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Abstract 

A crucial aspect of physical geotechnical model tests (under both 1-g and n-g conditions) is the 

evaluation of the initial (low-strain) stiffness of the soil layers of the sample test deposit, especially 

in the case of coarse materials. While for uniform soil deposits this issue can be addressed in a 

straightforward manner, e.g. by determining the fundamental frequency through the transfer 

function of an applied white-noise excitation, the problem becomes cumbersome for multi-layered 

deposits. After reviewing a number of available theoretical solutions, this paper illustrates a 

simplified yet reliable analytical procedure for determining the shear wave velocity profile (Vs) in a 

single or bi-layer deposit, taking into account the inhomogeneity of the individual soil layers, under 

the hypothesis of vanishing shear modulus at ground surface. The fundamental natural frequency of 

the inhomogeneous bi-layer deposit is analysed using the Rayleigh quotient procedure. The 

associated shape function is evaluated by considering the equilibrium of the soil column under a 

pseudo-static lateral inertial excitation imposed at its base, accounting for both layering and 

inhomogeneity. A validation of the proposed method is provided by comparing numerical results 

obtained from both time- and frequency- domain analyses against experimental data on Leighton 

Buzzard sand, from a recently-completed research project conducted on the shaking table facility at 

BLADE Laboratory, University of Bristol (UK). 

 

Keywords: Free field response; initial shear wave velocity; shaking table test; numerical 

simulation.  

 

1. Introduction 

Shear wave velocity at low strain is fundamentally related to material behaviour and associated 

constitutive modelling of granular soils. As a starting point for any subsequent response analysis, it 

is essential that low-strain behaviour is accurately characterised. The shear wave velocity of a single 

layer soil deposit in physical devices (e.g. a shaking table or a centrifuge) is generally estimated by 

correlating it to the fundamental natural frequency of the layer, to obtain a mean value 

corresponding to equivalent homogeneous conditions. Towata [1] demonstrated that taking into 

account the actual variation of shear modulus (and therefore shear wave velocity) with depth for 

single-layer deposits could allow an improved fitting of the experimental data. Such an approach 

was employed for different types of soil inhomogeneity and closed-form solutions were provided 

for the identification of the natural frequencies. In the same context, Dobry et al. [2], based on the 

previous works of Ambraseys [3] and Seed and Idriss [4], studied the dynamic response of an 

inhomogeneous soil with a variation in shear wave velocity of the form 𝑉𝑠 = 𝑐𝑧
𝑛, i.e. a parabolic 
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function with zero value at ground surface, n being a positive inhomogeneity coefficient. In parallel, 

Ambraseys [3], Toki and Cherri [5], Schreyer [6] and Gazetas [7] examined heterogeneous soils 

with shear wave velocity starting from a non-zero value at ground surface, focusing on the effect of 

rate and type of inhomogeneity. Rovithis et al. [8] and Mylonakis et al. [9] explored the seismic 

response of an inhomogeneous soil layer over a homogeneous layer of higher stiffness, considering 

a parabolically varying shear wave propagation velocity. The special case of zero shear modulus at 

ground surface was also investigated. It was established that even in the case of moderately or 

strongly inhomogeneous soil, a pertinent equivalent shear wave velocity for all the deposit can be 

effectively used. In this context, Dobry et al. [10], following the early work of Madera [11], 

investigated approximate methods for estimating the fundamental natural period of a layered soil 

profile. Other dependable solutions have been presented by Sarma [12] and Vrettos [13], the latter 

considering bounded soil inhomogeneity of an exponential type. 

Following in the same vein and using the Rayleigh quotient procedure, the authors developed a 

generalized closed-form solution for the prediction of the fundamental natural frequency of both 

single- and two-layer inhomogeneous deposits, taking into account a different inhomogeneity 

coefficient for each layer (Figure 1), under the hypothesis of zero shear modulus at the ground 

surface. Simplified closed-form solutions are also provided, for typical bi-layer deposits with 

different combinations of inhomogeneity coefficients. The fundamental frequency is expressed as a 

function of the ratio of the thicknesses of the two layers, their densities and their shear wave 

velocities at the bottom of the deposit, as well as the shear wave velocity of the top layer. Given that 

the layer thicknesses, the soil densities, as well as the soil types, and thus the corresponding 

inhomogeneity coefficients are easy to establish experimentally, the proposed relations can be 

utilized to either estimate the fundamental frequency of the bi-layered soil deposit as a function of 

the ratio of shear wave velocities, or vice versa. In both cases, it is required to know the shear wave 

velocity of the top layer, which is easy to determine through the fundamental frequency of the 

transfer function between the soil surface and the layers interface for any applied signal. 

In the above derivation, the shape function of the deposit is not assumed to be sinusoidal, as done 

by previous researchers (e.g. [9]), but it is obtained from the lateral equilibrium of a soil column 

featuring the same layering and inhomogeneity characteristics. The proposed closed-form solution 

is validated through comparisons of numerical analyses performed with the analytically predicted 

shear wave velocity profiles, against experimental results from high-quality shaking table tests 

carried out within the framework of the SERIES project PILESI [14]. In this project, the free field 

response of a bi-layer Leighton Buzzard sand deposit subject to dynamic excitations has been 
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thoroughly investigated on the shaking table at BLADE laboratory of University of Bristol (UK), 

and relevant numerical simulations were performed. 

 

2. Analytical investigation  

The analytical investigation presented herein focuses upon two different cases: a single 

inhomogeneous layer (Figure 1a) and an inhomogeneous two-layer deposit (Figure 1b), over a rigid 

base. In both cases, mass density (ρ) is considered constant for each layer, while the shear modulus 

increases with depth according to the expression:  

G(z)=GB (
z

H
)

b

                                                            (1) 

where GB is the shear modulus at the bottom of the deposit, b is a dimensionless coefficient related 

to soil inhomogeneity and z is depth measured from ground surface.  

The equations governing one-dimensional shear wave propagation under harmonic oscillations in 

an inhomogeneous soil column can be written as: 

d

dz
[G(z)

du

dz
]+ρω2u=0                                                      (2) 

As demonstrated by Mylonakis et al. [9], the natural frequencies of the system may be derived from 

the familiar Rayleigh quotient: 

ω2=
∫ G(z) (

du(z)
dz

)
2

dz
H

0

∫ ρ[u(z)]2dz
H

0
 

                                                            (3) 

Substituting 𝑢(𝑧) = 𝑢0ψ(𝑧), the above equation can be written as: 

ω2=
∫ G(z) (

dψ(z)
dz

)
2

dz
H

0

∫ ρ[ψ(z)]2dz
H

0
 

                                                         (4)  

where ψ(z) is a dimensionless shape function representing, approximately, the mode shape 

corresponding to the fundamental natural frequency of the inhomogeneous soil deposit. The shape 

function is obtained using a simple procedure [15] as depicted in Figure 2. More specifically, the 

mode of deformation is determined as the lateral movement of the soil column, modelled as a shear 

beam, under a distributed horizontal load, equal to its self-weight, considering the origin of 

displacement axis at the top of the soil column. This allows taking into account the variations of 

both unit weight and shear modulus with depth. 

In this context: 

 u(z)=∫ γ(z)dz

z

0

=∫
ρ(z)gz

G(z)
dz

z

0

                                               (5) 

where γ(z)  is the engineering shear strain. 
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The shape function employed in the Rayleigh quotient is unitary at ground surface and zero at the 

base, to satisfy the essential boundary conditions of the problem. Therefore, 

ψ(z)=1-

∫
ρ(z)gz

G(z)
dz

z

0

∫
ρ(z)gz

G(z)
dz

H

0

                                                                (6) 

Specific forms of the above shape function can be written by considering the cases shown in Figure 

1a,b, using Equation 1. 

For instance, for a single layer having constant density, it becomes:  

ψ(z̅)=1-z̅2-b                                                                           (7) 

where 𝑧̅ = 𝑧/𝐻 is the dimensionless depth. 

Figure 3 compares the proposed shape function for a homogeneous single layer (obtained by setting 

b=0 in equation 7) against the theoretical shape function which is sinusoidal. It may be observed 

that this simplified procedure approximates the exact analytical solution with reasonable accuracy 

and may therefore be readily employed to handle the more complicated cases examined herein. 

For the two-layer inhomogeneous deposit in Figure 1b, the shape function is obtained as follows: 

ψ(z)=
1

D

{
 
 

 
 [

h1̅

2-b1
-z̅2-b1

2-b1

+α
1-h̅1

2-b2

2-b2

]                               0≤z̅≤h̅1

[
α

2-b2

(1-z̅2-b2)]                                         h̅1≤z̅≤1

                              (8) 

where ℎ1̅̅ ̅ = ℎ1/𝐻 is the dimensionless thickness of the upper layer, and: 

D=
h̅1

2-b1

2-b1

+α
1-h̅1

2-b2

2-b2

                                                                (9) 

α= (
Vs1,B

Vs2,B

)

2

                                                                      (10) 

Vs1,B=√
G1,B

ρ
1

         Vs2,B=√
G2,B

ρ
2

                                                      (11a,b) 

Figure 4 compares the sinusoidal shape function against the proposed one (the latter obtained 

assuming b1=b2=0.5 in equation 8) for an inhomogeneous two-layer deposit with ℎ1̅̅ ̅ = 0.5 and 𝑎 =

0.5. Evidently, the shape function for multilayered deposits cannot be well approximated by a 

sinusoidal function. This indicates that employing the procedure at hand is important in calculating 

the natural frequency of the system. 

 

2.1. Single inhomogeneous layer 

Referring to the single inhomogeneous soil layer in Figure 1a, equation 4 becomes:  
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ω2=
GB ∫ (

z
H
)

b

(
dψ(z)

dz
)

2

dz
H

0

ρ∫ [ψ(z)]2dz
H

0

                                                       (12) 

Substituting the shape function in Eq 12, one obtains: 

ω2=
(2-b)2(5-2b)

2(b2
-4b+4)

 
Vs,B

2

H2
                                                             (13) 

Three simple cases can be obtained from this solution by considering typical values of b:  

- b≈0, corresponding to a homogeneous layer, typical of over-consolidated clay:  

ω2
b=0=

5

2

Vs,B
2

H2
≅2.5

Vs,B
2

H2
                                                              (14) 

In this case, the corresponding shear wave velocity at the bottom of the layer is given by:  

Vs,B≅3.97fH                                                                           (15) 

f being the natural frequency (in units of 1/Time) of the layer. 

Note that above the solution is very close to the exact one (Vs=4fH), the difference being due to the 

slight deviation of the generalized parabolic function in Eq. 7 from a perfect sinusoid. 

- b≈0.5, typical of a sand deposit: 

ω2
b=0.5≅2

Vs,B
2

H2
                                                                       (16) 

In this case, the corresponding shear wave velocity at the bottom of the layer is given by:  

Vs,B≅4.44fH                                                                        (17) 

This solution can be compared against the results of Towhata [1]. Under the same assumptions, the 

shear wave velocity at the bottom of the layer is evaluated as:  

Vs,B, T=4.49fH                                                                      (18) 

which is in meaningful agreement with equation 17. 

- b≈1, typical of a normally-consolidated clay deposit: 

ω2
b=1≅

3

2

Vs,B
2

H2
≅1.5

Vs,B
2

H2
                                                                  (19) 

In this case, the corresponding shear wave velocity at the bottom of the layer is given by:  

Vs,B≅5.13fH                                                                           (20) 

According to Towata [1], the shear wave velocity at the bottom of the layer is evaluated as:  

Vs,B, T=5.22fH                                                                      (21) 

which is again in meaningful agreement with the proposed solution. 
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2.2. Two-layer inhomogeneous deposit 

Referring to Figure 1b and the shape function in Eq. 8, the solution to Eq. 4 becomes:  

ω2=
G1,B ∫ (

z
H
)

b1

(
dψ(z)

dz
)

2

dz+G2,B ∫ (
z
H
)

b2

(
dψ(z)

dz
)

2

dz
H

h1

h1

0

ρ
1 ∫ [ψ(z)]2dz

h1

0
+ρ

2 ∫ [ψ(z)]2dz
H

h1

                                (22) 

Evaluating the integrals, equation 22 can be written as:  

ω2=
A1+α α1A2

A3+α2α1A4

Vs1,B
2

H2
                                                        (23) 

where 𝛼1 = 𝜌2/𝜌1 and  

A1=
h̅1

3-b1

3-b1

                                                                      (24) 

A2=
1-h̅1

3-b2

3-b2

                                                                    (25) 

A3=
h̅1

5-2b1

(2-b1)2(5-2b1)
+C

2
h̅1-2

Ch̅1

3-b1

(2-b1)(3-b1)
                                         (26) 

A4=
1

(2-b2)2
(1-h̅1+

1-h̅1

5-2b2

5-2b2

-2
1-h̅1

3-b2

3-b2

)                                              (27) 

C=
h̅1

2-b1

2-b1

+α
1-h̅1

2-b2

2-b2

                                                                      (28) 

Although the above solution is simple to implement, a graphical form of the results is also provided 

for routine use (Figure 5), without the need for a spreadsheet or a pocket calculator. The format 

utilized for the graphical representation is the same as the one adopted by Madera [11], where the 

ratio of the deposit eigenvalue T over the top layer eigenvalue T1 is provided as a function of the 

layer thickness ratio h1/h2 and the stiffness ratio (Vs1h2)/(Vs2h1). Nine cases are examined for 

various combinations of over-consolidated clay (b=0), sand (b=0.5) and normally-consolidated clay 

(b=1) layers. Note that the first graph of Figure 5 corresponds to the same case examined by 

Madera and that a very good agreement is observed. The corresponding analytical expressions for 

each case are as follows: 

- Case 1: over-consolidated clay over over-consolidated clay (b1=b2=0), 𝛼1 = 1 

ω2=
5h̅1

3
+5α (1-h̅1

3
)

h̅1

5
(3α2-5α+2)+5αh̅1

3
(1-α)+2α2

Vs1,B
2

H2
                                          (29) 

- Case 2: sand over sand (b1=b2=0.5), 𝛼1 = 1 
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ω2=
9h̅1

2.5
+9α (1-h̅1

2.5
)

h̅1

4
(7.5α2-12α+4.5)+12αh̅1

2.5
(1-α)+4.5α2

Vs1,B
2

H2
                                    (30) 

- Case 3: normally-consolidated clay over normally-consolidated clay (b1=b2=1), 𝛼1 = 1 

ω2=
1.5h̅1

2
+1.5α (1-h̅1

2
)

h̅1

3
(2α2-3α+1)-3αh̅1

2
(α-1)+α2

Vs1,B
2

H2
                                          (31) 

- Case 4: over-consolidated clay over sand (b1=0 b2=0.5), 𝛼1 = 1 

ω2=
7.5h̅1

3
+9α (1-h̅1

2.5
)

3h̅1

5
-10αh̅1

4.5
+7.5α2h̅1

4
+10αh̅1

3
-12α2h̅1

2.5
+4.5α2

Vs1,B
2

H2
                           (32) 

- Case 5: over-consolidated clay over normally-consolidated clay (b1=0 b2=1), 𝛼1 = 1 

ω2=
2h̅1

3
+3α (1-h̅1

2
)

0.8h̅1

5
-4αh̅1

4
+4αh̅1

3
(α+1)-6α2h̅1

2
+2α2

Vs1,B
2

H2
                                    (33) 

- Case 6: sand over over-consolidated clay (b1=0.5 b2=0), 𝛼1 = 1 

ω2=
3h̅1

2.5
+2.5α (1-h̅1

3
)

1.5α2h̅1

5
-3αh̅1

4.5
+1.5h̅1

4
-2.5α2h̅1

3
+3αh̅1

2.5
+α2

Vs1,B
2

H2
                                 (34) 

- Case 7: sand over normally-consolidated clay (b1=0.5 b2=1), 𝛼1 = 1 

ω2=
1.2h̅1

2.5
+1.5α (1-h̅1

2
)

0.6h̅1

4
-2.4αh̅1

3.5
+2α2h̅1

3
+2.4αh̅1

2.5
-3α2h̅1

2
+α2

Vs1,B
2

H2
                                  (35) 

- Case 8: normally-consolidated clay over over-consolidated clay (b1=1 b2=0), 𝛼1 = 1 

ω2=
3h̅1

2
+2α (1-h̅1

3
)

1.2α2h̅1

5
-3αh̅1

4
-2h̅1

3
(α2-1)+3αh̅1

2
+0.8α

2

Vs1,B
2

H2
                                      (36) 

- Case 9: normally-consolidated clay over sand (b1=1 b2=0.5), 𝛼1 = 1 

ω2=
3.75h̅1

2
+3α (1-h̅1

2.5
)

2.5α2h̅1

4
-5αh̅1

3.5
+2.5h̅1

3
-4α2h̅1

2.5
+5αh̅1

2
+1.5α

2

Vs1,B
2

H2
                                    (37) 

 

3. Validation 

To verify the accuracy of the proposed solution, the results from a series of numerical analyses in 

both the time and frequency domain, performed using the analytically-predicted shear wave 

velocities of a bi-layer soil deposit, are compared against corresponding experimental data from 
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shaking table tests. More specifically, the experimental data set relies on comprehensive high-

quality shaking table tests carried out within the framework of the Seismic Engineering Research 

Infrastructures for European Synergies (SERIES), as a part of PILESI project [14]. The tests were 

performed at the Bristol Laboratory for Advanced Dynamics Engineering (BLADE), so the 6-

degree-of-freedom earthquake simulator and the equivalent shear beam (ESB) laminar container of 

BLADE were utilized to this end. 

In the PILESI project, the tests were focusing on pile behaviour, aiming to investigate various 

aspects of Seismic Soil-Pile-Structure-Interaction (SSPSI), such as the natural frequency of the 

systems in both horizontal and vertical directions, the natural frequency and damping of the 

embedded piles, the horizontal and vertical soil-pile kinematic interaction and the foundation-

structure interaction. The scaled model, standing on the 1-g shaking table, was formed by a group of 

five piles embedded in a bi-layer soil deposit (Figure 6). Different pile group configurations were 

considered, with and without pile caps and superstructures, subjected to both lateral and vertical 

earthquake shaking. The loading conditions include different excitations such as white noise, sine 

dwells and earthquake ground motions. Nevertheless, this paper only focuses on the free field 

response of the bi-layer deposit, looking at the response of accelerometers located in a vertical 

array, at sufficient distance from both the piles and the boundaries of the equivalent shear beam 

container, to avoid interaction effects on soil response. The response of the whole system has been 

analysed in other studies [14, 16-19]. 

The bi-layer deposit in the examined configuration consisted of a 0.44m thick layer of dense sand, 

overlaid by a0.36m thick layer of loose sand. To achieve a proper stiffness contrast between the top 

and bottom layers, two different types of dry sands (Sr= 0) were utilised: the bottom layer was a 

mix of Leighton Buzzard (LB) Sand Fractions B and E (85% and 15% respectively), pluviated 

through a 12mm diameter nozzle to achieve a high mass density (2 = 1780 kg/m3); the top layer 

was made of LB Fraction E Sand, deposited through a 40mm diameter nozzle to achieve a lower 

mass density (1 = 1390 kg/m3). Leighton Buzzard sand has been extensively used in experimental 

research activities carried out at BLADE and other laboratories; hence measured density and 

stiffness values are available [20-27]. Table 1 lists the index properties of LB sand from the above 

cited literature. The particular properties of the two soil layers constituting the sample models of the 

PILESI experimental campaign are reported in Table 2. 

As previously described, the experimental campaign consisted of more than 300 tests. In this paper, 

only a small set of the available data has been considered, corresponding to the White Noise (WN) 

input motion at low amplitude and some sine dwell tests. The employed WN excitation is a random 

noise signal of bandwidth 0-100 Hz and maximum acceleration of 0.019g. This form of excitation is 
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typically adopted in centrifuge or shaking table tests to estimate the natural frequency of the system 

at different strain levels. As far as the sine dwell tests employed herein are concerned, they involve 

sinusoidal motions with a constant frequency of 30Hz and amplitudes varying from 0.003 to 0.06g, 

as well as motions with a constant amplitude of 0.04g and frequencies varying from 15 to 30Hz. 

A preliminary evaluation of the initial stiffness G0 of the two soil layers has been performed by the 

Hardin & Drnevich empirical equation [28]: 

G0=
3230∙(2.973-e)2

1+e
√σ'm                                                          (38) 

where σ’m and e are the mean effective stress and the void ratio, respectively. For the evaluation of 

σ’m in the soil inside the shear stack, the k0 coefficients proposed by Stroud [21] were adopted, i.e. 

0.445 and 0.46 for the dense and loose Leighton Buzzard sand, respectively. As expected, these 

shear wave velocities increase with the fourth root of depth and correspond to values of Vs1,B= 

79.5m/s and Vs2,B= 132.8m/s at the bedrock. 

In order to employ the proposed methodology for a more accurate estimation of the shear wave 

velocity profile, the fundamental frequencies of the the upper layer (f1) and of the overall deposit 

(ftot) were obtained, by analyzing the accelerograms recorded during the White Noise test, along a 

monitored free-field vertical array inside the deposit. More specifically, the Fourier spectra of the 

acceleration recordings at the model’s base, at the interface of the two layers and at ground surface 

were initially computed. Then, the transfer functions from the bedrock to the soil surface and from 

the two layers’ interface to the soil surface were calculated (Figure 7), by dividing the 

corresponding spectra. Finally, the fundamental frequencies were determined, by fitting, in terms of 

natural frequencies fnat and damping ratio D, the following theoretical expression for a visco-elastic 

homogeneous layer over a rigid base: 

A(f)=
1

√cos2 F +(FD)2
                                                       (39) 

where F is the frequency factor, given by:  

F(f)=
ωH

Vs

=
πf

2fnat

                                                          (40) 

The computed frequencies, namely f1=38.9Hz and ftot=26.9Hz, allow the evaluation of the shear 

wave velocity profile of the model, by means of the proposed method, with b1=b2=0.5, first using 

Eq 17 for the evaluation of shear wave velocity Vs1,B for the top layer, and then Eq 23 for the 

evaluation of Vs2,B for the underlying one. The values obtained using this procedure are 

Vs1,B=72.8m/s and Vs2,B=93.9m/s, while the corresponding shear wave velocity profile is shown in 

Figure 8a. Nevertheless, it was found that the corresponding shear moduli are not actually the initial 

ones. This is because, in spite of the low excitation amplitude employed in the White Noise test, the 
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shear strains induced in the soil deposit were not negligible. In fact, if the aforementioned shear 

wave velocity profiles were considered in a ground response analyses with EERA [29], shear strains 

between 2∙10-5 and 4∙10-5 would be predicted for the White Noise test, corresponding to a stiffness 

degradation of 10-20%. The resulting degraded shear wave velocities are compared with the 

initially predicted ones in Figure 8a.  

In order to account for this effect, the analytically computed shear wave velocities were increased 

by 12% for the top layer and 7% for the bottom one, to Vs1,B=81.7m/s and Vs2,B=100.6m/s, with the 

resulting shear wave velocity profile being shown in Figure 8b. Repeating the ground response 

analyses for the White Noise Test with the updated profile, the degraded shear wave velocity profile 

may be similarly obtained. As it may be observed in Figure 8b, these degraded shear wave 

velocities are in good agreement with the ones initially obtained with the analytical methodology. 

Furthermore, the numerically obtained transfer functions for both the whole system and the top 

layer are plotted in Figure 7, indicating a meaningful agreement with the experimentally computed 

ones. In fact, Table 3 highlights that in terms of resonance frequency, the difference between 

numerical analyses and experimental results is not larger than 2.3%. 

The finally adopted shear wave velocity profile is compared to the one determined by the Hardin & 

Drnevich relationship in Figure 9. These are also compared to the uniform shear wave velocities 

that would have been computed according to Madera’s method (or, equivalently, the proposed 

method with b1=b2=0), namely Vs1= 52.9 m/s and Vs2=89.2 m/s.  It should be noted that the same 

experimental data have been analysed by Chidichimo et al [19], whose estimations are in good 

agreement with the Madera results, namely Vs1=52m/s and Vs2=87m/s. 

To assess the validity of the above shear wave velocity profiles, two different types of numerical 

analyses were carried out, namely in the frequency and the time domain. In both cases, the Vucetic 

and Dobry curves (1991) for zero plasticity index [30] were chosen for the variation of shear 

modulus and damping ratio with cyclic shear strain amplitude. The analyses in the frequency 

domain were performed with the EERA code, considering an equivalent-linear soil behaviour, with 

the aforementioned degradation curves G(γ) and D(γ). 

The analyses in the time domain were carried out with the explicit finite difference code FLAC 

[31]. In order to simulate the hysteretic soil behaviour, a multiaxial formulation of the Ramberg-

Osgood stress-strain relationship was employed, implemented into FLAC as a user-defined 

constitutive model. According to this formulation, the tangent shear modulus is computed as 

follows: 

Gt=
G0

T
                                                                                         (41) 

where: 
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T=

{
 
 

 
 1+2 (

1

α1

-1)
|X|

η
1

                                   for initial shearing 

1+2 (
1

α1

-1)
|XLR|

2η
1

               after the first load reversal

                     (42) 

with: 

X scalar measure of the deviatoric stress ratio (XLR is the value at last load reversal), evaluated 

as:  

X=√
1

2
(rij-rij

LR)(rij-rij
LR)                                                           (43) 

rij deviatoric stress ratio (rij
LR is the value at last load reversal), defined as the ratio of the 

deviatoric stress tensor sij=σ΄ij- σ’m·δij over the mean effective stress σ’m =σ΄kk/3; 

𝜂1 model parameter defined as:  

η
1
=α1 (

Gmax
LR

σLR
) γ

1
                                                                        (44) 

GLR
max the maximum shear modulus at last load reversal; 

𝜎𝐿𝑅 the isotropic stress at last load reversal; 

𝛼1 and 𝛾1 model parameters.  

 

The calibration of the two model parameters requires fitting of the Ramberg-Osgood predicted soil 

behaviour against the experimental G(γ) and D(γ) curves; in this work 1=0.064 and 1=0.00016 are 

used, which correspond to the best fitting of Vucetic and Dobry curves (1991) for zero plasticity 

index (Figure 10). To compensate for the low damping response of the model at small strain levels, 

an additional Rayleigh damping of 5% is added.  

Figure 11 shows the comparison between the experimental data and the numerical results obtained 

with both methods, for a sinusoidal input motion characterized by a frequency of 30 Hz and an 

amplitude of 0.003g. Firstly, it should be highlighted that the results produced by the analyses in 

both the frequency and the time domains are almost identical. Furthermore, the agreement, both in 

terms of maximum accelerations and shape functions, is very satisfactory, with the exception of the 

slightly lower experimental accelerations in the top layer. This discrepancy, however, is attributed 

to an over-damping effect induced by the shear beam (ESB) laminar container [19, 32]. It should be 

stressed out that this effect is only observed for small input excitation amplitudes, where the soil 

behaviour is almost linear elastic and the associated hysteretic damping is small. Indeed, the 

acceleration diagrams obtained for higher amplitude (0.02g and 0.06g) input motions (Figure 12) 

show a good agreement along the whole soil profile, as, in these cases, it is the soil non-linear 
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behaviour that governs the system’s performance. This observation demonstrates that the overall 

accuracy of the shear wave velocity profile obtained with the proposed methodology is satisfactory. 

Furthermore, the numerical analyses have been repeated, in all the above cases, considering 

homogeneous soil profiles. The corresponding results are added to Figures 11 and 12, for the sake 

of comparison. This way, it is observed that considering an homogeneous soil profile, it is not 

possible to capture the soil response close to the interface between the two layers. This is due to the 

associated large contrast in the shear modulus, which is not the case for the physical model. 

A further comparison between experimental and numerical analyses is performed for two input 

motions characterized by the same amplitude (0.04g) and different frequencies (15 and 30 Hz): the 

results are illustrated in Figure 13 and they demonstrate the very good agreement between measured 

and computed maximum accelerations for both the exciting frequencies, highlighting the 

importance of taking into account the effect of soil inhomogeneity. 

 

4. Conclusions 

Closed-form solutions for the initial stiffness of single- and two-layer inhomogeneous deposits, 

with zero shear modulus at ground surface, are developed by employing the Rayleigh quotient 

procedure. The proposed relations are validated against high-quality shaking table tests, which 

indicate a meaningful agreement for all combinations of frequencies and input accelerations 

considered. 

The outcomes of the numerical simulations are: 

 The adoption of a homogeneous profile leads to an underestimation of interface 

acceleration, even though it provides reasonable values of surface acceleration; 

 The inhomogeneous profiles for bi-layer soil deposits predict reasonably well both the 

acceleration at the surface and that at the interface between the two layers. 

 Assessment of damping in the data at hand is not straightforward due to the contribution of 

the laminar box. 

From a practical viewpoint, the method proposed in the present work may be easily employed for 

analysing experimental results obtained from shaking table or centrifuge tests, provided that the 

fundamental natural frequency of the deposit is properly evaluated by experimental means. 
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Tables 

 

Table 1. Leighton Buzzard sand: index properties from the referred literature 

Materials Type 
γs  

[kN/m3] 
emin emax D10 D50 References 

LB 

fraction E 

Sand 

BS 881-131 
25.96 0.613 1.014 0.095 0.14 Tan [20] 

LB 

fraction B 

Sand 

BS 881-132 
25.96 0.486 0.78 0.63 0.76 Ling & Dietz [22] 

LB 

fraction B+E 
 25.96 0.289 0.614   Moccia [23] 

 

 

 

Table 2. Leighton Buzzard sand: properties of the soil layers in PILESI tests 

 
γs  

[kN/m3] 
e 

Upper layer (LB E) 13.63 0.90 

Bottom layer (LB B+E) 17.45 0.49 

 

 

 

Table 3. Fundamental frequency of the system (ftot) and the top layer (f1) for white noise input (amax=0.019g): 

experimental and numerical results 

 Experimental  
Numerical 

(frequency domain analysis) 

Variation 

[%] 

ftot 

[Hz] 
26.9 26.3 2.23 

f1 

[Hz] 
38.9 38.4 1.29 
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Figure 1. (a) Single inhomogeneous layer and (b) inhomogeneous two-layer deposit over a rigid base 

 

 

 

Figure 2. Soil model according to [13] 
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Figure 3. Shape functions for an homogeneous single layer 

 

 

 

Figure 4. Shape functions for an inhomogeneous two-layer deposit 
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Figure 5. Graphical solutions for proposed method for over-consolidated clay over over-consolidated clay (a), 

sand over sand (b), normally-consolidated clay over normally-consolidated clay (c), over-consolidated clay over 

sand (d), over-consolidated clay over normally-consolidated clay (e), sand over over-consolidated clay (f), sand 

over normally-consolidated clay (g),  normally-consolidated clay over over-consolidated clay (h) and normally-

consolidated clay over sand (i) 

 

  

Figure 6. Model setup: subsoil and pile configuration 

 

 

 

 

Figure 7. Transfer function of the whole system (left) and the top layer (right) 
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Figure 8. Initial and degraded shear wave velocity vs depth for the analytically computed profile (a) and the 

corrected one (b) 

 

  

Figure 9. Initial shear wave profile for the analysed system 

 

 



 22 

 

Figure 10. Comparison between Ramberg Osgood and Vucetic&Dobry curves for G/Gmax and damping ratio vs 

strains 

 

 

 

 

Figure 11.  Envelopes of acceleration vs depth in free-field condition (left) and corresponding shape function 

(right) for 30 Hz sinedwell with input acceleration 0.003g 
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Figure 12. Envelopes of acceleration vs depth in free-field condition for 30 Hz sinedwell with input accelerations 

0.02g (left) and 0.06g (right) 

 

 

Figure 13. Envelopes of acceleration vs depth in free-field condition for sinedwell with input acceleration of 0.04g 

and frequency 15 Hz (left) and 30 Hz (right) 

 

 


