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Electron-phonon superconductivity in BaSn5

D. Ernsting,1 T.E. Millichamp,1 and S.B. Dugdale1

1H.H. Wills Physics Laboratory, University of Bristol,
Tyndall Avenue, Bristol, BS8 1TL, United Kingdom

First-principles calculations of the electronic structure and phonon dispersion relation of the
superconducting compound BaSn5 were performed. This has allowed the calculation of the electron-
phonon matrix elements from which the electron-phonon coupling constant was found to be λep =
0.87. Application of the Allen–Dynes formula with µ∗ = 0.11 yielded a superconducting transition
temperature of Tc = 4.2 K. The calculated Tc agrees well with the available experimental data and
indicates that BaSn5 is an electron-phonon superconductor with intermediate strength electron-
phonon coupling.

INTRODUCTION

Very recently, superconductivity was discovered in the
H2S system with a record superconducting critical tem-
perature of Tc = 190 K under 200 GPa of hydrostatic
pressure [1]. The strong isotope shift of Tc in D2S rela-
tive to H2S evidences the major role of phonons in the
superconductivity. This has lead to a renewed interest in
studies of conventional (electron-phonon) superconduc-
tors, especially in systems where the electrons couple to
special phonon modes, i.e. modes for which the electron-
phonon coupling is particularly strong. The focus of this
study is not on superconductors for which Tc is large
but, rather, on systems where the coupling of electrons
to special phonon modes is important.

The previous Tc record for a phonon-mediated super-
conductor was held by the multiband superconductor
MgB2 with Tc ≈ 40 K at ambient pressure [2]. Since
many material properties are related to the symmetry
and chemical environment of the constituent atoms, in-
sights into these compounds can be gained by study-
ing structural and chemical analogues. MgB2 has the
AlB2 structure which belongs to the P6/mmm space
group. Another member of this space group is BaSn5,
the Sn-richest phase in the Ba-Sn intermetallic series
whose structure has only recently been solved (see Fig-
ure 1) [3]. BaSn5 also has a superconducting phase be-
low Tc = 4.4 K [3, 4]. Recently, Lin et al. have grown
high-quality single-crystal samples of BaSn5 and char-
acterised its thermodynamic and transport properties in
both the normal and superconducting phases [4]. Al-
though the band structure and density-of-states (DOS)
of BaSn5 have been calculated previously [3], no calcula-
tions have been reported for the Fermi surface, phonon
dispersion relation or electron-phonon coupling. The aim
of this study is to understand the role of electron-phonon
coupling in the superconductivity of this compound.

The ground state electronic structure in the nor-
mal phase was calculated using a highly accurate full-
potential augmented plane-wave plus local orbital (FP-
APW+lo) method. In order to investigate phonon me-
diated superconductivity, a plane-wave pseudopotential

FIG. 1: Crystal structure of BaSn5. The Ba atoms are green,
Sn1 atoms are dark blue and Sn2 atoms are light blue.

TABLE I: Experimental lattice constants [4] and atomic
Wyckoff positions [3] of BaSn5.

BaSn5 lattice constants [4]

a [Å] 5.368(4)

c [Å] 7.097(4)

c/a 1.322(1)

BaSn5 Wyckoff positions [3]

Atom x y z

Ba 0 0 1/2

Sn1 0 0 0

Sn2 2/3 1/3 0.2085(1)

method was used to calculate the phonon dispersion re-
lation by linear response and to evaluate the strength of
the electron-phonon coupling. From these calculations, it
is shown that the electron-phonon coupling in this com-
pound is of intermediate strength and is able to support
the observed superconductivity.

ELECTRONIC STRUCTURE

The particular implementation of the FP-APW+lo
method used to determine the ground state electronic
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FIG. 2: Total and site-projected DOS of BaSn5. The total
DOS is green, Ba DOS is purple, Sn1 DOS is orange and Sn2
DOS is blue. The interstitial DOS is not plotted.

−10

−8

−6

−4

−2

0

2

Γ M K Γ A L H A M L

E
−E

F
[e

V
]

E 
- E

F  
 [e

V]

Γ M K Γ A L H A M L

FIG. 3: Band structure of BaSn5 along selected high-
symmetry directions.

structure was the ELK code [5]. The experimental lat-
tice constants and internal atomic coordinates were used
in the calculation (see Table I) [3, 4]. The muffin-tin radii
for Ba, Sn1 and Sn2 were 2.8000, 2.6000 and 2.6000 a.u.,
respectively, and, in the interstitial region, the plane-
wave cutoff was determined by |G + k|max = 8.0/Rmt,
where Rmt is the average muffin-tin radius. Convergence
was achieved with 4096 k-points in the irreducible Bril-
louin zone using the Perdew–Wang-91 generalised gradi-
ent approximation (PW91-GGA) [6, 7] to the exchange-
correlation functional.

The calculated DOS is shown in Figure 2. At the Fermi
level, EF, the primary contribution to the DOS is from
hybridised Sn2 s and p-states. There is also a further
contribution from Sn1 p-states and a small contribution
from Ba d-states. The Sn2 atoms contribute more states
at EF than the Sn1 atoms. In BaSn5, the calculated

FIG. 4: The four Fermi surface sheets of BaSn5 viewed down
the c∗-axis (left) and various low-symmetry directions (right)
for clarity.

DOS at the Fermi level was N(EF) = 2.98 states (eV
f.u.)−1. Lin et al. state that the pressure derivative of
Tc, dTc/dP ≈ −0.053±0.001 K/kbar, is rather small and
suggest that this is possibly the result of a weak energy
dependence of N(EF) [4]. In contrast, we find EF to lie
just above a local maximum in the DOS, in agreement
with the previous calculation [3].

The calculated band structure is shown Figure 3 and
shows that four bands cross EF. The corresponding
Fermi surface sheets are shown in Figure 4. The first
sheet (band 60) has a rather complicated web-like topol-
ogy. The second sheet (band 61) is a highly-distorted
tube centered at the Γ-point with a rounded hexago-
nal cross-section. The third sheet (band 62) is also cen-
tered at the Γ-point and consists of two parts; another
highly warped tube with a rounded hexagonal cross-
section and a ‘dumbell’-shaped sheet with its axis aligned
along the c∗-axis. The fourth sheet (band 63) consists of
12 rounded triangular-shaped segments.

Lin et al. measured the dc magnetisation as a function
of applied magnetic field along the c-axis and were able
to resolve two de Haas–van Alphen (dHvA) frequencies of
0.116 kT (α) and 0.159 kT (β). By measuring the tem-
perature dependence of their amplitudes and applying
the Lifshitz-Kosevich equation, they were able to extract
effective masses of mα = 0.09me and mβ = 0.13me where
me is the free electron rest mass [4]. In order to make
a comparison with experiment, the predicted dHvA fre-
quencies were calculated from our calculated electronic
structure using the SKEAF code [8]. The calculated fre-
quencies are shown in Figure 5 for various magnetic field
directions. We find three extremal orbits on band 60 (for
the magnetic field aligned parallel to the c-axis) with fre-
quencies close to those measured by Lin et al.. The fre-
quencies were 0.051 kT, 0.186 kT and 0.218 kT and the
effective masses were 0.061me, 0.090me and 0.076me, re-
spectively. In order to improve the agreement between
theory and experiment and to determine which extremal
orbits to compare with those of Lin et al., band 60 was
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FIG. 5: Predicted angular dependences of the calculated
dHvA frequencies for BaSn5.

rigidly shifted up by 7 mRy relative to EF. The fre-
quencies of the three extremal orbits were now 0.118 kT,
0.149 kT and 0.160 kT with effective masses of 0.073me,
0.058me and 0.065me, respectively. Rigidly shifting the
calculated bands with respect to EF in order to bring
the predicted extremal areas into agreement with exper-
iment has become quite a common practice [9], particu-
larly in the iron-pnictide superconductors [10–12]. The
shift required here is smaller than those required for the
iron-pnictides which is perhaps not surprising consider-
ing that the electronic correlations in BaSn5 are expected
to be smaller.

In the electronic structure calculation, many-body ef-
fects are explicitly neglected. These effects increase the
experimental linear electronic specific heat coefficient,
γexp, relative to that calculated, γcalc. The ratio of γexp

to γcalc allows us to estimate the mass renormalisation,
λ, through the relationship,

γexp

γcalc
= 1 + λ. (1)

Lin et al. experimentally determined γexp = 10.8 mJ
K−2 mol−1 [4] and γcalc is given by,

γcalc =
π2

3
k2BN(EF), (2)

giving γcalc = 7.00 mJ K−2 mol−1, implying λ ≈

0.54. If electron-phonon coupling is assumed to domi-
nate the mass renormalisation (and explicitly neglecting
other mechanisms), the electron-phonon coupling con-
stant, λep, can be set equal to the mass renormalisation.
For λep < 1.5, it is possible to estimate Tc from the
McMillan equation [13],

Tc =
ΘD

1.45
exp

( −1.04(1 + λep)

λep − µ∗(1 + 0.62λep)

)
, (3)

where ΘD is the Debye temperature and µ∗ represents
a (dimensionless) Coulomb pseudopotential, which char-
acterises the strength of the (screened) electron-electron
Coulomb repulsion. Using our estimated λep ≈ 0.54,
the experimentally determined ΘD = 182.5 K from Lin
et al. [4] and choosing values of µ∗ between 0.10–0.15
(values between 0.1–0.2 are considered physically rea-
sonable [14, 15], but values between 0.10–0.15 are more
common [9, 16]), we estimate Tc ≈ 1.1–2.5 K which is
much smaller than the experimentally observed value of
Tc = 4.4 K [3, 4]. By solving Eq. 3 for λep with the
experimentally determined ΘD and Tc, we can instead
expect λep ≈ 0.65–0.77 for values of µ∗ between 0.10–
0.15. Given that the expected λep is higher than that
estimated from the ratio of experimental and calculated
specific heats, it seems likely that the observed super-
conductivity may result from the coupling of electrons to
special phonon modes.

ELECTRON-PHONON COUPLING

The particular implementation of the plane-wave pseu-
dopotential method used to calculate the phonon disper-
sion relation and electron-phonon coupling was the the
Quantum Espresso code [17]. The chosen pseudopoten-
tials were ultrasoft scalar relativistic and convergence was
checked with respect to both the plane-wave cutoffs and
k-point density. The phonon dynamical matrices were
calculated on an 8 × 8 × 8 q-point mesh with Brillouin
zone integrations on a 16 × 16 × 16 k-point mesh and
wavefunction and charge density cutoffs of 40 Ry and
400 Ry, respectively. Since the accurate evaluation of the
electron-phonon matrix elements requires a very dense
sampling of the Brillouin zone, these were evaluated on a
32×32×32 k-point mesh. Again, the PW91-GGA func-
tional [6, 7] was chosen to treat exchange and correlation.
In order to have confidence in a pseudopotential calcu-
lation, it is also important to check that the calculated
electronic structure is consistent with full-potential cal-
culations. The calculated band structure and DOS were
therefore checked against our FP-APW+lo calculation
and were barely distinguishable.

The calculated phonon dispersion of BaSn5 is shown
in Figure 6. Here, the size of the points indicates the
relative size of the mode, ν, and q-point resolved phonon
linewidth, γqν , (inverse phonon lifetime). In BaSn5, the
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FIG. 6: Phonon dispersion of BaSn5 along selected high-
symmetry directions. The size of the points indicates the
relative size of the phonon linewidth of that mode at that
q-point.
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FIG. 7: Eliashberg function, α2F (ω), (top) and phonon DOS,
F (ω), (bottom) of BaSn5. As 1 THz is equivalent to 4.1 meV
(or 33 cm−1), the ranges spanned by the two separate plots
are equivalent.

frequency of the lowest acoustic phonon mode becomes
imaginary (shown as negative in Figure 6) between the
Γ-point and one quarter of the distance towards the M-
point and similarly between the Γ-point and one quarter
of the distance towards K-point of the hexagonal Bril-
louin zone. This is probably because of a numerical in-
stability due to the size of the plane-wave cutoff that is
required for accurate numerical convergence near the Γ-
point when using ultrasoft pseudopotentials with GGA
exchange-correlation functionals. It is also worth consid-
ering that, in the calculation, the translational symme-
try of the crystal is broken because of the discreteness
of the fast Fourier transform grid. This leads to acoustic
phonon modes with non-zero frequency at the Γ-point. In

FIG. 8: Displacement pattern for the lowest optical phonon
mode (mode 4). The symmetry of this mode is E2g and it is
a shear-type mode. The Ba atoms are green, Sn1 atoms are
dark blue and Sn2 atoms are light blue. The atomic displace-
ments are indicated by the purple arrows and the size of the
arrows are proportional to the displacement. The size of the
arrows have been greatly exaggerated for clarity.

order to restore the translational invariance of the crystal,
the acoustic sum rule (ASR) is imposed, thereby forcing
the acoustic phonon modes to have zero frequency at the
Γ-point. Direct diagonalisation of the dynamical matrix
at the Γ-point gives an imaginary frequency of 0.14i THz
for the lowest two acoustic phonon modes and the ASR
then forces these modes to zero frequency at the Γ-point.
In order to check whether this was a real lattice instabil-
ity, the plane-wave pseudopotential calculation was re-
peated with wavefunction and charge density cutoffs and
80 Ry and 800 Ry, respectively. Unfortunately, calculat-
ing the dynamical matrices throughout the Brillouin zone
with the larger cutoffs is computationally impractical. It
is, however, possible to calculate the dynamical matrix
at the Γ-point with the larger cutoffs. Direct diagonal-
isation of the dynamical matrix at the Γ-point yielded
a real frequency of 0.17 THz for the lowest two acoustic
phonon modes. For the optical phonon modes, the largest
frequency differences were less than 5% of the calculation
with the smaller cutoffs and most of the differences were
significantly smaller than this. It therefore seems likely
that the imaginary phonon frequencies in Figure 6 are
due to a numerical instability near the Γ-point rather
than a lattice instability.

Both the calculated phonon density of states F (ω) and
Eliashberg function α2F (ω) are shown in Figure 7. This
yields an electron-phonon coupling constant of λep =
0.87. In BaSn5, the average coupling across all 18 phonon
modes is 0.0483, however, the couplings to the first five
modes are much stronger (0.0951, 0.0769, 0.0942, 0.1051
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and 0.0913, respectively). These first five modes are re-
sponsible for the large peak in α2F (ω) around 1.25 THz
and contribute more than half of the total λep. It is worth
noting that the mode, ν, and q-point resolved electron-
phonon couplings, λepqν , are set to zero for the phonons
with imaginary frequencies. The atomic displacement
pattern for the lowest optical phonon mode (mode 4) is
shown in Figure 8. The symmetry of this mode is E2g

and it is a shear-type mode. This mode has the largest
electron-phonon coupling and involves c-axis oscillations
of the Sn2 atoms with adjacent in-plane Sn2 atoms oscil-
lating out-of-phase and adjacent out-of-plane Sn2 atoms
oscillating in-phase.

After calculating λep, and determining the logarith-
mically averaged phonon frequency, ωlog, the supercon-
ducting critical temperature can be estimated from the
Allen–Dynes formula [18],

Tc =
~ωlog

1.2kB
exp

( −1.04(1 + λep)

λep − µ∗(1 + 0.62λep)

)
. (4)

Using the calculated λep = 0.87, ωlog = 57.10 cm−1, and
choosing values of µ∗ between 0.10–0.15, Tc is found to lie
between 3.3–4.5 K. Choosing µ∗ = 0.11 yields Tc = 4.2
K which agrees remarkably well with the experimentally
observed value of Tc = 4.4 K [3, 4].

CONCLUSION

In conclusion, the electronic structure and phonon
dispersion relation of BaSn5 were calculated from first-
principles. This allowed an evaluation of the electron-
phonon coupling from which the superconducting crit-
ical temperature was estimated. The electron-phonon
coupling constant was found to be λep = 0.87 and appli-
cation of the Allen–Dynes formula with Coulomb pseu-
dopotential of µ∗ = 0.11 yielded a superconducting crit-
ical temperature of Tc = 4.2 K, in excellent agreement
with the experimentally observed value of Tc = 4.4 K
[3, 4]. Finally, the calculations show that the main con-
tribution to the electron-phonon coupling comes from the
low energy phonon modes.
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