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Abstract  

Spatially varying signals are typically sampled by collecting uniformly spaced samples irrespective of 

the signal content. For signals with inhomogeneous information content, this leads to unnecessarily 

dense sampling in regions of low interest or insufficient sample density at important features, or both. 

A new adaptive sampling technique is presented directing sample collection in proportion to local 

information content, capturing adequately the short-period features while sparsely sampling less 

dynamic regions. The proposed method incorporates a data-adapted sampling strategy on the basis of 

signal curvature, sample space-filling, variable experimental uncertainty and iterative improvement. 

Numerical assessment has indicated a reduction in number of samples required to achieve a 

predefined uncertainty level overall while improving local accuracy for important features. The 

potential of the proposed method has been further demonstrated on the basis of Laser Doppler 

Anemometry experiments examining the wake behind a NACA0012 airfol and the boundary layer 

characterisation of a flat plate. 

 

Keywords: Adaptive sampling, curvature, uncertainty, radial basis function, LDA, boundary layer, 
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1 Introduction  

Independent of the adopted measurement technique, data extraction is a discrete process by nature, i.e. 

data can only be captured at distinct temporal or spatial instances with finite resolution. The most 

common sampling routines adopt so-called space filing strategies whereby sampling locations are 

attributed throughout the measurement domain irrespective of the underlying signal. Such strategies 

include full-factorial i.e. equispaced locations in each dimension, stratified, Latin Hypercube designs 

(McKay et al. 1979), Sobol sequences or fully random sequences. These sampling approaches are 

typically not satisfactory or not practical though because of the exponentially large number of samples 

required to properly characterise the signal. Iterative methods on the other hand, whereby extraction 

locations are determined on the basis of the accrued signal content itself, offer the potential to 

optimise the attribution of the number and position of sampling points. Accumulating information in 

regions of increased signal complexity offers a more efficient strategy and consequently minimises 

testing time without loss of information. Adaptive sampling is commonly adopted in clinical research 

to ensure appropriate sample sizes for efficient and meaningful statistical experiments (Chow and 

Chang 2008; Chow 2014). The efficient collection of meaningful data has however a broad 

application and is commonly referred to as Design of Experiments (DoE) for which vast literature is 

available (Weissman and Anderson 2014; Ilzarbe et al. 2008). For instance, in precision manufacture 

of parts, adaptive sampling routines have been developed to enhance the automated geometry 

inspection with coordinate measuring machines (Yu et al. 2013), while in chemical physics adaptive 

methods have been used to refine surrogate models for potential energy surfaces by sampling regions 
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of high wave energy content (Sparta et al. 2009). The authors will present within the current study the 

concept of such an adaptive routine to guide the spatial sampling of the velocity field in fluid 

dynamics experiments.  

Independent of the application, all adaptive sampling methodologies inherently require first a 

metamodel or surrogate model of the signal of interest, followed by an indicator of complexity. Both 

are updated iteratively with newly collected data. Surrogate models are built by testing sample points 

of the target response, i.e. the signal, to provide a heuristic over the whole domain, albeit subject to 

uncertainty using all information available. The objective is to ensure new sample points are placed 

where they will be most advantageous in terms of new information content without the necessity to 

traverse the response landscape at infinitely many points. Surrogate modelling has received 

considerable attention in the field of engineering as it allows optimisation of a design while offering 

the benefit of being cheap to evaluate as a direct result of the reduction in required data points 

(Forrester et al. 2008). The use of Kriging as a particular metamodel is most common as the collected 

data is typically assumed to be a realization of Gaussian processes, i.e. each value of the underlying 

signal is assumed to follow a normal probability density (Picheny et al. 2010). Such methods however 

require further definition of the related covariance functions through the so-called hyperparameters 

(Toal et al. 2008). Alternatively one can resort to Radial Basis Functions (Fasshauer 2007) in 

combination with polynomial interpolation (Fox 1997). In comparison with other interpolation 

schemes such as splines, polynomial response models and Kriging, Radial Basis Functions (RBF) 

offer the advantage of being conceptually simple in construction, meshless (data can be arbitrarily 

spaced), easily extendible to higher dimensions and provide models of arbitrary smoothness 

(Wendland 2005). Developed first to reconstruct complex geographical landscapes (Hardy 1971), 

RBFs typically out-perform polynomials in terms of reconstruction accuracy (Hussain et al. 2002); 

and even the ability of polynomials to model simple, convex responses of low dimensionality 

(Hussain et al. 2002; Paiva 2009) can be subsumed into the RBF approach.  

With a surrogate model at hand, the localisation of the samples is next dictated by the objective 

function which prioritises new potential sampling positions. Lovison and Rigoni (2010) for example 

apply the Lipschitz criterion as indicator for the signal’s complexity whereby more points are 

allocated to regions of higher complexity. In PIV image processing Theunissen et al. (2007) attributed 

higher sampling densities to areas of higher variance in velocity and achieved higher spatial 

resolution. However, adaptivity criteria were inherently defined by first order gradients while 

discretization requires denser sampling in regions of stronger curvature due to nonlinearity of the 

signal. Mackman and Allen (2010), consult the Laplacian to guide local refinement and model the 

spacing between samples with an interpolant. While such methods offer drastic improvements in the 

case of deterministic data, the introduction of experimental noise presents special challenges as 

random fluctuations contaminate correct measures of spatial curvature, and as regions of high and low 

uncertainty are treated without account of their differences. 

The objective of the work presented is to address the spatial allocation of velocity extraction through 

an automated adaptive process incorporating the mathematical formulations of typical decision 

criteria applied by the experimentalist. Curvature of the velocity field is used to adjust the budget and 

spatial organisation of data extraction sites. The approach presented herein further alleviates 

constraints on sampling imposed by spurious curvature measures by including the local measurement 

error as a heuristic driving the sampling distribution. Moreover, the formulation of the error objective 

used here admits heteroskedastic error profiles: rather than considering only a domain-wide scalar 

value for uncertainty, locally varying error information can be exploited to focus more samples in 

regions of higher uncertainty or volatility, such as regions of unsteady flow. In an iterative manner the 

number of attributed samples is incremented using a Radial Basis Function interpolant as artificial 

target signal from which the adaptivity criteria are derived. To the best of the authors’ knowledge, 
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adaptive measurements utilising error estimates have not yet been applied in the field of experimental 

fluid dynamics.  

To clarify the framework of the presented work, the sampling problematic is presented in section 2. 

Details regarding the implementation of the surrogate model are provided in section 3. This section 

contains the novel incorporation of measurement error into the objective function as well as an 

iterative convergence criterion to automate the sampling procedure. The conduciveness of the 

presented methodology is subsequently assessed on the basis of computer simulated signals and one-

dimensional LDA experiments behind a NACA airfoil and flat plate boundary layer showing the 

achievable gain in spatial resolution while simultaneously minimising testing time.  

 

2. Problem statement 

In the engineering community, the Nyquist sampling criterion is well-known and dictates the required 

distance between neighbouring sample points on the basis of the maximum occurring signal frequency 

(Shannon, 1949). In order to capture the features of a sinusoid of frequency B in a domain of length L, 

for example, the minimum required sampling rate is 2B. This represents an ideal case with perfect 

placement of all samples in a uniform manner with spacing L/2B. In case of inhomogeneous 

distribution of information, e.g. a signal with spatially varying frequency, such an approach will 

however lead to inadequate sampling as the imposed sampling criterion will be too stringent in signal 

portions of lower frequency or lower interest. The experimentalist is a-priori uninformed of the 

signal’s spectral characteristics and will concomitantly adopt an over-sampling strategy considered 

safe, though inherently severely misusing computational and acquisition effort. More importantly, 

sampling abiding the Nyquist criterion does not guarantee the reconstruction to provide a proper 

representation of the underlying flow field as illustrated in Figure 1-a. Sampling must concomitantly 

be also adapted to the signal complexity, i.e. data dependent sampling.  

 

  
(a) (b) 

Figure 1: (a) Example of a signal containing spatially inhomogeneous data content, sampled at three times the 

signal frequency using full factorial sampling and reconstructed using cubic interpolation. (b) Adaptively 

sampled and reconstructed signal. 

At this stage the authors would like to stress that because of the inherent sequential sampling, in the 

current framework data extraction focusses on the extraction of statistical quantities such as e.g. 

average velocity field. Only when an instantaneous full-field sample of the underlying signal is 

available, such as in PIV, can the sampling strategy yield optimised measurement sites for 



4 

 

instantaneous data (Theunissen et al., 2007). Sampling concepts presented hereafter will nevertheless 

remain valid. 

Adaptive sampling considers response data in the determination of new sample locations as to retain 

the level of accuracy with fewer required samples, or to produce a model with superior accuracy given 

the same budget of samples (Sacks et al., 1989). These techniques add samples iteratively at locations 

where based on values from the current surrogate model a sampling criterion is met. The surrogate 

model is then updated with the new samples and responses for the next iteration. The outcome of such 

a procedure is depicted in Figure 1-b. Extraction locations are clustered in signal portions of sufficient 

interest yielding a suitable basis for reliable signal reconstruction. 

To further exemplify the proposed dependency between sampling and signal content a one-

dimensional parabola is considered. The parabola is defined as  

f(x)=a(x-xp)
2
+b  ( 1 ) 

where xp symbolises the peak location. Sampling is performed at locations xi allowing the underlying 

signal to be approximated as  

g(x)=f(xi)(x-xi)  ( 2 ) 

This formulation is the general descriptor of interpolation with ψ(∙) representing a basis-function. 

Imposing the property (x-xi)=1, which is valid for polynomial-based interpolation kernels, the error 

ε between the true and reconstructed value at location x is then given as  
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Assuming (∙)>0 and to be monotonically decreasing, largest errors will be attained at the location 

with the smallest radius of curvature (x=xp), in which case the error will be proportional to the local 

curvature, determined by parameter a, and distance between the sample and peak location (xp-xi). This 

simplified example justifies the need to agglomerate sampling instances in regions of higher signal 

curvature (Dassi et al., 2014) and improves reconstruction as demonstrated in Figure 1-b. 

The authors also consider data uncertainty as a secondary criterion to steer the sampling. Adaptive 

sampling is a concept greatly explored for engineering design optimisation in the CFD community for 

which the uncertainty in response values is wholly due to modelling errors and numerical 

inaccuracies. The estimate of error so obtained is based purely on the confidence in the modelling 

parameters and their ability to predict the responses at untested sites based on proximity to existing 

samples (Forrester et al., 2006). This response data may be presumed to be homoscedastic i.e., the 

response uncertainty level is constant throughout the domain. Framed in this way, the confidence in 

response prediction depends entirely upon the spacing of samples and in no way reflects the value or 

uncertainty of their responses. This is evident in practice, as positioning sample updates based on the 

Kriging estimate of error alone results in a completely global i.e., space-filling, sample distribution. In 

contrast, data derived from physical measurements is subject to real stochastic error (Theunissen et 

al., 2008). In studies of fluid flows, uncertainty can arise additionally from unsteadiness as in the case 

of turbulence. Following Bendat and Piersol (1966) the relative measurement error x  and 

uncertainty in mean statistics x  is related to the second moment by  
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where Ns represents the number of independent samples at a fixed spatial location, Zα a coefficient 

related to the confidence level (commonly set to 1.96 for a 95% confidence level )and σx the standard 

deviation in the data. Omitting the density factor the magnitude of turbulence intensity is linked to 
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Reynolds stress τxx. The latter may vary spatially and can thus be heteroskedastic. In these cases the 

authors argue that the assessment of error when deciding where to interrogate the physical system for 

new samples is sensible. Moreover, it is good practice to re-acquire data points in areas of elevated 

uncertainty to improve confidence in the data. 

The budget of samples is typically dictated by the user, implying that significant knowledge of at least 

the form of the response is available before adaptive sampling begins. The number of samples is 

consequently rarely optimal. A last requirement of any automated adaptive routine, in the interest of 

maximum generality and making the method relevant to as wide a field of application as possible, is 

therefore a means of automatically determining when enough samples have been collected.  

 

3. Proposed Methodology 

The above discussion highlights the need to suppress the common constraint of data-independent 

sampling. For this reason an adaptive sampling strategy is proposed taking into account local 

curvature and spatially varying error estimations while avoiding unnecessary refinement (over-

sampling). Initial sampling sites are distributed uniformly and define the extents of the domain. The 

task of the initial grid is to provide crude insight into the response with a minimum of samples but 

with a fair chance of capturing most important features. When the average domain coverage per 

sampling point reduces to 1.6%, the initial grid surpasses the accuracy requirement, negating the need 

for adaptive sampling. For this reason typical initial grid sizes of 17 to 33 sampling sites are 

considered hereafter. The subsequent adaptive sampling is driven by an objective function. Given the 

discrete availability of data, a surrogate model is needed to enable evaluations throughout the 

scrutinised domain. Because the model will require updating after the acquisition of data at new 

sampling points, the adaptive data capturing process is implemented in a recursive scheme as 

presented in Figure 2.  

 

 
Figure 2: Proposed adaptive data acquisition using RBF surrogate modelling. 

The aim of an adaptive sampling method with broad applicability demands that case-specific 

parameter tuning of the metamodel be avoided in favour of robust, universally relevant constants. The 

choice of surrogate model and adopted methodology of blending sampling criteria into one objective 

will be discussed hereafter in addition to an automated stopping criterion. 

 

3.1 RBF Surrogate model 

Curve fitting in the form of polynomial interpolation or spline fitting is probably the most ubiquitous 

model due to simplicity and relatively low cost. However, Radial Basis Functions (RBF)-based 

surrogate models are able to capture very complicated higher-dimensional landscapes out of reach for 

simpler models (Krishnamurthy 2002, 2005) while offering superior accuracy when combined with 

polynomial terms (Hussain et al., 2005). Second, RBF and Kriging models offer single, domain-wide 

analytic expressions contrary to splines which are only piecewise analytic. A third benefit is that, as 

Gaussian process based models, RBFs provide credible error estimates. In fact, it can be shown that 

these error estimates are identical in form between RBF and Kriging models (Mackman et al., 2013). 

In contrast to simpler models such as polynomial response surfaces, RBF and Kriging models do not 
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impose a particular functional form and are meshfree making them more conducive to approximate 

complex surfaces represented with scattered data.  

If the field of application is particularly constrained it is possible to achieve very convincing 

predictions of the response by a-priori adjusting model parameters as in Kriging. The resulting model 

is tailored closely to a specific type of response however and the parameters so tuned are unsuitable 

for experiments with very different response shapes or scales. Congdon and Martin (2007) summarise 

the possible origins of deviations between the underlying response and a Kriging model response as 

being due to erroneous data, the form of the Kriging model being insufficient to estimate the 

observations as a Gaussian process, or the range of the model not being amenable to representation by 

a single spatial random process. To retain maximum generality and minimise assumptions about the 

data a priori, in the present work the authors resort to RBF as surrogate models. 

For simplicity, the collection of Np datapoints x1..Np are confined hereafter to a unit interval xs[0,1]. 

This scaling is performed after every addition of data sites. The response s(xs) of a RBF interpolant 

combined with a polynomial p of a signal f, using Np samples can be formulated as  
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Here (||xk,s-xs||) is the contribution of the k
th
 basis function depending solely on the radial distance 

(hence the naming) between the k
th
 data point xk,s and new location xs. As an interpolant s(xs) recovers 

the signal exactly at all data sites xk,s while a polynomial p(xs) is added to enhance accuracy. A third 

order polynomial p(xs)=q3xs
3
+q2xs

2
+q1xs+q0 is used hereafter. The interpolation problem presented in 

Equation (4) amounts to solving a system of linear equations 
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where Ψ is a Np×Np matrix with elementsi,j(||xi,s-xj,s||), P is a Np×4 matrix with row-wise elements 

[xi
3
 xi

2
 xi 1] and i,j=1…Np, O is a 4×4 zero matrix, vectors η=[η1 η2 … ηNp]

T
, q=[q3 q2 q1 q0]

T
, f=[f1 f2 

…fNp]
T
 and 0 is a vector containing four zero elements. The coefficients defining the interpolation can 

then be solved by means of a least squares approach; m=(A
T
A)

-1
(A

T
g). After re-scaling the defined 

interrogation grid containing Ne potential sampling sites, xint, the surrogate model is evaluated as 

s(xint)=Ψintη+Pintq where the elements of the Ne×Np matrix Ψint are defined as i,j(||xint,i -xj,k||) and Pint 

contains the Ne row-wise elements [xint,i
3
 xint,i

2
 xint,i 1].  

Available basis functions are many and varied, with popular choices including thin plate splines 

(r)=r
2
log(r), cubic (r)=r

3
, Gaussian (r)=exp(-r

2
/2σ

2
), multiquadric (r)=(r

2
+σ

2
)

½
, and others 

(Forrester et al. 2009; Hussain et al. 2002). In the current method, the fourth-order-continuous (C
4
) 

radial basis function defined by Wendland (2005) is used in order to allow for a continuous and 

smooth analytic Laplacian which will serve as heuristic for the curvature. Wendland’s basis functions 

are of minimal polynomial degree for a given smoothness. They are moreover compactly supported, 

ensuring the basis function is positive definite. This last property ensures solubility of the 

interpolation problem and also gives Wendland RBFs their relatively better matrix conditioning 

compared with other basis functions as the number of samples or the support radius are increased 

(Fornberg et al. 2002). Moreover, the availability of analytic derivatives of the RBF interpolant can be 

inexpensively computed without recalculating the interpolation coefficients. Interpolants are neither 

restricted to equidistant sample locations nor require any partitioning of the domain in a case-specific 

way. The implemented Wendland’s fourth-order-continuous RBF for up to a maximum of three 

spatial dimensions is given by 
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Parameter rn represents the normalised Euclidian distance. A comparison between the Wendland C
4
 

and Gaussian basis function with a standard deviation σ=0.17 is depicted in Figure 3-a for clarity.  

 

  
(a) (b) 

Figure 3: (a) Comparison between Wendland fourth-order continuous (C
4
) basis function and a Gaussian with 

σ=0.17. Though both functions seem similar, the former has a finite non-zero extent up to rn=1 while the 

Gaussian has an infinite support radius (b) Illustration of the blended curvature objective considering a 

windowed sinusoidal signal sampled at 10 times the sinusoid frequency. 

The contribution from each basis site to the interpolant depends on the radial (Euclidian) distance 

scaled by a support radius R which determines the region of influence of each basis function; 
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It has been shown that RBF interpolants have an optimal support radius value which minimises the 

interpolation error while retaining acceptable conditioning of the kernel matrix (Larsson and Fornberg 

2005). This optimal value depends strongly upon the RBF kernel used, the distribution of data, the 

response values, and the number of data points though. Consequently, optimum selection of the 

support radius value has been a topic of ongoing discussion for many years with authors suggesting 

sophisticated parameter estimation schemes to suit each individual response (Rippa 1999; Sheuerer 

2011) and others proposing to use a constant value that is robust over most responses (Mackman and 

Allen 2010). Setting a constant R=1 has been found previously to yield good results as each basis 

function can contribute throughout the entire domain. This also comes at the price of spurious Gibbs-

like oscillations and poorer matrix conditioning. From the authors’ experience R=0.5 is a robust 

choice for a wide variety of responses. This removes the expense of tuning R for each case or for each 

distribution of samples, and also strikes a balance between good accuracy throughout the domain and 

freedom from spurious oscillation phenomena and matrix conditioning problems.  

 

3.2 Sampling Objective Function 

In the current work individual objective factors Ji mathematically translate typical sampling criteria 

used by the experimentalist. These factors account for curvature (JC), error (JE), improvement (JI) and 
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spacing criteria (Jh, Jho) and are combined to yield the overall sampling objective function J on which 

to base the selection of new sampling sites;  

      hohIIEECC JJJJJJ    ( 9 ) 

where i are empirical offset constants. The objective function J quantifies the significance of 

potential sampling sites across the domain; the higher the magnitude of J, the greater the benefit of 

sampling at the corresponding location.  

 

 Curvature adaptive sampling - JC 

A first estimate of the heuristic for measuring curvature is given by the response’s Laplacian; 
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In the current work considering the one-dimensional problem, p is the cubic polynomial yielding 

2
p=6q3xs+2q2. Once the interpolation coefficients ηk for the response have been found (section 3.1), 

calculation of the Laplacian proceeds in the same way as for the response whereby only the 

interrogation matrix needs to be recomputed using the derivative forms of the RBF basis functions. 
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Although the Laplacian is the sum of second derivatives with respect to each coordinate direction, 

evaluation requires only first and second derivatives of the basis kernels with respect to separation 

distance. These derivatives are given analytically and for the Wendland C
4
 basis function adopted in 

this work 
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The second derivative is depicted in Figure 3-a and compared to that of a Gaussian for clarity. A 

smooth signal, such as might be obtained in deterministic (computer) experiments with no real noise, 

may have a smooth Laplacian, but physical measurements come with stochastic errors in the form of 

noise. These give rise to a model Laplacian which can be erratic and not always true to that of the 

underlying function. For this reason the new adaptive method blends the Laplacian with a measure JΔ 

of local signal change relative to the wider signal environment; 
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sMA represents the moving average filtered response evaluated on the interrogation grid considering a 

filter width equal to a fraction (~30%) of domain extent in the calculation of each point. The curvature 

objective function JC is subsequently defined as 

 nnLC JJMAJ ,,   ( 14 ) 

Where the subscript n refers to unity-based normalisation, (∙)n=(∙)/(∙)max, and the square root avoids 

exacerbating relative differences in peak magnitudes. A secondary moving averaging filter MA with a 

span of 2% the domain has been implemented to improve tractability of the curvature for subsequent 

sample selection.  

The concept is illustrated in Figure 3-b by means of a windowed sinusoidal signal sampled at 5 times 

the Nyquist frequency. The curvature objective JL presents multiple peaks, dominated by the 
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discontinuity at the edges of the sinusoid. Considering the relative local variation in signal JΔ the 

curvature objective can be smoothened yielding the blended heuristic JC. More importantly, JC no 

longer peaks at the discontinuities of the signal but also incorporates regions corresponding to the 

actual highest signal curvatures. 

 

 

 

 Error adaptive sampling - JE 

The rationale to extend sampling adaptivity taking into account information about measurement 

uncertainty (represented as error bars) is to either gain a more accurate model in the region of high 

uncertainty by obtaining more exploratory points or to better characterise (reducing) the uncertainty 

by repeated sampling. Considering the signals of interest to be ergodic, the relative error in derived 

statistical quantities is pre-determined by the number of datapoints collected, the uncertainty level and 

associated level of signal fluctuation (c.f. Equation 2). A surrogate model is subsequently built based 

on relative error x  attributed to each measurement point utilising the procedure described in section 

3.1.  

 

 Improvement adaptive sampling – JI 

A third objective function mitigates the risk of over-exploiting regions of higher error or curvature 

without adding information. Inspired by the implicit assumption that a site xint at which a great change 

in signal model s
(t)

(xint) has taken place since the previous sampling iteration s
(t-1)

(xint) is more likely to 

lie within an interval of interesting signal features, the improvement objective JI quantifies this 

relative added information content at xint; 
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Parameter θ ensures that only significant changes to the surrogate model, exceeding the local 

measurement error x  are considered since such changes cannot be attributed to mere uncertainty. 

The improvement objective JI thus favours regions where a demonstrated meaningful change has 

occurred during the latest sampling and discourages regions with low contribution to the overall 

picture. 

 

 Sample spacing adaptive sampling – Jh, Jho 

To encourage sampling of the domain toward a space-filling scheme, sample separation is modelled 

as an RBF interpolant after Mackman and Allen (2010); 
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The term ()+ signifies the cut-off function introduced in equation (6). Existing sampling sites xk,s have 

unity value enabling the determination of RBF coefficients γk. While the surrogate modelling concept 

applied is identical to the suggested RBF process with the exception of omitting the polynomial term, 

the use of the supremum nearest neighbour distance dsnn as support radius proved to yield more robust 

models compared to a constant R. This distance is the largest of the minimum distances between data 

sites; 

snndR      with     ||)}(||min{sup ,,
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 ( 17 ) 
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where θ is set to 4
25.1 . The spacing objective Jh is zero at existing sample locations and grows away 

from sample sites towards a value of unity as illustrated in Figure 4-a. Regions distanced from 

existing data sites are concomitantly favoured for exploration by Jh toward completely uniform space 

filling. In contrast the exclusion factor Jho represents the limit of Jh with an infinitesimal support 

radius with zeros at the sample sites and unity elsewhere and serves to exclude any identical duplicate 

samples which may arise. Since the finest spacing of elements in Jho is dictated by the spacing of the 

interrogation grid xint, Jho effectively fixes the finest spacing for newly proposed samples. This linkage 

is desirable since it reflects matrix conditioning considerations along with the available precision of 

the physical experiment. 

 

  
(a) (b) 

Figure 4: (a) The objective function Jh reaches zero at existing data sites and tends towards unity in between, 

imposing a tendency towards uniform space filling. (b) Illustration of sample selection utilising objective peak 

geometry; the new sample site is located at the centre of gravity (⁞) of the largest of grey areas highlighting 

sections of objective function exceeding the threshold (--). The threshold equals the mean of the 5 largest peak 

values (■). 

 Offset constants 

Offset constants are implemented to prevent their associated factors Ji from dominating the objective 

function’s tendency towards zero in cases where Ji≈0. For the exclusion factor Jho, which avoids 

redundant (coincident) samples, and Jh, which merely shapes the whole objective function according 

to sample spacing preference, this tendency to override the sampling objective function is desirable; a 

flat signal must still be sampled with equispaced samples. No offset factors are attributed to these 

object factors concomitantly. Domination of one of the other components (error, curvature or 

improvement) would undermine however the ability of adaptive sampling to target promising regions 

when just one of the sampling criteria is very small.  

While the authors have not presented results, elaborate assessment has implied the following suitable 

range of offset values; 0.4≤C≤0.6, 0.4≤E≤0.5 and 0.4≤I≤0.8. Consequently a robust setting i=0.5 

is proposed. 

 

2.3 Sample selection 

Each iteration a single new sample is prescribed. Although this process is computationally more 

intensive compared to the allocation of multiple new sites, the distribution of each unique sample is 
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ensured to be based on a maximum of information available about the response. Moreover, the 

selected process retains general applicability and reliability. 

Because the objective function is the product of several different objective functions, smoothness is 

not guaranteed. Instead the resulting function may consist of multiple peaks attaining the maximum 

objective amplitude, distracting immediately neighbouring regions of nearly as high value. For this 

reason, rather than selecting the highest value in J as was done in prior adaptive methods, the new 

sampling location is decided based on objective peak geometry, i.e. the width and amplitude of all 

peaks exceeding a threshold value. Here the authors have adopted the principle that the integral of the 

difference between the objective function and threshold over an interval, relative to the integral of the 

entire domain acts as a heuristic for the allure held by that region.  

The new sample selection routine is graphically depicted in Figure 4-b. A threshold is based on the 

mean value of at most the 5 highest peaks of J and is in this sense fully adaptive to the individual 

signal. The new sample is subsequently attributed to the interrogation grid point closest to the centroid 

of the dominant objective area rather than the peak location. 

Relative to the domain width, the minimum sample separation still allowing for an invertible 

interpolation matrix is generally smaller than the finest spatial precision of the experimental 

equipment. This is certainly true of the Laser Doppler Anemometry (LDA) system used in the present 

work where the mechanical resolution of 0.01cm translates in 0.05% of the typical 10-20cm domain 

width. Accordingly, the discrete nature of the interrogation grid prohibits a degradation of the 

interpolation matrix’s condition number.  

 

2.4 Convergence Criteria for Automatic Stopping 

While fully adaptive, the process thus presented does not come with criteria for deciding when to stop 

acquiring new samples. Two common stopping criteria are the predetermined budget of sampling 

points and an acceptable difference between the surrogate model and the underlying signal. In the 

former case this requires a-priori knowledge of both the spatial distribution of the signal and the 

adequate number of samples to represent such a function. Neither need be known to the 

experimentalist. The second condition is limited to use in benchmark testing of the sampling method 

rather than with real experiments because the true function needs to be known. The present work 

addresses these shortcomings, rendering the adaptive sampling method capable of complete 

automation. In accordance with experimental practice, the authors categorise the adaptive sampling 

process converged when the maximum in the improvement factor JI, evaluated at the interrogation 

grid, falls below a threshold εlim for the last NCCI iterations. Both threshold and number of consecutive 

iterations are updated adaptively. 

The sampling objective function in this work includes two particularly salient emphases; regions of 

high uncertainty relative to response values and relatively dynamic response. The authors argue that if 

the measurement is contaminated by large errors, improvements must be ascertained to be related to 

the signal rather than an erroneous measurement. As such, a larger number of iterations is needed 

subjected to a more stringent threshold. Here, the non-dimensional error factor α is introduced, 

expressing the ratio between experimental uncertainty or error and amplitude range in underlying 

signal;  

minmax ss

x





  ( 18 ) 

where x  is the mean of the absolute sample uncertainties and smax and smin are the maximum and 

minimum sample responses respectively. Recalling the definition of Δs(xint) as per Equation 12 and 
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denoting the corresponding peak values by subscript p the signal contrast β, similar to image contrast, 

is evaluated through  

min,max,

min,max,

pp

pp

ss

ss




  ( 19 ) 

Values of contrast close to unity imply high amplitude features to dominate the objective function. A 

single dominant feature should not inhibit further exploration of the measurement domain however. 

For this reason a high signal contrast β must necessitate more sampling sites to capture such features 

and to encourage sampling of the wider domain. Finally, the error factor α and contrast β are 

combined in a linear scale for the automatic calculation of the convergence threshold (Figure 5); 

 ),1min9.01(
2lim

  coarse  ( 20 ) 

Parameter εcoarse is a constant matched to the non-dimensional improvement factor JI and relates to the 

level of repeatability in the data. Empirical studies performed by the authors have indicated values of 

εcoarse ranging between 3∙10
-3

 for numerical studies (highly repeatable data) and 10
-1

 for experimental 

data (more erratic data) to yield robust stopping performances, independent of the response at hand. 

The required number of consecutive converged iterations NCCI for which the maximum in JI must fall 

below εlim is then expressed as 
















 


2
ceil1


CCICCI KN  ( 21 ) 

where KCCI is a constant set to 10 to scale the number of required iterations in response to the average 

between contrast and error factor (Figure 5). Since NCCI is determined adaptively for a given response 

rather than prescribed as a case-specific parameter, the method is completely automated. Note that 

now the necessity of more sampling sites ( 2
 →2) is directly translated in an enhanced severity of 

the threshold (εlim→εfine) and a concomitant larger number of required iterations satisfying the 

convergence criterion. 

 
Figure 5: Evolution in convergence threshold εlim and number of converged iterations NCCI with average 

between error factor α and contrast β. 

 

2.5 Computational effort 
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The adaptive sampling approach requires several functions to predict new samples as indicated by the 

flowchart in Figure 2. While these processes may involve some computational overhead, the majority 

is related to the determination of the interpolation coefficients related to JC, JE and Jh. However, 

because of the use of Wendland functions the (Np+3)×(Np+3) matrix system defined in (5) is strictly 

positive definite. This allows the matrix inverse to be obtained by means of highly efficient Cholesky 

decomposition.  

To demonstrate the limited additional computational cost, the ratio between the total time T and 

number of final samples Np is presented in Figure 6 for the case of the flat plate boundary layer 

(Np,0=33) to be discussed in section 5. A typical LDA datarate of 4kHz is assumed yielding a 

sampling time Δt of 1 second to gather 4000 instantaneous measurements at a fixed spatial location. 

Even though no efforts were made to further optimise the algorithmic implementation of the adaptive 

sampling process, Figure 6 indicates the experimental effort to be dominated by data collection 

(TLDA=Np∙Δt). The pie chart reveals the majority of the overhead (TCPU) to be attributed to the 

construction of the surrogate model and determination of the objective factors JC and JE. Selection of 

new samples based on the objective function J covers 6% of the computational effort compared to 

10% to establish Jh.  

Figure 6 shows that the adaptive sampling scheme demands a marginal time increase. However, the 

adaptive sampling strategy allows half of the equidistant sampling points to be omitted as will be 

shown in the remainder. The authors found that the resulting overall time-gain outweighs any higher 

computational cost compared to traditional sampling as optimised sampling resulted in a typical speed 

up of data collection by a factor ranging between 2 and 3. It should be noted that even higher time 

gains can be obtained as the datarate decreases (larger Δt). 

 

 
Figure 6: Comparison between the data collection time (TLDA) and added computational time for adaptive 

sampling (TCPU) as a function number of samples and normalised with the measurement time for 1 spatial 

location (Δt). Data is based on the experimental boundary layer measurement initiated with 33 samples 

(Np,0=33). The inset shows the distribution of TCPU across the different processes within the proposed adaptive 

sampling strategy. 

 

3. Numerical Experiment 

 

The versatility and robustness of the new adaptive sampling method is first demonstrated using 

synthetic experiments. Underlying signals and spatial distributions in error are mathematically defined 
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and chosen as to pose important challenges to the scheme. In all test cases, a small initial grid of 

uniformly spaced samples is provided and the adaptive method proceeds to add one new sample per 

iteration until the automatic convergence criterion is satisfied. In each test case the surrogate model 

obtained with adaptive sampling is assessed against that obtained from uniform (full factorial) 

sampling.  

The improved potential to represent the underlying function f is quantified by means of the traditional 

root-mean-square error (RMSE). To obtain unbiased estimates a cubic interpolation is applied 

between the samples yielding the response g(x).  
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However, the RMSE is only a global metric of modelling error and does not properly assess 

performance where experimental uncertainty plays a role; it ignores the fact that a model may have 

mediocre performance in mundane regions of a response while capturing the most important response 

features. In preserving accuracy of the model representing the true function the adaptive sampling 

method aims to place samples in regions of interest, notably zones of high curvature and high 

uncertainty. To this extent two additional performance quality measures, QJE and QJΔ, based on the 

objective functions for experimental uncertainty (JE) and curvature (JΔ) are introduced defined as 
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Here δ(x-xi) symbolises the final distribution of Np sampling sites xi. In this form, the larger QX, the 

more correlated the sample distribution is with the target objective function component and the higher 

its quality according to the criterion. It should be noted that whilst the quality metrics cannot be 

compared between different test cases, they allow comparison of different surrogate models or 

methods within the same test case.  

 

 Bi-modal non-homogeneous signal 

The first experiment considers the case of two Gaussian functions with elevated error near the centre 

of the domain. The analytical description of the 1D signal, its Laplacian and error are given as 
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This synthetic test case is devised to demonstrate the impact of measurement error. The domain length 

was set to L=1.5. Starting with 9 uniformly spaced samples the iterative evolution in signal response 

is depicted in Figure 7-a. Adaptive samples are gradually concentrated on peaks in the Laplacian and 

regions of larger uncertainty even though the surrogate model value in this area is nearly flat and 

would garner little interest based on curvature alone. This is further illustrated in Figure 7-b by 

interpreting 2
f(x) and x  as probability density functions (effectively JL and JE respectively) and 

comparing their combined cumulative density function (cdf) with the sample distributions for the 

standard full factorial and adaptive sampling method. The adaptive approach imposes a total of 48 

sampling sites after 40 (=9+139) iterations. To facilitate unbiased comparison between results, the 

same budget of samples was used in the traditional method. Here samples are distributed equidistantly 

irrespective of the underlying signal, yielding a linear cdf. The adaptive approach on the other hand 

yields a distribution resembling the combined cdf as imposed by the product JLJE. The resulting cdf 
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can of course only approximate theory since the latter does not consider additional criteria such as 

space filling (Jh) and improvement (JI) or smoothing operations (MA).  

 

 
Figure 7: (a) Evolution in adaptive surrogate model with iteration number for the case defined by (23) and 

Np,0=9. The imposed signal and error are depicted in solid and dashed gray lines respectively. (b) Cumulative 

density function of the sampling distribution as per uniform sampling (--), adaptive sampling (−) and theory (−). 

Arrows indicate the centre of the Gaussians defining the signal (outer) and error (middle). 

 

As a result of the ameliorated sampling, despite utilising an equal amount of total number of samples 

Np, the adaptive method can yield a drastic reduction in root mean square error (RMSE) compared to 

the full factorial method (Table 1). In fact, the quality metric for curvature confirms a much stronger 

capture of high-curvature regions by the adaptive sampling scheme than by full factorial sampling as 

is evidenced by the distribution of sampling points (Figure 7-b). Simultaneously, the adaptive process 

concentrates more samples in the region of larger error as quantified by QJE. With increasing initial 

sampling sites, the number of new measurement locations decreases and adaptive sampling becomes 

less advantageous. For the present test case, beyond Np,0=65 all signal features are sampled 

sufficiently as seen by QJΔ tending towards unity, necessitating no further characterisation. The 

imposed convergence criteria correctly self-terminate the recursive procedure after 7 iterations. 

 

Table 1: Performance comparison between uniform and adaptive sampling in case of a double Gaussian with 

varying error distribution as per (23). 

 Test case: double Gaussian with inhomogeneous error distribution 

Np,0 5 9 17 33 65 129 257 

Np 51 48 47 68 74 136 267 

RMSEUniform 0.0176 0.128 0.0215 0.0058 0.0047 0.0022 0.0002 

RMSEAdaptive 0.0022 0.0027 0.0029 0.0006 0.0025 0.0005 0.0001 

QJΔ 1.9728 1.9363 2.3437 2.6893 2.0292 1.3228 1.1791 

QJE 2.7547 2.7982 2.7733 2.8572 2.7980 2.7143 2.6752 

        

 

Figure 8 shows the convergence history for the test case considered, illustrating how the convergence 

criteria adapt as more is learned about the response. The discovery of a new feature at iteration 15 

leads to a substantial increase in JI exceeding the threshold εlim. The new feature corresponds to the 

Gaussian with the larger amplitude, causing both non-dimensional error α and contrast β to decrease. 
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This subsequently increases the threshold and reduces the required number of consecutive converged 

iterations. As all prominent features are becoming appropriately sampled, the maximum improvement 

decreases and remains below εlim causing the recursive process to stop. 

 

 
Figure 8: Evolution in convergence threshold εlim and number of converged iterations NCCI with average 

between error factor α and contrast β. 

 

Wiggles can be observed in the response model on the right hand region of the highest Gaussian peak 

in iteration 20. These concomitantly introduce local regions of high artificial curvature and are 

attributed a sampling site in the subsequent iteration causing the oscillations to disappear. Such 

oscillations are equivalent to the well-known Runge phenomenon (Runge, 1901) inherent to 

polynomial interpolation. In the framework of adaptive sampling such wiggles are beneficial. First, 

they stimulate the excursion of the entire domain. The second reason relates to interpolation; the 

wiggles indirectly identify sampling locations important in the reconstruction of the measured signal. 

By its very nature the appearance of such wiggles is thus minimised when interpolating the data in the 

post-processing stage. This is further exemplified in the second test case. 

Although the example presented demonstrates the proposed sampling method to achieve promising 

results, the technique will not remedy poor experimental practice in that the performance of the 

adaptive sampling strategy, in case of strongly inhomogeneous information content, does depend on 

the initial sampling distribution. As an example, considering an isolated peak on an unchanging 

background, the adaptive method cannot home in on the peak unless information is available 

indicating the presence of this feature. Initial measurements must thus provide at least an indication of 

features present for the adaptive routine to determine the signal could be of interest in that region.  

 

 Linear chip 

In the second example the adaptive routine is applied to a linear chirp signal of amplitude 1 with an 

initial frequency of unity and chirp rate of 20; f(x)=1sin(2(x+10x2
)) with 0≤x≤1.5. The frequency 

thus varied spatially following 1+20∙x. A constant error x was imposed. The evolution in surrogate 

model with iteration is depicted in Figure 9-a starting with 17 initial samples Np,0, well below the 

Nyquist frequency. In this case the iterative routine is stopped after 152 recursive iterations equating 

to a total of 167 sampling points. In comparison, the optimal number of samples is calculated by 

imposing Nk samples between each of the zero crossings. While each semi-wave is thus sampled with 

equidistant points, the spacing varies spatially in a discontinuous manner. The total number of 
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samples over the considered domain is then given by the linear equation 48∙(Nk-1). Given the 167 

samples, this equates in average to 9 sites per oscillation, satisfying the Nyquist criterion. 

Alternatively, retaining the spatial resolution at the smallest wavelength a uniform sampling approach 

would demand 278 sites, nearly double that of the adaptive routine.  

 

 
Figure 9: (a) Evolution in adaptive surrogate model with iteration number for linear chirp with chirp rate 20 and 

Np,0=17. The underlying signal is depicted in solid gray while a constant background error was imposed. (b) 

Cumulative density function of the sampling distribution as per uniform sampling (--), adaptive sampling (−) 

and theory (−) for varying number of equally spaced initials samples.  

 

Table 2: Performance comparison between uniform and adaptive sampling in case of a linear chirp signal for 

varying initial sampling density. 

Test case: linear chirp signal with chirp rate 20 

Np,0 9 17 33 65 129 257 

Np 198 167 152 204 221 268 

RMSEUniform 0.0388 0.0522 0.0747 0.0359 0.0299 0.0201 

RMSEAdaptive 0.0353 0.0386 0.0561 0.0252 0.0241 0.0199 

QJΔ 1.2439 1.3974 1.2515 1.3273 1.2711 1.001 

 

Considering the spatial distribution of the frequency content, the cumulative probability of the ideal 

sampling distribution is given by its integral i.e. cdf(x)=x+10x2
. Applying an equal number of 

equispaced samples on the other hand ignores this spatially varying information, yielding a linearly 

evolving cdf (Figure 9-b). When gradually increasing the initial number of data sites for the adaptive 

routine, the cumulative density function of the final sample distribution approaches the ideal 

distribution. Resultantly the quality factor QJΔ increases (Table 2), indicative of the majority of 

samples being concentrated near the signal peaks. In turn the adaptive approach also yields an RMSE 

inferior to the standard technique. Contrary to the full factorial sampling, data post-processing may 

require the non-equidistant distributed data to be re-interpolated onto a structured grid. The 

demonstrated adherence of the adaptive sampling to the signal’s frequency content implies a 

minimisation of potential interpolation errors as indicated by the relevant RMSE values.  

Increasing the number of initial points again proves not to be necessarily beneficial. As Np,0 augments, 

all frequencies of the chirp signal gradually become properly sampled, necessitating increasingly 

fewer new adaptive sites and moving the adaptive cdf towards a linear tendency (Figure 9-b). In the 

cdf for Np,0=129 this onset to a linear tendency for the lower frequency part of the signal is clearly 
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visible. The adaptive method thus offers little advantage when a very dense initial sampling is 

utilised; a signal with homogeneous information content is known to be sampled optimally by a 

uniform scheme satisfying the Nyquist sampling criterion. Indeed, both RMSE and QJΔ imply both full 

factorial and adaptive sampling to have nearly identical performances at high Np,0.   

Arguably the above implies traditional equidistant sampling to be conducive. However, without a-

priori knowledge of the signal, an experimentalist is forced to update the required number of samples 

on the basis of previous results until satisfactory. Either this results in highly inefficient data 

collection or local refinements in data spacing. Conversely, the adaptive routine is fully autonomous, 

placing samples optimally, requiring no or a-priori knowledge of the signals and no user interaction. 

The adaptive routine thus reflects within a mathematical framework the decision making process of 

the experimentalist. 

 

4. Experimental Application 

 

The proposed adaptive method suggests new sample locations iteratively and is therefore best suited 

to experiments in which data are collected serially. To demonstrate the potential of the proposed 

method, both adaptive sampling and standard (uniform) sampling was applied to single component 

LDA-based measurements. Experiments were conducted in the University of Bristol’s Low 

Turbulence Wind Tunnel. This tunnel has an octagonal test section (0.8 m×0.6 m) and attains 

turbulence levels below 0.05%. Wake surveys were performed by means of a two-component Dantec 

Dynamics Laser Doppler Anemometry system operating in crossed beam mode. Prior to passing the 

laser beams through optics with focal lengths of 600 mm, an expansion of factor 1.98 was applied 

yielding a measurement volume extending 0.17mm in streamwise normal direction. At each 

measurement location velocity statistics were evaluated on the basis of typically 4000 instantaneous 

samples (Ns≈4000). 

 

 Artificially thickened flat plate boundary layer 

The first experimental test case investigated the velocity profile across an artificially thickened 

boundary layer on a flat plate with sharp leading edge. The trip mechanism consisted of a 4mm wire 

placed 10cm downstream of the leading edge. Benchmark boundary layer characteristics were 

obtained from 427 LDA measurements adopting two different sampling schemes; in the near vicinity 

of the wall (y
+
<57.9) measurement locations were separated 0.05mm equivalent to 1.9 wall-units, 

whereas the partition extending into the freestream (y
+
≈8.5∙10

3
) was sampled at Δy

+
=22.7. With a 

local freestream velocity of Ue=25.38ms
-1

 20cm downstream (Rex=0.167∙10
6
) the trip wire produced a 

turbulent boundary layer with shape factor H=1.35 and ratio between boundary layer thickness (99% 

freestream velocity) and displacement thickness of δ/δ
*
=7.5. Very close to the wall reliable velocity 

results were hampered by the finite extent of the LDA measurement domain (7 wall-units) and low 

data rate. The wall-friction velocity was therefore estimated by fitting the velocity-defect law,                                              

(Ue-u)/uτ=-κ
-1
∙ln(y/δ)+B, in the region 10

-2.9
≤y/δ≤0.4 yielding κ=0.36, B=2.4 and uτ=0.61ms

-1
 (Figure 

10-a). Such characteristics are in close agreement with those reported by Klebanoff and Diehl (1952) 

and Rona and Soueid (2010). The positive value of constant B indicates the presence of a mild 

adverse pressure gradient, which is also advocated by the shape in longitudinal turbulence intensity in 

Figure 10-b (Schloemer, 1966). 
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(a) (b) 

Figure 10: Artificially thickened flat plate boundary layer, 20cm downstream of a 4mm trip (Rex=0.167∙10
6
) (a) 

Comparison of experimental results at fine resolution with velocity-defect law yielding friction velocity 

uτ=0.61ms
-1

. (b) Longitudinal turbulence intensity. 

 

The adaptive sampling routine was initiated with 17 samples (Np,0=17). Because it was assumed no a-

priori knowledge of the exact wall location is available, the measurement domain extended 2mm 

below the surface (-0.02≤y/δ≤2.1). In total 99 samples were placed adaptively before the process 

automatically stopped. Contrary to the sampling distribution obtained by standard equidistant 

sampling when using an equal number of data sites, adaptivity favours the region close to the wall and 

adopts sparse sampling towards the freestream. The corresponding probability closely follows the 

curvature in the velocity profile and turbulence intensity as illustrated in Figure 11. The sample nearest 

to the wall as per adaptive sampling was located at y
+
=6 compared to y

+
=75 with the standard 

routine, further enabling a better capture of the turbulence peak and viscous sub-layer.  

Because of scatter in velocity and RMS data, doubling the number of initial points resulted in an 

increased number of final data points (Np=142). The probability distributions of samples remained 

unchanged however with respect to the Np,0=17 case. Because of the higher number of samples the 

standard approach now placed the first sample at y
+
=22 whereas the new method maintained the first 

sample at y
+
=6, manifesting its robustness. When continuously providing a better initial 

characterisation of the boundary layer by further increasing Np,0, the adaptive process consistently 

stopped after placing a total of approximately 240 (±30) samples. Here the sampling process was 

eventually driven by the oscillations in velocity data due to measurement uncertainty (Figure 11). 

However, the sampling distribution retained the unimodal tendency in the region of higher velocity 

curvature and uncertainty yielding a better resolved velocity profile in the near-wall region 

substantiated by a y
+
 of 2.7 compared to a y

+
=5 with equidistant sampling. The latter highlights the 

advantage of the proposed sampling method as uniform sampling required nearly double the number 

of measurement locations to attain comparable spatial resolution. 
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(a) (b) 

Figure 11: Probability density function (pdf) in sample distribution (Np=99) when initiating the adaptive 

process with 17 and 127 samples; (a) uniform sampling (b) adaptive sampling. Measured velocity (■) and 

turbulence intensity profiles (▲) are superimposed for clarity. 

 

 NACA0012 near wake 

In the second experimental application a wake survey behind a NACA0012 airfoil placed 0º incidence 

at a chord-based Reynolds number of Rec=63.8∙10
4
 was performed. The airfoil had a slot on the 

suction side at 70% chord length to facilitate studies related to boundary layer suction and blowing. 

Such concepts are not represented in the current study though. The measurement station was 

positioned 2cm downstream of the trailing edge (x/c≈0.065) while the considered domain extended 

approximately 0.65 chord lengths perpendicular to the freestream (-0.32≤y/c≤0.32). A wake survey at 

high resolution (Δy/c~0.003) was performed to facilitate the assessment between the standard and 

advanced sampling strategy. Resulting horizontal velocity and turbulence intensity profiles are 

depicted in Figure 12-a. A velocity deficit of 40% can be observed centered at y/c=0. Figure 12-a 

further indicates the domain extent to be insufficient to reach freestream conditions, which according 

to Bairstow (1946) should take place for y/c exceeding 0.05 in absolute value. As noted by Cooper 

(1984) in the case of a flat plate, close to the trailing edge the wake is not yet developed. Instead 

upper and lower boundary layers can be seen to merge in the horizontal velocity fluctuations 

additionally showing the presence of a double peak. Here the observed asymmetry in turbulence 

intensity is caused by early separation of the boundary layer on the upper side of the airfoil due to the 

presence of the slot. These findings are in good agreement with the data of Kim et al. (2009) for a 

clean NACA0012 airfoil at 3º incidence.  

The adaptive sampling process was initiated with 17 initial sampling points and self-terminated after 

20 iterations with εlim=0.1 as per the authors’ suggestion, yielding a total of 37 sampling points. The 

distribution across the domain in terms of the cumulative density function (cdf) is overlaid on the 

signal in Figure 12-a. A sharp increase in the cdf can be observed in the region of larger turbulence 

intensity and velocity deficit, contrary to uniform sampling (adopting an equal number of equispaced 

samples) which follows the typical linear tendency. Pivotal is the outcome of the proposed routine 

when interpolating the data using a cubic scheme as displayed in Figure 12-b. Because of the innate 

sampling concentration in the wake, the adaptive routine is capable of capturing both the velocity 

minimum and bi-modal shape in the turbulence intensity as opposed to the standard methodology. 

Based on the sampling density noticeable in Figure 12-b, standard uniform sampling would require at 
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least twice as many measurement stations as adaptive sampling to achieve the same spatial resolution. 

When doubling the number of initial measurements (Np,0=33), the automatic scheme places 28 

additional sites concentrated in the wake as illustrated in Figure 12-b, thus detailing every feature 

while the outer region remains sparse. This is further quantified by evaluating the drag coefficient Cd 

on the basis of momentum exchange; 







 c

y
U

u
U

u
d dC )1(2  ( 25 ) 

Both the high resolution and adaptive technique yield a Cd of 0.0439 independent of Np,0. This 

exemplifies the potential of the new routine to optimise the distribution of measurement locations. 

The under-resolved full factorial data returns a value 4 drag counts higher, i.e. 0.0443 in case of 

Np,0=17 and only tends towards the benchmark value with increasing initial sampling (0.0441 for 

Np,0=33). Still, Figure 12-b verifies that the turbulence intensity profile is not well represented. It 

should be noted that because freestream conditions (u/U∞=1) are not reached in the present 

measurement domain                         (-0.32≤y/c≤0.32), evaluation of the above integral will yield 

incorrect values for drag coefficients and can only be used for juxtaposition of the sampling strategies.  

 

  
(a) (b) 

Figure 12: Wake survey behind a NACA0012 aerofoil of 31cm chord length, 2cm downstream of the trailing 

edge at Rec≈63.8∙10
4
 (a) Horizontal wake velocity and turbulence intensity profile superimposed with the spatial 

distribution of sampling points (Np,0=17) (b) Close-up of the comparison between the sampling strategies in 

terms of velocity deficit and streamwise turbulence intensity. 

 

5. Conclusions 

 

Without a-priori knowledge, the most common sampling approach is to place equidistant samples 

along the parameter space describing the underlying process. Here measurement locations are 

distributed uniformly irrespective of the underlying signal. Sampling locations should however 

concentrate in regions of higher curvature and measurement uncertainty. While the former is shown to 

reduce further interpolation errors, the latter sampling criterion will enhance data reliability. To this 

extent a novel sampling methodology has been presented in this paper, which incorporates 

mathematical formulations of the typical decisions taken by an experimentalist. This includes a 

criterion to automatically stop the measurement when sufficient data is obtained, minimising the need 

for user-input. 
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The “smart” sampling method iteratively reconstructs a surrogate model of the underlying signal by 

means of Radial Basis Functions. Regions of higher data curvature and data uncertainty are 

subsequently attributed a higher number of sampling stations, though balanced by sample separation 

as to avoid clustering. Demonstrated improvement in the surrogate model serves as a final heuristic to 

dictate successive data extraction sites. These criteria are combined in a unique objective function on 

the basis of which new sampling sites are selected. Stopping criteria combine local alterations in 

surrogate model as a result of adding new information and local uncertainty to quantify convergence 

of the recursive process. 

The potential and robustness of the new sampling methodology has been substantiated by applications 

to computer generated signals and experimental Laser Doppler Anemometry measurements. For 

signals with inhomogeneous information content, the adaptive method provides sampling schemes 

which capture signal features more accurately and/or with fewer samples compared with uniform 

sampling. Alternatively, for signals with homogenous information content, for which uniform 

sampling is the optimal design, the adaptive method recovers toward this result.  

The novel adaptive routine is shown to allow for fully autonomous, highly efficient data collection, 

requiring no a-priori knowledge of the signals and no user interaction. Moreover, the adaptive routine 

generally required half the number of samples compared to traditional methods while retaining spatial 

resolution.  

The presented concepts have been shown to be preferential in one-dimensional experiments but can 

be extended into higher dimensions. Future work will therefore focus on incorporating the suggested 

adaptive sampling method into PIV image processing. 
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