Pd(tBu3P)2] (5.11 mg, 10.0 µmol) in MTBE 

(1.0 mL) was added to the reaction mixture. The reaction mixture 

was heated up to 50 °C under microwave irradiation and stirred 

for 5 h. Then the reaction mixture was quenched with H2O (10 

mL) and the aqueous phase was extracted with diethyl ether (2 x 

20 mL). The combined organic layer was washed with brine (1 x 

20 mL) and dried with MgSO4. The volatiles were removed in 

vavuo to give the crude product. This was dissolved in diethyl 

ether (0.5 mL) and the solution was added dropwise into 

methanol (200 mL) with vigorous stirring to remove the low 

molecular weight compounds. The precipitated polymer was 

extracted by soxhlet extractor with MeOH (200 mL) for 5 h. For 

removal from the Soxhlet extractor, the solid polymer was 

refluxed by diethyl ether (100 mL). The volatiles were removed 

in vavuo and product was dried under reduced pressure for 16 h 

give the polymer as orange to red brown viscous solid. 

1
H NMR (600 MHz, CDCl3): δ = 6.97 (s, 1 H, H-f), 6.41 (d, 

3
J 

= 3.6 Hz, 1 H, H-b/c), 6.26 (d, 
3
J = 3.6 Hz, 1 H, H-b/c), 4.17-3.92 

(m, 2 H, H-i), 2.66-2.46 (m, 2 H, H-o), 1.64-1.51 (m, 4 H, H-j, p), 

1.35-1.09 (m, 12 H, H-k, l, m, q, r, s), 0.88 (t, 
3
J = 6.8 Hz, 3 H, 

H-n/t), 0.81 (t, 
3
J = 7.1 Hz, 3 H, H-n/t) ppm. 

13
C NMR (150 MHz, 

CDCl3): δ = 142.8 (C-g), 134.9 (C-e), 128.1 (C-a/d), 127.6 (C-h), 

126.7 (C-a/d), 126.3 (C-f), 112.0 (C-b/c), 110.0 (C-b/c), 45.3 (C-
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i), 31.7 (C-k/l/m/q/r/s), 31.2 (C-k/l/m/q/r/s), 31.0 (C-j/p), 30.7 

(C-j/p), 29.1 (C-o), 29.1 (C-k/l/m/q/r/s), 26.3 (C-k/l/m/q/r/s), 22.6 

(C-k/l/m/q/r/s), 22.4 (C-k/l/m/q/r/s), 14.1 (C-n/t), 13.9 (C-n/t) 

ppm. IR (ATR): ṽ = 2953 (s), 2923 (s), 2854 (s), 1458 (s), 1402 

(m), 1376 (m), 1308 (m), 1193 (m), 1033 (m), 873 (w), 839 (m), 

762 (m), 723 (m), 684 (w), 637 (w), 567 (w) cm
-1

. 

Procedure for  the k inet ics  s tudy  

In a microwave vial, iPrMgCl (0.25 mL, 2.00 M in THF, 0.50 

mmol) was added dropwise to a solution of precursor monomer 4 

(261 mg, 0.50 mmol) and naphthalene (64.1 mg, 0.50 mmol, used 

as an internal standard for GC analysis to analyze the conversion) 

in dry MTBE (3.0 mL) via a hamilton syringe in the glove box at 

20 °C over the course of 1 min. After stirring the reaction 

mixture for 10 min at 20 °C, a solution of [Pd(tBu3P)2] (5.11 mg, 

10.0 µmol) in MTBE (2.0 mL) was added to the reaction mixture. 

After the 60 min, 120 min, 180 min, 240 min, 300 min, 360 min, 

375 min, 390 min, 415 min, 440 min, a sample (0.3 mL) was 

taken out of the reaction mixture. 0.1 mL of the solution was 

quenched with 2 droplets of ethanol. The quenched solution was 

diluted with 3 mL of THF, 2 mL of the solution was filtered with 

a syringe filter (0.45 µm) and used for GC analysis. The other 0.2 

mL of reaction mixture was quenched with ethanol (1 mL) and 

diluted with Et2O (4 mL) and water (2 mL). After shaking the 

vial, the layers were separated. The organic phase was dried over 

MgSO4 and filtered with a syringe filter (0.45 µm). Half of the 

solvent was removed in vacuo, diluted in chloroform (HPCL 

grade, 2 mL) and used for GPC analysis. The other half of the 

solvent was removed in vacuo, diluted in deuterated benzene for 

NMR analysis. 
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