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Abstract: With large volume of product flows and complex supply chain processes, more data than ever 

before is being generated and collected in supply chains through various tracking and sensory technologies. 

The purpose of this study is to show a potential scenario of using a prototype tracking tool that facilitate the 

utilization of sensor data, which is often unstructured and enormous in nature, to support supply chain 

decisions. The research investigates the potential benefits of the chilled food chain management innovation 

through sensor data driven pricing decisions. Data generated and recorded through the sensor network are 

used to predict the remaining shelf-life of perishable foods. Numerical analysis is conducted to examine the 

benefit of proposed approach under various operational situations and product features. The research 

findings demonstrate a way of modelling pricing and potential of performance improvement in chilled food 

chains to provide a vision of smooth transfer and implementation of the sensor data driven supply chain 

management. The research finding would encourage firms in the food industry to explore innovation 

opportunities from big data and develop proper data driven strategies to improve their competitiveness. 
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1. Introduction 

The food supply chain is made up of organisations that are involved in the production and distribution of 

food products. There is a growing concern about the sustainability of the food supply chain (Smith 2008, van 

der Vorst et al. 2009, Leat and Revoredo-Giha 2013, Li et al. 2014). For instance, millions of tonnes of food 

produced worldwide is lost or wasted before it reaches consumers (Parfitt et al. 2010, Hodges et al. 2011) 

while more people are facing food poverty in the current economic environment. Unlike most other 

commodity flows, food is biological material subject to degradation and its quality can be affected by varied 

conditions when going through various supply chain processes over time. Therefore, to preserve the food 

quality and extend their shelf life, food products are often stored in either frozen or chilled condition in the 

grocery retail industry. The filled food chain, on which this study focuses, is more widely adopted since it 

usually leads to better quality as compared to the frozen condition. 

Despite the wide adoption of temperature controlled supply chain in the food retail sector, one 

limitation of current practice in the chilled food chain management is that the printed ‘‘sell-by-date’’ does 

not reflect the real temperature variations when going through different stages of the food supply chain 

(Blackburn and Scudder 2009; Rong et al. 2011; Wang and Li 2012). In fact, food quality can be 
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compromised if actual conditions deviate from pre-specified conditions. The emergence and extensive 

implementation of advanced product identification and sensory technologies such as ratio frequency 

identification technology (RFID) and time-temperature integrator (TTI) provide great opportunities for 

effective management of chilled food supply chains (Li et al. 2006; Kelepouris et al. 2007, Sahin et al. 2007, 

Zhou et al. 2009).  For instance, Ruiz-Garcia et al. (2008) investigated the potential use of wireless sensor 

technology for monitoring fruit storage and transport conditions. Their findings show that such devices can 

be placed in transport vehicles enabling environment sensing together with data processing. 

With large volume of product flows and complex supply chain processes, more data than ever before is 

being generated and collected in the food supply chain through tracking and sensory technologies. There are 

frequent updates for new locations and movements in distribution centres, transportation units, and retail 

stores, and not only where it is, but what is close to it, its path to get there, its storage conditions (e.g. 

temperatures), and location positions that are time sampled from tracking and sensor devices (Ruiz-Garcia et 

al. 2008; Wang and Li 2012; Waller and Fawcett 2013). The vast amount of data generated enables food 

companies to make decisions in a timely manner where operations can be more optimized and performance 

can be improved. However, sensor data is also characterised by volume, variety, and velocity of change in 

the content, three key differences of so called “big data” (McAfee and Brynjolfsson 2012). Similar to the 

challenges of big data revolution in other management domains, it is important for supply chain researchers 

to develop new ways of obtaining value from the sensor data and understand its implications for supply chain 

decisions. In fact, it will only create value if the 'terabyte' of data continuously generated by sensor devices 

can be collected, analysed and interpreted. Nevertheless, it is also the difficulty that most food organisations 

have in contemplating the advantages of big data. According to LaValle et al. (2011) most organizations 

have more data than they know how to use them effectively. Therefore, several questions are addressed in 

this article: 

(1) How sensor data generated by tracking systems can be used to support supply chain decisions? 

(2) What effect does the data-driven business decision have on supply chain performance? 

(3) What are the challenges for organisations to implement data-driven decision support systems?   

To answer these questions, this research investigates the potential benefits of the chilled food chain 

management innovation through sensor data driven supply chain decisions. Sensor data generated and 

recorded through the tracking and sensory technologies are used to predict the remaining product shelf-life.  

We quantitatively analyses a dynamic pricing strategy for chilled food retailing based on the sensor data 

driven pricing decision. Such a strategy might transform pricing into a more active manner to dynamically 

manage demands and reduce the food waste. Such a transformation would not only improve food quality and 

consumer safety, but also provide a strategic innovation method for marketing, quality management and 

supply chain optimisation.  

The rest of the paper is organised as follows. After a brief review of related literature in Section 2, the 

sensor data driven dynamic pricing model is presented in Section 3. After that, a chilled food retail chain 

case is provided to simulate the performance of the proposed model. Numerical analysis is also included in 

section 4. Finally, concluding marks are presented in section 5. 



 

2. Literature Review 

Dynamic pricing, planning and inventory control models for the perishable food have been reported 

extensively in the literature. To highlight our contributions, we only review the literature that is 

representative and particularly relevant to our study.  

    Among the relevant work, one type of the research focuses on maximising business profits through pricing 

or allocating perishable products in an operational process according to their fixed shelf-life (Bhattacharjee 

and Ramesh, 2000; Zhao and Zheng, 2000; Lin and Chen, 2003, Van Donselaar et al. 2006). In such 

research, the product shelf-life is a constraint to a pricing or delivery planning decision. Another type of 

research focuses on optimisation of inventory control through dynamic pricing or planning (Fujiwara and 

Perera, 1993, Chakrabarty, et al., 1998, Chatwin 2000). In the research, the stock level depletes over time 

due to the product deterioration and demands. The product deterioration in the optimal inventory control 

models implies full disposal of the unusable products, i.e. the loss in quantity of available products instead of 

their shelf lives. More relevant research can be found in a review of literature carried out by Elmaghraby and 

Keskinocak (2003) that examined the current practices in dynamic pricing in inventory. Moreover, some 

research employs a concept, product value, to represent product quality and utility attributes based on which 

a decision on pricing or operational planning can be made (Kopalle et al. 1996, Blackburn and Scudder 

2009). Kopalle et al. (1996) presented a dynamic pricing model incorporating the relationship between 

reference price and expected quality. Blackburn and Scudder (2009) developed an optimal ordering model 

that minimises the lost value of the perishable food during the delivery process. In the above research, 

questions still remain about how to assess the impact of product quality deterioration on the business revenue 

in a situation that the products are still acceptable or usable. In our case of perishable food management, the 

question would be how to assess the food shelf-life and its impact on the retailers’ revenue. With such a 

challenge, the sensor data through the tracking and sensory technologies would be a key enabler.  

    Another stream of relevant research centres on inventory and pricing decisions on perishable food product 

based on auto identification and sensory technologies. Li et al. (2006) developed an automatic tracking 

enabled business model that employs a dynamic pricing approach to optimise retail chain profits. RFID 

technology was discussed and tracking information from the technology is used to optimise the retail price. 

The research showed that the real-time product tracking information would improve the business 

performance. The research did not discuss details about what form of the tracking information is used in the 

model, and how the tracking information is quantitatively related to the model parameters. Rong et al. (2011) 

developed a methodology to model food quality degradation which is integrated in a mixed-integer linear 

programming model used for production and distribution planning. In their study, food quality changes are 

traced through the entire supply chain network under the temperature-controlled logistics environment for 

planning logistics distribution operations. Wang and Li (2012) proposed a pricing approach based on 

dynamically identified food shelf-life information captured through innovated tracking and monitoring 

technologies. Different to this paper, their research focuses on discrete discount pricing strategy instead of 

dynamic pricing strategies. Complementary to above studies, Herbon et al. (2014) analysed customers’ 



utility, cost of the technology, penalty cost, and other parameters in the perishable inventory management 

using time-temperature indicators linked to automatic detecting devices.  

In our research, the proposed pricing strategy will focus on utilising the sensor data predicted food shelf-

life information. In depth analysis of the relationship between the perceived deterioration information and 

retail operations performance is conducted. We adopt the collaborative planning strategy, and investigate the 

ways in which the sensor data adds values to the innovation of the chilled food retail chain management. 

 

3. Sensor data driven dynamic pricing model 

To highlight the investigation on the sensor data based dynamic pricing model and describe the potential 

benefits of the proposed strategy, two scenarios are considered: the present ‘conventional scenario’ S1 and 

the proposed ‘sensor data driven scenario’ S2. With scenario S1, before a selling period the planned demand 

is estimated based on the pre-specified food shelf-life and the agreed price. During a selling period, the retail 

price remains unchanged, and the remaining product shelf-life decreases over time as perceived by 

consumers against a given expiration date. As the demand is assumed determinative and the expiration date 

(or deterioration rate) is known, exceptional promotions for nearly perished food is not considered in this 

scenario. With scenario S2, at the distribution centres, the orders and sales price agreed before the beginning 

of the selling period may be collaboratively adjusted according to dynamically identified product time-

temperature profile (TTP) through the sensor data that tracks the supply chain operation conditions. During 

the selling period, both of the food deterioration rate and the sales price are uncertain due to the uncertain 

product quality control and weather conditions. The price is dynamically set through a marking down rate 

based on the identified deterioration rate in real-time by the sensor data. The parameters and variables for 

model development are shown as the following notations in Table 1. 

 

Table 1 Parameters and variables 

Notation Descriptions 

EDc ,EDs The expected demand for a selling period (0, T) in scenarios S1 and S2 respectively; 

Pc, Ps 
The unit prices set at the beginning of a selling period (0, T) in scenarios S1 and S2 

respectively, Pc > 0; 

Pl  The maximum price at which consumer would stop buying, 0<Ps<Pl;    

Vc 

The product value agreed in a contract in scenarios S1, 0 < Vc < 100 %. The value of Vc  

is dependent on the product shelf-life features and is proportional to remaining product 

shelf-life derived from a given expiration date; 

Vs 
The identified food value in scenarios S2. It is proportional to the dynamically 

identified remaining product shelf-life;      

Ve  The minimum value with which consumers would stop purchasing the product; 

Vt The present product value at time t.  

V0 The original product value when t = 0. 

Vr The product value at the beginning of a retail selling process;  



Vf The product value at the beginning of the supply chain; 

λc 
The nonnegative deterioration rate of product value based on a given expiration date 

scenarios S1;  

λs  
The nonnegative average deterioration rate of product value in a selling period in 

scenarios S2. It can be determined by the food kinetic modelling approach; 

θ 
The nonnegative average marking-down rate of a price in a selling period. It is a 

decision variable that will be determined through the optimised pricing decision;  

f(Dt) 
Demand function or unit demand at a time e.g. an hour or a day the food kinetic 

modelling approach;  

α and β 
The nonnegative coefficients representing the demand sensitivity to a product price, 

and the demand sensitivity to the identified shelf-life (or value) respectively, α, β > 0;  

K 
The demand parameter (dependent on product utility features) (Lau and Lau, 2002), K 

> 0; 

Tc 

The length of a selling period. The selling period Tc is estimated based on the agreed 

product value Vc. After Tc, the product quality is assumed unacceptable to consumers, 
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kA The rate constant in the food kinetic modelling approach;  

EA The energy of activation for the reaction that controls quality loss; 

Rgas The ideal gas constant in the food kinetic modelling approach; 

T (t) An inverse absolute temperature at some reference temperature Tref.; 

Cp 
The re-planning penalty cost for an unplanned replenishment from a distributor to 

avoid loss of sales when the actual demand is greater than the planned demand. 

Cd The penalty cost for disposal when the actual demand is less than the planned demand. 

Co The unit operations cost. 

 

3.1 A sensor network enabling application of big data approach to supply chain management  

Short shelf-life food products are stored and delivered in chilled supply chains, temperature is therefore a 

main environment parameter for chilled food quality control. In the chilled chains, sensors at different 

business partners generate massive data recording time and temperature with which food products are stored 

and delivered. While the sensors are connected across supply chains as sensor networks, the massive data 

about time and temperature can be shared by different partners to dynamically manage storage, packaging, 

delivery and selling according to the data collected from the sensor networks. A sensor network 

infrastructure of a chilled chain can be illustrated as in figure 1. To support the research reported on dynamic 

food retail pricing in this paper, a prototype for imitating the sensor networking scenario and food quality 

monitoring as Big Data application has been developed (Tao et al., 2012) as seen in figure 2. The sensor data 

are collected and analysed in the system which employing RFID and temperature sensors. The system keeps 



tracking food products’ time-temperature profile and abstracting key data in product identity, product 

batch/package identity, location, period of time at each location, temperature to be transferred into a 

database. The web based interface not only presents product tracking information, but also statistical results 

to demonstrating impacts of the chilled chain environment on product quality deterioration with decision 

support function. The system demonstrates aggregate time when the temperature is beyond required range at 

each stage of a supply chain, estimated impact of this improper quality control on the foods’ shelf-life, e.g. 

percentage of shelf-life has been reduced, risk of spoilage before the foods are sold. The information forms 

the basis of dynamically managing the chilled food chain. The dynamic pricing modelling proposed in this 

research is one of the potential innovation opportunities facilitated by the data analytics approach.  

 

Figure 1. Sensor network in chilled food supply chains (Source: Tao, et al. 2012) 
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Figure 2. Senor network enabled food quality monitoring in supply chains.  (Source: Tao, et al. 2012) 

 

3.2 A sensor data enabled product value tracing model 

The data generated through sensor network is mainly for the tracking and quality control purpose. However, 

it provides a potential solution to detect “actual” product quality deterioration in real time for large volume 

product flows and complex supply chain processes. As food products go through different supply chain 

stages, extracting the relevant time and temperature information from the dataset where the sensor data is 

recorded allows the evaluation of quality in discrete or continuous time as a result of the temperature history 

experienced by the product. It means that the quality change in food products can be estimated through the 

extracted time temperature data. In order to reduce the complexity of the model we are proposing, a 

temperature dependent quality deterioration rate (λ) is introduced, where: 
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Here, as defined in Table 1, kA is the rate constant; EA is the energy of activation for the reaction that controls 

quality loss; Rgas is the ideal gas constant; T(t) is an inverse absolute temperature at some reference 

temperature Tref., is defined as: 

TTtT ref 11)(  .                                                                                                                          (2) 

According to Taoukis and Labuza (1989) and Fu and Labuza (1993), the change of the quality during a 

known variable temperature exposure T(t) can be calculated following a linear to exponential function. 

Through the sensor network, the continuous information of time and temperature to which food products are 

exposed can be provided for modelling food quality degradation. With the available discrete values of 

temperature with respect to time, the quality deterioration rate λ can be calculated by analytically solving the 



integral for the simple T(t) functions giving the known kinetic parameters kA and EA. Furthermore, we adopt a 

form of the exponential functions (see Equ.2) and use the term “product value” to represent the remaining 

product shelf-life (Blackburn and Scudder, 2009). The function consists of a time variable and a value 

deterioration parameter λ that is a constant in the time period T ~ [0, t]. The value of V is positively related to 

the remaining product shelf-life.  

       T
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                                          (3)  

    When products enter a succeeding supply chain process (e.g. unloaded at a warehouse or placed in a queue 

of a packaging line), a new time period will start, and then the deterioration parameter may change if the 

temperature has a considerable deviation. This tracing process can be quantitatively modelled through 

aggregating the food deterioration processes in each time period. It can be therefore described as a chain of 

individual deterioration processes of the chilled food as:  

i

M

i

i T

LL eVV





 1

1



                         (4) 

VL is the food value identified at beginning of the supply chain process L (e.g. at a distribution centre), and 

VL-1 is the food value identified at beginning of the process L-1. Where the deterioration parameter λ remains 

unchanged throughout the process L-1, we have M = 1. For the purpose of collaborative decision making in 

our research case, we extend the tracing model to the whole chilled food chain process (before the food 

enters retail stores) through aggregating all preceding supply chain processes as:  
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                      (5) 

Here, Vr is the product value at the beginning of a retail selling process. Vf is the product value at the 

beginning of the supply chain. N is the overall number of tracing processes.  

 

3.3 Price-dependent demand modelling 

In our research, to describe the response of consumer demands to price changes, we adopt a price-dependent 

linear demand description (see Equ.5) that has been widely used in the economic and operations research 

literature (Chakrabarty, et al., 1998; Lau and Lau, 2002; Abad and Aggarwal, 2005; Chen and Wang 2015).  

    Pba                        (6)  

    a (scale parameter) and b (parameter of demand sensitivity to price) are nonnegative coefficients. μ and 

P are the mean of a demand and the price respectively (Abad and Aggarwal, 2005). Both of the price P and 

the perceived product value that represents the remaining food shelf-life are taken into account as influential 

factors – a price increase normally leads to a demand decrease, and the product shelf-life or value has a 

positive effect on demands. In this research, the product value or shelf-life is included in the determinate 

demand function as an important attribute of the chilled food and the retail operations. Therefore, the 

demand function in Equ.6 is extended to combine the effects from the two driving factors, product price and 

value, as described in Equ.7 and Equ.9.  

Furthermore, the demand of food products is also influenced by other factors such as competitors’ price 

and seasonal demand (Binkly and Connor 1988; MacDonald 2000). Since this research focuses on 



investigating on the impact of the massive dynamic tracking data driven pricing decisions on retailing 

performance, we assume that the business should have already considered the competitive environment when 

setting up the initial price with targeted/predicted demand. For the seasonal demand factor, the chilled food 

shelf-life is short and the modelling is applied to limited time horizon. The seasonal demand fluctuation 

would not be a significant factor to the demand fluctuation in the short time horizon as we define the demand 

as average demand in that season. 

     With scenario S1, as the given expiration date is fixed in a selling period, the deterioration rate can be 

derived straightforward because the product shelf-life decreases linearly (see Equ.7). The fixed price and the 

remaining shelf-life against the expiration date (as the consumer perceived “product value”) generate a 

combined impact on the demand. With scenario S2, the changing price and accurately identified food shelf-

life variations generate an aggregate impact on the demand. As the deterioration rate and the marking-down 

rate are unknown in a selling period (dependent on environment changes), we use average deterioration rate 

and marking-down rate to represent the dynamic values in the model of S2. This would be acceptable as the 

analysis is focused on comparing the overall performance of the two scenarios, instead of calculating the 

profit from S2.    

 

3.3.1. Demand modelling with scenario S1 

As defined for scenario S1, the product deteriorates linearly against a given expiration date. We therefore 

extend the model in Equ.5 into a determinate demand function in Equ.6.  
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From Equ.5, we have:    
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3.3.2. Demand modelling with Scenario S2 

Due to the food deterioration and dynamic pricing, the demand is defined as a function of time as an 

extension from the traditional demand model in Equ.6. The demand function (see Equ.9) describes the unit 

demand at time t. The expected demand EDs in Equ.10 is an integral of the unit demand function. 

.0)( 






tsesV

t
esPKtDsf





                                      (9) 


eT

tss dtDfED
0

)(                                                          (10) 

  

Here,
t

s eP 
is  the dynamically set retail price at time t during the selling period according to  the sensor 

data.  
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    With the constraint of the product value of Vs, the nonnegative demand function in Equ.7 can be further 

transformed into Equ.12. 
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    From Equ.7 and Equ.8, we have: 
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     Through Equ.13, an expected demand can be calculated based on the dynamically set price Ps and the 

marking-down rate θ of the pricing policy at the beginning of a selling period by accurate TTP.  

 

3.4 Optimal pricing 

The proposed pricing strategy aims to maximise the expected profit (EP) of the retailers based on given 

product shelf-life and demand features of the chilled food. The sales revenue and operational costs are taken 

into account in the optimisation. We focus on investigation of the benefit of the dynamic pricing strategy in 

scenario S2 against scenario S1that uses a fixed optimal price without using sensor data.  

 

3.4.1 Optimal pricing with scenario S1 

The profit of a retailer can be derived by its sales revenue and the operational cost. From Equ.7, we have the 

expected profit (EPc) in Equ.14.  
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To optimise the expected profit, we have: 
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The derivative above confirms the convexity of the profit function and the optimal solution Pc
* is obtained as: 
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Through Equ.15, the optimal price in the agreement can be determined based on the agreed product value 

Vc, the cost and the demand sensitivity features. Consequently, the demand based on the optimal price can be 

estimated through Equ.7. The estimated demand underlies the planned delivery or retail orders.    

 

3.4.2 Optimal pricing with scenario S2 

With dynamically identified product value, the expected profit (EPs) can be generated through the time-

dependent demand function (refer to Equ.12), the operational cost and the dynamic price. 
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    From Equ.13, we have the expected profit EPs in Equ.17. 
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To optimise the price Ps, the first and second order derivatives with respect to price is calculated: 
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     From Equ.18, the convexity of the profit function is proved. Then, we have the optimal price: 
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     Through Equ.19, the optimal price Ps
* can be calculated based on given operational cost, demand features, 

the price ‘marking-down rate’ θ, and the dynamically captured product value Vs through the accurate food 

TTPs and the length of time Te. The estimated demand can then be dynamically adjusted. 

 

3.5 Maximising retail chain profits 

To maximise the retailer’s profit, an aggregated profit function is built to assess the overall performance of 

the retail network. Based on Equ.14, with a given optimal price Pc
* and accordingly the expected demand 

EDc
*, the planned overall profit PS1

* of the retail stores with the S1 can be described in Equ.20.  
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    In a selling period, the actual demand in scenario one is probably different from the planned value EDc as 

the real product value is Vs instead of Vc. The difference in product values represents different product shelf-

life. This implies that the products will be sold against Te instead of Tc. Te may be either longer or shorter 

than Tc. The actual expected demand in the selling period can be therefore described in Equ.21 (Tc is 

replaced with Te). 
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    The difference between the planned demand EDc
* and the actual demand EDc

’ will lead to extra cost to the 

retailers, i.e. the disposal cost due to perished food or cost of unplanned replenishment. We use EDc
’ to 

estimate the actual profit EPc
’ as described in Equ.22. 
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    Cd,i is the penalty cost for disposal when the actual demand is less than the planned demand. Cp,i is the re-

planning penalty cost for an unplanned replenishment from a distributor to avoid loss of sales when the 

actual demand is greater than the planned demand. An actual aggregated profit PS1
’ for the retail stores can be 

calculated through Equ.22 and will be used for the comparative analysis of the actual benefits from the 

dynamic pricing strategy. 



     With scenario S2, products are dynamically allocated to the retailers according to the identified product 

shelf-life and the estimated demand. This dynamic re-arrangement leads to variations against the planned 

deliveries in the agreement. An extra cost Cpi would be incurred in warehousing, delivery and stock control, 

etc. Therefore, we propose a single product model (see Equ.23) that optimise the overall profit PS2 of the 

retail network, and deduct the penalty cost from the revenue at each retail store. The constraints of the 

optimisation problem are described in Equ.26. For optimal price, Ps
* and Pc

*, refer to Equ.15 and Equ.19. 
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    As described in Equ.23, to determine the optimal price, the parameter θ needs to be specified. The 

decision variable decides how the price is reduced over time in a selling period. Due to the difficulty of 

analytically describing the optimum value of θ, the marking down rate θ is only numerically simulated in this 

research.  

 

4. Numerical Analysis  

A case of UK supermarket chain has been investigated in the research. Two distribution centres supply 

products to twenty retail stores. Four local retail stores at a city are chosen for this case study, and a fresh 

vegetable product is used as an example. Most vegetable products are maintained in a temperature controlled 

supply chain using a temperature of around +2 o C to +5 o C.  Temperature controlled vehicles are used to 

deliver products from producers to the distribution depot and from the depot to retail stores. In retail stores, 

most of vegetable products are placed in temperature controlled refrigerant shelves and the storage 

temperature is monitored by both sensor devices on product shelves and a central controlled senor network. 

Such a chilled food chain is increasingly used in the UK grocery retail industry. Based on our food supply 

chain case, numerical simulations are conducted with some sample data (see Table 2). Parameters in the 

model are simulated with various values in the analysis to investigate their impacts on the model 

performance. To verify and demonstrate expected benefits of the sensor data enabled dynamic pricing 

strategy, we compare profits generated by scenario S1 and scenario S2. PS2-S1 is used as an indicator to 

describe the difference between the profits from S1 and S2.  

 

Table 2.  Sample data in the simulation 



 
Cp Cd Co K 

£/Box £/Box £/Box Box/Day 

Retailer store1  

 

0.1 

 

 

 

0.6 

 

 

 

0.05 

 

70 

Retailer store2 80 

Retailer store3 75 

Retailer stroe4 90 

     

   The numerical simulation is implemented by Microsoft Excel spreadsheet. We investigate the strategy 

performance through four indexes – “Product Value Difference” Vc-Vs, “Demand Sensitivity Ratio” β/α, 

“Pricing-Perishing Ratio” θ/λs and “Deterioration Difference” (λc-λs)/λs. The product value difference (PVD) 

indicates the difference between the dynamically identified product value and the planned value agreed in a 

contract. The Demand Sensitivity Ratio (DSR) shows the level of relative difference between consumer 

sensitivities towards price and product shelf-life. The Pricing-Perishing Ratio (PPR) (θ/λs) indicates the level 

of relative difference between a decision or a response of the price marking-down rate θ and a perceived 

product deterioration rate λs. Deterioration Difference Index (DDI) indicates the deviation of dynamically 

identified product deterioration rate (λs) from the expected deterioration rate (λc) according to the predefined 

product expiration date. During the analysis, all constrains given in the model are continuously satisfied 

when changing values of the four indexes. Through the investigation, we attempt to identify impacts of the 

key parameters on the model performance, and verify the benefits of the proposed sensor data driven pricing 

strategy under different situations.   

 

4.1 Analysis with the Product Value Difference and the Demand Sensitivity Ratio 

We expect that, with accurate product shelf-life features, sales can be promoted more properly to match the 

actual product quality through dynamic pricing. This consequently reduces costs of over stock, shortage or 

disposal. This implies that the difference in the observed product shelf between the two scenarios might be 

proportional to the benefit that can be attained through the proposed strategy. Figure 3 describes the 

simulation result. The following assumptions hold for this simulation: 

 The deterioration rates of the chilled food λc, λs in the two scenarios are same.  

 The price marking-down rate θ and the deterioration rate λs are fixed, and the ratio of the two parameters 

is 0.1 as described in Figure 3.  

In figure 3, the benefit indicator PS2-S1 is demonstrated against different PVDs with various demand 

sensitivity ratios (DSR). The simulation shows that, when the product value Vs is identified different from the 

planned value Vc, the proposed strategy performs better than S1. Moreover, the benefit increases as the 

identified PVD increases. The simulation also interestingly demonstrates that the proposed strategy generates 

more benefits for more quality-sensitive products (with greater β/α) than more price-sensitive products, when 

Vc is over-estimated (Vs<Vc) in S1. On the other hand, more price-sensitive products (with smaller β/α) gain 

more benefits from the proposed strategy, when Vc is under-estimated (Vs>Vc). Therefore, the strategy 

performance would not be significantly affected by the DSR. It can be seen that the curves tend to merge on 

the left hand side in figure 3.    
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Figure 3. Performance with varying price-value sensitivity ratio (β/α). 

 

4.2 Analysis of the Pricing-Perishing Ratio 

The price marking down is to retain a satisfactory demand when the changing product shelf-life makes an 

impact on the chilled food demand. We therefore expect that, with a given deterioration rate λs, the marking-

down rate would affect the price-dependent demand, and consequently the benefit from the strategy. 

Furthermore, we expect that certain price marking-down rates would exist to maximise or approximately 

maximise PS2-S1. Through analysing the impact of PPR, we demonstrate the simulation result in figure 4. The 

following assumptions hold for this simulation: 

 The same assumption for the deterioration rates λc, λs is held as described in section 4.1.   

 The demand has equal sensitivities (α = β) to variations of the product price and the shelf-life feature.  
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Figure 4. Performance with varying markdown-deterioration ratio (θ/λs). 

 

     In the numerical analysis, the deterioration rate λs is fixed at 0.05 to hold the first assumption above. With 

the cost structure and the given λs, an optimal value for the PPR index θ/λs is found around 0.1 (θ = 0.005) 

with the Newton Search method of nonlinear programming in Microsoft Excel Solver. Further simulation is 

performed with selected values of θ that changes the PPR from 0.1 to 1.2 discretely as described in figure 4. 

The simulation shows that, PS2-S1 increases as the PRR index decreases (i.e. the price marking-down rate θ 

decreases). When PPR reaches the value 0.1, PS2-S1 stops increasing. As described in figure 5 (with a given 



PVD = 2%), the PS2-S1 starts to decrease again after PPR is less than 0.1. The simulation also shows that the 

PS1-S2 indicator keeps decreasing as the PPR index θ/λs increases above the value 1.2. The same conclusion 

holds when the deterioration rate λs varies in [0.001, 0.1]. This confirms the optimal point for the PRR index. 

The simulation stops when the dynamically set price reaches zero (when PPR is greater than 12), and the PS2-

S1 stops decreasing (when PPR is less than 0.002).  

    The impact of PRR on the strategy performance described in figure 4 implies that the proposed strategy 

would not perform better than S1 with a large price marking-down rate when the actual product shelf-life 

feature is not significantly different from the planned value Vc. When the marking-down rate is too high 

(PRR is greater than 2 in this case), S2 would not generate benefits against S1 with any PVDs. The simulation 

result in figures 4 and 5 also shows that the pricing policy holds some flexibility in the marking-down rate 

around the optimal point. Slight changes in the PRR around the optimal point would not significantly affect 

the benefit generated by S2. When the perceived actual product shelf-life feature is same as the per-specified 

value in contract, there would be no benefit generated from the proposed strategy. 
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Figure 5. Performance against the markdown-deterioration ratio (θ/λs) with a given PVD. 

 

4.3 Analysis of the Deterioration Difference  

In previous numerical experiments, we have an assumption that the deterioration rates of the chilled food λc, 

λs in the two scenarios are same. Practically, it is likely that the product deterioration rate captured by the 

sensor data is different from what is perceived by consumers according to an expiration date. This 

discrepancy would affect the demand estimate and the length of the selling period during which the chilled 

food maintains acceptable quality to consumers. As discussed in section 3, both of the over-estimated and 

under-estimated demands will lead to costs to the business (disposal or shortage). We analyse the impact of 

this discrepancy through an index, Deterioration Difference Index (DDI), i.e. (λc-λs)/λs. The variations of the 

index and resultant changes in PS2-S1 are simulated. Figure 6 describes the numerical analysis result. The 

following assumptions hold for this simulation: 

 The same assumption for the demand sensitivities is held (α = β) as in section 4.2.   

 The marking-down rate θ and the deterioration rate λs are fixed, and the ratio of the two parameters is 

0.1.     



    The simulation result shows that PS2-S1 curves move downwards from left to right. PS2-S1 is always positive 

when DDI is negative. This indicates that, when the actual deterioration rate identified by sensor data (λs) is 

greater than the rate λc derived from the expiration date, the proposed strategy always perform better. This 

result may be explained by the fact that the under-estimated deterioration rate in scenario one implies 

overestimated product shelf-life and demands. Consequently, it causes disposal cost. When the dynamically 

identified Vs is much greater than the estimated Vc, even more revenue can be generated by the proposed 

strategy as depicted on the most left hand part of figure 6. When the accurately identified rate λs is smaller 

than the pre-specified rate λc, the proposed strategy does not always perform better. From figure 6, some 

negative PS2-S1 values appear alongside some large positive PVD values (smaller Vs). This may be explained 

by the fact that the comparatively smaller deterioration rate λs and shorter shelf-life Vs impose inverse 

impacts on the demand discrepancy between the two scenarios in a selling period. This consequently reduces 

the benefits generated by scenario two. With very large positive PVD values (Vs<<Vc), scenario two only 

generates rather small revenues (due to the small Vs). It therefore may not perform better than S1.  
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Figure 6. Performance with varying PVD and DDI. 

 

    In summary, the simulation provides following insights into the proposed strategy: 

 More quality-sensitive chilled food gains more benefits from the strategy when the food shelf-life is 

over-estimated in current practice. 

 The demand sensitivities of the chilled food do not significantly affect the strategy performance, when 

the food shelf-life is under-estimated in current practice. 

 Optimal price marking-down rate exists in the proposed dynamic pricing policy. The pricing policy 

holds certain flexibility – slight changes in the marking-down rate around the optimal value would not 

significantly affect the strategy benefit. 

 The strategy would not perform better than current practice if the price marking-down rate is far from the 

optimal solution and the actual product shelf-life feature is not significantly different from the pre-

specified one.  



 With the optimal pricing policy, the proposed strategy will always generate benefits where the chilled 

food shelf-life was better maintained than planned (Vs>Vc), or the control conditions (particularly the 

temperature to control the deterioration rate) of retailers were not maintained as well as planned (λs>λc).  

 

4.4 Managerial implications 

With the rapid development of advanced systems and innovative technologies, big data analytics platforms 

(e.g. SAP’s Sybase IQ, HP’s Vertica, and ParStream Analytics Platform) enable users to handle real time 

analytics on vast amounts of raw data and generate more accurate insights for decision-makers with the 

continuous import of historical as well as real-time data. Companies are able to efficiently process massive 

amounts of sensor data that is being generated throughout their supply chains. To extract the value of it, the 

modelling efforts presented in this paper are mainly focused on demonstrating the way of modelling chilled 

food pricing in retail supply chains and potential in performance improvement, and smoothly transfer from 

the vision of the implementation potential of the sensor data driven supply chain management. By 

comparison between the scenarios of conventional approach and sensor data driven dynamic pricing 

approach, the numerical results presented in this section illustrate that the proposed sensor data based 

dynamic pricing approach is feasible and capable of improving the chilled food supply chain management. 

As such, the sensor data driven supply chain decision model provides opportunities of technological 

development and strategic innovation in perishable food supply chain management. The analysis results in 

our paper will encourage firms in the food industry to explore more opportunities from big data and develop 

the proper strategies to improve their competitiveness. 

 

5. Concluding remarks    

With the wide adoption of tracking and sensory technologies, vast volume of structured, semi-structured and 

unstructured data is being generated in real time when products go through various supply chain stages 

before reaching end consumers. However, the recording and storage of these so called big data are useless 

unless they can be retrieved and analysed to generate the knowledge efficiently. This paper presents a sensor 

data driven dynamic pricing model and provides a novel application of big data approach to food supply 

chain management. The time and temperature information retrieved and extracted from the sensor network 

provides opportunities to predict more accurate product shelf-life information in real time. When consumers 

are able to perceive the product shelf-life variations over time, it is particularly crucial to dynamically price 

products based on the dynamically identified quality features. Numerical simulations have provided further 

insights into the performance and characteristics of the proposed strategy. 

With the rapid technological advancements, there is no doubt that it will allow us to efficiently process big 

data and make impact on business decisions and performance. However, in order to convince firms to invest 

on the infrastructure and resources required for big data driven decision support systems, it is essential to 

provide firms more applications that can demonstrate the benefits and potential returns of such investments. 

It is also important to develop new ways of obtaining value from the big data and help business manager to 

deliver better fact-based decisions aimed at making impact or to generate knowledge. The purpose of this 



study was to examine new applications that facilitate the utilization of sensor data, which is often 

unstructured and enormous in nature, to support supply chain decisions.  

By fulfilling this purpose, the study makes significant contributions to this important research field. First 

of all, our analytical and simulation results demonstrate that the proposed sensor data based dynamic pricing 

strategy would deliver benefits to food retailers. However, the magnitude of benefit also depends on the 

demand sensitivity nature of the food product, the pricing policy, and the actual product quality control 

conditions. This confirms the critical importance of data driven supply chain pricing decision for sustaining 

the business competitiveness. Secondly, although the application focuses on the sensor data driven pricing 

decision in the chilled food supply chain, there is similar demand in other management domains to bridge big 

data and effective management decisions. Our study explores the opportunities of big data driven decision 

support systems and demonstrates its potential of achieving a strategic supply chain innovation. As more 

data is being generated across different industry sectors, the sensor data driven decisions are expected to play 

more important roles in business innovations in the near future. 

     Despite the various contributions outlined in the paper, this study has some limitations which imply some 

fruitful directions for future research. For instance, a linear deterministic demand is assumed. One research 

direction would be given to the optimal pricing with stochastic demand functions reflecting seasonal demand 

patterns and with supply chain wide optimisation scenarios based on the sensor data. In addition, it is 

assumed that the competitive environment have been considered when the initial price is set up by the 

business. When competitors employ different pricing strategies, the influence would be complex depending 

on what are the differences between prices at a given time at different retailers. Although it is out of the 

scope of this research which focuses on timing and amount of price change during a limited time horizon, it 

will be an interesting extension to consider the competitors’ price in the demand function. Furthermore, the 

implementation aspects of the proposed supply chain scenario would be another research initiative to gain 

interesting insights. This study can also be applied to explore other opportunities of using the available 

sensor data to support supply chain decisions.  

 

Acknowledgements 

The research has been partly sponsored by EC FP7 (Grant No. PIRSES-GA-2013-612546) and by China 

NSFC (Grant No. 71390334).  

 

Reference   

[1] Abad, P.L. & Aggarwal V., (2005), Incorporating transport cost in the lot size and pricing decisions with 

downward sloping demand, International Journal of Production Economics, 95, 297-305. 

[2] Bhattacharjee, S. & Ramesh, R., (2000), A multi-period profit maximizing model for retail supply chain 

management: An integration of demand and supply-side mechanisms, European Journal of Operational Research, 

122, 584-601. 

[3] Blackburn, J. & Scudder, G., (2009), Supply Chain Strategies for Perishable Products: The Case of Fresh Produce, 

Production and Operations Management, 18(2), 129-137 



[4] Binkley, J. K., & Connor, J. M. (1998). Grocery market pricing and the new competitive environment. Journal of 

Retailing, 74(2), 273-294. 

[5] Chakrabarty, T., Giri, B.C. & Chaudhuri, K.S., (1998), An EOQ Model for Items with Weibull Distribution 

Deterioration, Shortages, and Trended Demand: An Extension of Philip’s Model, Computers and Operations 

Research, 25 (7/8), 649-657. 

[6] Chatwin, R.E., (2000), Optimal dynamic pricing of perishable products with stochastic demand and a finite set of 

pries, European Journal of Operational Research, 125, 149-174. 

[7] Chen, X. and Wang, X. (2015)  Free or bundled: channel selection decisions under different power structures, 

Omega, 53, 11-20 

[8] Fujiwara, O. & Perera, U.L.J.S.R., (1993), EOQ Models for Continuously Deteriorating Products Using Linear and 

Exponential Penalty Costs, European Journal of Operational Research, 70 (1), 104-114. 

[9] Fu, B., & Labuza, T. P. (1993). Shelf-life prediction: theory and application. Food Control, 4(3), 125-133.  

[10] Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory considerations: Research 

overview, current practices, and future directions. Management Science, 49(10), 1287-1309. 

[11] Herbon, A., Levner, E., & Cheng, T. C. E. (2014). Perishable inventory management with dynamic pricing using 

time–temperature indicators linked to automatic detecting devices. International Journal of Production Economics, 

147, 605-613. 

[12] Hodges, R. J., Buzby, J. C., & Bennett, B. (2011). Postharvest losses and waste in developed and less developed 

countries: opportunities to improve resource use. The Journal of Agricultural Science, 149(S1), 37-45. 

[13] Kelepouris, T., Pramatari, K., & Doukidis, G., (2007). RFID-enabled traceability in the food supply chain, 

Industrial Management & Data Systems, 107(1-2), 183-200. 

[14] Kopalle, P.K., Rao, A.G. & Assuncao, J.L. (1996) Asymmetric reference price effects and dynamic pricing 

policies, Marketing Science, 15(1),  60-85 

[15] Leat, P., & Revoredo-Giha, C. (2013). Risk and resilience in agri-food supply chains: the case of the ASDA 

PorkLink supply chain in Scotland. Supply Chain Management: An International Journal, 18(2), 219-231.  

[16] Lau, A. H. L. & Lau, H. S., (2002), The Effects of Reducing Demand Uncertainty in a Manufacturer-Retailer 

Channel for Single-Period Products, Computers and Operations Research, 29, 1583-1602. 

[17] LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path 

from insights to value. MIT Sloan Management Review, 52(2), 21-31 

[18] Li, D. Tang, O., O'Brien, C. & Wang, X., (2006), Improve food retail supply chain operations with dynamic pricing 

and product tracing, International Journal of Services Operations and Informatics, 1(4), 232-257.    

[19] Li, D., Wang, X., Chan, H. K. & Manzini, R. (2014) Sustainable food supply chain management, International 

Journal of Production Economics. 152, 1-8 

[20] Lin, C.R. & Chen, H.S., (2003), Dynamic allocation of uncertain supply for the perishable commodity supply 

chain, International Journal of Production Research, 41 (13), 3119–3138. 

[21] McAfee, A., and Brynjolfsson, E. 2012. “Big Data: The Management Revolution.” Harvard Business Review 

90:60–68.  

[22] MacDonald, J. M. (2000). Demand, information, and competition: why do food prices fall at seasonal demand 

peaks?. The Journal of Industrial Economics, 48(1), 27-45. 

[23] Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains: quantification and 

potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 

3065-3081. 



[24] Rong, A., Akkerman, R., & Crunow, M., (2011), An optimisation approach for managing fresh food quality 

throughout the supply chain, International Journal of Production Economics, 131(1), 421-429 

[25] Ruiz-Garcia, L., Barreiro, P., & Robla, J. I. (2008). Performance of ZigBee-based wireless sensor nodes for real-

time monitoring of fruit logistics. Journal of Food Engineering, 87(3), 405-415. 

[26] Sahin, E., Babaï, M. Z., Dallery, Y., & Vaillant, R. (2007). Ensuring supply chain safety through time temperature 

integrators. International Journal of Logistics Management, 18(1), 102-124 

[27] Smith, B.G., (2008). Developing sustainable food supply chains, Philosophical Transactions of The Royal Society 

B, 363, 849-861. 

[28] Tao, Y., Sharifi, H. & Li. D. (2012), Information portal for food tracking across supply chains, MSc project report, 

University of Liverpool, Sep. 2012. 

[29] Taoukis, P.S. & Labuza, T.P. (1989) Applicability of Time-Temperature Indicators as Shelf-Life Monitors of Food-

Products, Journal of Food Science, 54(4), 783-788. 

[30] Van Donselaar, K., van Woensel, T., Broekmeulen, R. A. C. M., & Fransoo, J. (2006). Inventory control of 

perishables in supermarkets. International Journal of Production Economics, 104(2), 462-472. 

[31] van der Vorst, J. G., Tromp, S. O., & Zee, D. J. V. D. (2009). Simulation modelling for food supply chain redesign; 

integrated decision making on product quality, sustainability and logistics. International Journal of Production 

Research, 47(23), 6611-6631. 

[32] Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: a revolution that will 

transform supply chain design and management. Journal of Business Logistics, 34(2), 77-84. 

[33] Wang, X., & Li, D. (2012). A dynamic product quality evaluation based pricing model for perishable food supply 

chains. Omega, 40(6), 906-917. 

[34] Zhao, W. & Zheng, Y.S., (2000), Optimal dynamic pricing for perishable assets with non-homogeneous demand, 

Management Science, 46 (3), 375-388. 

[35] Zhou, W., Tu,Y-J. & Piramuthu, S., (2009), RFID-enabled item-level retail pricing, Decision Support Systems, 

48(1) 167-179 

 


