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Abstract: Graph bootstrap percolation, introduced by Bollobás in 1968, is a cellular automa-

ton defined as follows. Given a “small” graph H and a “large” graph G = G0 ⊆ Kn, in consecutive

steps we obtain Gt+1 from Gt by adding to it all new edges e such that Gt ∪ e contains a new

copy of H. We say that G percolates if for some t ≥ 0, we have Gt = Kn.

For H = Kr, the question about the smallest size of percolating graphs was independently

answered by Alon, Frankl and Kalai in the 1980’s. Recently, Balogh, Bollobás and Morris

considered graph bootstrap percolation for G = G(n, p) and studied the critical probability

pc(n,Kr) for the event that the graph percolates with high probability. In this paper, using the

same setup, we determine up to a logarithmic factor the critical probability for percolation by

time t for all 1 ≤ t ≤ C log logn.

AMS 2000 subject classifications: primary 60K35; secondary 60C05.

Keywords and phrases: bootstrap percolation, weak saturation.

1. Introduction

Cellular automata, introduced by von Neumann [17] after a suggestion of Ulam [19], are dynamical
systems acting on graphs using local and homogeneous update rules. The H-bootstrap percolation
process is one example of such an automaton and can be described as follows. Given a fixed graph H
and a graph G ⊂ Kn set G0 = G and then, for each t = 0, 1, 2, . . ., let

Gt+1 = Gt ∪ {e ∈ E(Kn) : ∃H with e ∈ H ⊂ Gt ∪ e}. (1)

Let 〈G〉H =
⋃∞

t=0 Gt denote the closure of G under H-bootstrap percolation. We say that G percolates

(or H-percolates) in the H-bootstrap process if 〈G〉H = Kn. (See Figure 1).
The notion of H-percolation, introduced by Bollobás in 1968 [6] under the name of weak satura-

tion, has been extensively studied in the case where H is a complete graph. Initially, the extremal
properties of the H-bootstrap process attracted the most attention. Alon [1], Frankl [13] and Kalai
[16] independently confirmed a conjecture of Bollobás and proved that the smallest Kr-percolating
graphs on n vertices have size

(

n
2

)

−
(

n−r+2
2

)

.
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Fig 1. An example of the K4-bootstrap percolation process. Dashed edges are added to the graph on the next time step.

Recently, Balogh, Bollobás and Morris [4] observed a strong connection between weak saturation
and r-neighbour bootstrap percolation, a dynamical process suggested in 1979 by Chalupa, Leath
and Reich [11]. For an integer r ≥ 2, the r-neighbour bootstrap process on a graph G = (V,E) with
an ‘initial set’ of vertices A ⊂ V is defined by setting A0 = A and for t = 0, 1, 2, . . ., defining

At+1 = At ∪ {v ∈ V : |N(v) ∩ At| ≥ r}, (2)

where N(v) is the set of neighbours of v in G. The set 〈A〉 =
⋃∞

t=0 At is the closure of A and we say
that A percolates if 〈A〉 = V . Often, the vertices in the set At are called ‘infected’ and the remaining
vertices are ‘healthy’. The usual question asked in the context of r-neighbour bootstrap percolation is
the following: if the vertices of G are initially infected independently at random with probability p, for
what values of p is percolation likely to occur? The probability of percolation is clearly non-decreasing
in p hence it is natural to define the critical probability pc(G, r) as

pc(G, r) = inf{p : Pp(〈A〉 = V (G)) ≥ 1/2}. (3)

The study of critical probabilities has brought numerous and often very sharp results for various
graphs G and the values of the infection threshold. For example, van Enter [12] and Schonmann [18]
studied r-neighbour bootstrap percolation on Zd, Holroyd [14] and Balogh, Bollobás, Duminil-Copin
and Morris [3] analysed finite grids, while Balogh and Pittel [5], Janson, Łuczak, Turova and Vallier
[15] and Bollobás, Gunderson, Holmgren, Janson and Przykucki [8] worked with random graphs.

Motivated by this approach, Balogh, Bollobás and Morris defined the critical probability for H-
bootstrap percolation on Kn to be

pc(n,H) = inf{p : Pp(〈Gn,p〉H = Kn) ≥ 1/2}, (4)

where Gn,p is the Erdős-Rényi random graph, obtained by choosing every edge of Kn independently
at random with probability p. In [4], they showed that taking λ(r) =

((

r
2

)

− 2
)

/(r−2), for some c > 0
and n ∈ N large enough,

n−1/λ(r)

c logn
≤ pc(n,H) ≤ n−1/λ(r) logn. (5)

In this paper we focus on a different question related to Kr-bootstrap percolation. Namely, for
what values of p is percolation likely to occur by time t? Defining Kr-bootstrap percolation as in
(1), let T = T (G0, n) = min{t : Gt = Kn in the Kr-boots. process}. Let the critical probability for

percolation by time t be defined as

pc(n, r, t) = inf{p : Pp(T ≤ t) ≥ 1/2}. (6)

For notational convenience, set

τ = τ(r) =

(

r

2

)

− 1, et = τ t, and vt = (r − 2)
(τ t − 1)

(τ − 1)
+ 2. (7)

The following theorem is the main result of this paper.
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Theorem 1.1. Let r ≥ 4 and t = t(n) ≤ log logn
3 log τ . Let (pn)

∞
n=1 be a sequence of probabilities, let

ω(n) → ∞ and let T = T (n). Under the Kr-bootstrap process,

(i) if, for all n, p(n) ≥ n−(vt−2)/et logn, then Ppn
(T ≤ t) → 1 as n → ∞ and

(ii) if, for all n, p(n) ≤ n−(vt−2)/et/ω(n), then Ppn
(T ≤ t) → 0 as n → ∞.

Thus, Theorem 1.1 shows that for all r ≥ 4 and 1 ≤ t ≤ log logn
3 log τ , and ω(n) → ∞, then for n

sufficiently large,
n−(vt−2)/et/ω(n) ≤ pc(n, r, t) ≤ n−(vt−2)/et logn. (8)

Similar questions related to the time of r-neighbour bootstrap percolation on grids have recently
been studied by Bollobás, Holmgren, Smith and Uzzell [9], Bollobás, Smith and Uzzell [10] and by
Bollobás, Balister and Smith [2].

The proofs of both statements of Theorem 1.1 rely on the properties of a family of graphs, denoted
{Ft : t ≥ 1}, that are described in detail in Section 3. For each t, there is a pair of vertices in V (Ft)
so that if Ft occurs as a subgraph of G0, then that pair is guaranteed to be added to the graph by
time t. The graph Ft is thought of as ‘anchored on’ that special pair of vertices.

To prove Statement (i) of Theorem 1.1, Janson’s inequality is used to bound from below the
probability that a particular pair {x, y} is contained as the anchor vertices in some copy of Ft. To
establish a bound in this way, estimates are needed on the probability that two overlapping copies
of Ft occur in G0. This amounts to determining the minimum possible ratio of edges to vertices
in some non-trivially overlapping pair. It turns out that the minimum ratio is not obtained for
one of the extreme cases, i.e., neither for two copies of Ft that share only one vertex, nor for two
copies that share all but one vertex. Even though we do not prove it directly, our proof suggests
that as t → ∞, the two overlapping copies of Ft that minimise the edge-to-vertex ratio share an
approximately 4/((r + 1)(r − 2)) fraction of the vertex set. Bounding this ratio from below for all
possible configurations of two such copies is the main challenge in the proof of the upper bound on
pc(n, r, t), and is dealt with in detail in Section 3.1.

To prove Statement (ii) of Theorem 1.1 we employ two extremal results about graphs that add e
to the graph in at most t time steps: one of them to bound the number of their vertices from above,
and one (a corollary from a highly nontrivial result in [4]) to bound their edge density from below.
Then, for p as in Statement (ii) of Theorem 1.1, we show that with high probability no such graph
can be found in Gn,p. This completes the proof of our main result.

The remaining sections of the paper are organised as follows. In Section 2 we briefly discuss the K3-
bootstrap percolation process which behaves differently from Kr-bootstrap processes when r ≥ 4. In
Section 3, we introduce the graphs, Ft, that are the main focus of the proofs to come and prove some
key properties. In Section 3.1, which is the crucial part of our argument, we prove some properties
of graphs consisting of two overlapping copies of Ft. In Sections 4 and 5 we prove Statements (i) and
(ii) of Theorem 1.1 respectively. Finally, in Section 6 some open problems are stated.

2. K3-bootstrap percolation

In this section we discuss the case r = 3. Observe that a graph G percolates in K3-bootstrap percola-
tion if and only if G is connected. Also, at every time step each non-edge between vertices at distance
2 is added to the graph. Therefore, if G is a connected graph with diameter d, then the diameter of
the graph obtained from G after one step of the K3-bootstrap process is ⌈d/2⌉. Hence, G percolates
in ⌈log2 d⌉ time steps.

In [7] Bollobás proved the following theorem.

Theorem 2.1. Let Gn,p be the Erdős-Rényi random graph.

1. Suppose p2n− 2 logn → ∞ and n2(1− p) → ∞. Then Gn,p has diameter 2 whp.
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2. Suppose the functions d = d(n) ≥ 3 and 0 < p = p(n) < 1 satisfy (logn)/d − 3 log logn → ∞,
pdnd−1 − 2 logn → ∞ and pd−1nd−2 − 2 logn → −∞. Then Gn,p has diameter d whp.

Let ω(n) = o(logn) tend to infinity arbitrarily slowly. Clearly, if p ≥ 1 − 1/(n2ω(n)) then whp.
Gn,p = Kn which has diameter 1. Simplifying a bit, Theorem 2.1 implies that if

√

2 logn+ ω(n)

n
≤ p ≤ 1−

1

ω(n)

then Gn,p has diameter 2, and that for 3 ≤ d ≤ logn/4 log logn, if

p(n) ∈
(

(2 logn+ ω(n))
1
dn− d−1

d , (2 logn− ω(n))
1

d−1n− d−2
d−1

)

then the random graph Gn,p(n) has diameter d whp. This answers our question about the time of
K3-bootstrap percolation.

3. Adding an edge to the graph using sparse subgraphs

Throughout the following sections, fix r ≥ 4. For simplicity, r is often omitted from the notation.
We define a family {Ft : t ≥ 1} of graphs that add a given pair as an edge to the graph exactly at
time t in the Kr-bootstrap process. We prove that these are the “sparsest” minimal such graphs (i.e.,
they minimise the number of edges to the number of vertices ratio). Finally, in Section 3.1 we prove
a lower bound on the edge-density of two non-disjoint copies of the graph Ft. This bound is the key
element of arguments to come.

The graph Ft is defined recursively and the fixed edge that we add to the graph at time t using Ft

will always be denoted by e0 = {1, 2}.
For t = 1, set F1 = Kr − e0, an r-clique missing one edge.
For each t ≥ 1, given Ft, for each e ∈ E(Ft), let V (e) be a new set of r − 2 vertices and let K(e)

be a copy of Kr − e, an r-clique missing one edge, on V (e)∪ e. Then, Ft+1 is defined to be the graph
with vertex set

V (Ft+1) =





⋃

e∈E(Ft)

V (e)



 ∪ V (Ft)

and edge set

E(Ft+1) =
⋃

e∈E(Ft)

E(K(e))

(see Figure 2). Recall that we define τ =
(

r
2

)

− 1. By induction on t, for every t ≥ 1,

et = e(Ft) = |E(Ft)| = τ t and (9)

vt = v(Ft) = |V (Ft)| = |V (Ft−1)|+ et−1(r − 2) = 2 + (r − 2)
τ t − 1

τ − 1
. (10)

Lemma 3.1. In the Kr-bootstrap process started from Ft the edge e0 is added to the graph in
exactly t steps.

Proof. We prove this fact by induction of t. The statement is trivial for t = 1 as F1 = Kr − e0.
Assume that the Lemma holds for t = k ≥ 1. Note that after one step of the process started from
Fk+1 we obtain a copy of Fk in our graph since Fk+1 is obtained from Fk by placing a copy of Kr

minus an edge on every edge of Fk. Thus e0 is added to the graph after at most k + 1 steps of the
process started from Fk+1.
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e0

F1

e0

F2

· · · e0

Ft

}

(r − 2)(r − 1)t−1

· · · V (Ft) \ V (Ft−1)

Fig 2. Construction of the graph Ft. Note that every edge in Ft is adjacent to at least one vertex in V (Ft) \ V (Ft−1).

The construction of Fk+1 can be also seen as placing a copy of Fk on each of the τ edges of
F1 = Kr − e0. By induction we know that these copies of Fk on their own add the respective edges
of F1 in k time steps. This process could possibly accelerate if some interaction between two different
copies of Fk occurred early in the process, say, before the Fk’s add their respective anchor edges. Let
therefore F 1, F 2, . . . , F τ be the different copies of Fk in Fk+1. By construction of Fk+1 we have that
for all i < j the F i and F j share at most one vertex.

Let F ′ and F ′′ be two different copies of Fk in Fk+1 and let w be the vertex shared by F ′ and F ′′

if it exists. Let u ∈ F ′, v ∈ F ′′ with u, v 6= w be such that the edge e = {u, v} is added first among
the edges not induced by any F i for 1 ≤ i ≤ τ . Since r ≥ 4, the copy of Kr − e that adds e, without
loss of generality, contains a vertex z /∈ F ′′, z 6= u. Then the edge e′ = {z, v} is either not induced by
any F i in which case, by the choice of e, it cannot be added before e, or e′ is one of the edges of F1

that F 1, F 2, . . . , F τ are anchored on. However, if that is the case, by the choice of e we know that e′

can only be added at time k (because e′ is added before any edge not induced by any F i does) and
hence e can only be added at time k + 1. Thus e0 cannot be added by Fk+1 before time k + 1.

Recall that we denote

λ =

(

r
2

)

− 2

r − 2
=

r + 1

2
−

1

r − 2
(11)

and that τ can be written

τ =

(

r

2

)

− 1 =
(r + 1)(r − 2)

2
. (12)

Let also ct = 1/(τ t − 1). Note that, using (10),

et
vt − 2

=
τ t

(r − 2) τ t−1
(r−2)λ

= λ (1 + ct) = λ+
τ − 1

r − 2

1

τ t − 1
= λ+

1

vt − 2
. (13)

Equation (13) is used throughout this section to show that Ft is the sparsest minimal graph that adds
e0 to the graph in t time steps of the Kr-bootstrap process.

Let us recall the following Witness-Set Algorithm introduced in [4]. Given a graph G, we assign a
graph F = F (e) ⊂ G to each edge e ∈ 〈G〉Kr

as follows:

1. If e ∈ G then set F (e) = {e}.
2. Choose an order in which to add the edges of 〈G〉Kr

, and at each step identify which r-clique
was completed (if more than one is completed then choose one).

3. Add the edges one by one. If e is added by the r-clique K, then set

F (e) :=
⋃

e6=e′∈K

F (e′).
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A graph F is an r-witness set if there exists a graph G, an edge e, and a realization of the Witness-Set
Algorithm (i.e., a choice as in Step 2) such that F = F (e). The following highly nontrivial extremal
result occurs as Lemma 9 in [4], which is stated here without repeating the proof.

Lemma 3.2. Let F be a graph and r ≥ 4, and suppose that F is an r-witness set. Then

|E(F )| ≥ λ(|V (F )| − 2) + 1.

We say that a graph G is a minimal graph adding e if e ∈ 〈G〉Kr
but for all proper subgraphs

G′ ( G of G we have e /∈ 〈G′〉Kr
. It’s an immediate observation that every minimal graph adding e

to G is an r-witness set. Hence we have the following corollary.

Corollary 3.3. Let r ≥ 4 and let F be a minimal graph adding e to the graph for some e ∈ 〈F 〉Kr
.

Then
|E(F )| ≥ λ(|V (F )| − 2) + 1. (14)

We now show that Ft maximises the number of vertices among all minimal graphs that add e0 to
the graph in exactly t time steps of the Kr-bootstrap process.

Lemma 3.4. Let r ≥ 4, t ≥ 1 and let F be a minimal graph adding e0 at to the graph time t in the
Kr-bootstrap process. Then |V (F )| ≤ vt = (r − 2) τ

t−1
τ−1 + 2 and |E(H)| ≤ et = τ t.

Proof. We prove the lemma by induction on t. For t = 1 the lemma is trivial as Kr − e0 is the only
minimal graph adding e0 on the first time step. Hence assume that the lemma holds for some t ≥ 1
and consider a minimal graph F such that e0 is added at time t + 1 in the Kr-bootstrap process
started from F .

After one step of the process we obtain a graph F ′ containing some minimal subgraph F ′′ that
adds e0 in t additional time steps. By induction we have |V (F ′′)| ≤ (r− 2) τ

t−1
τ−1 +2 and |E(F ′′)| ≤ τ t.

Now, since F was a minimal graph adding e0 in time t + 1, to maximise the number of vertices
and edges in F we should in the first step of the process add every edge e of F ′′ using a copy of
Kr − e disjoint from the copies adding other edges in F ′′. This shows that |E(F )| ≤ τ |E(F ′′)| and
|V (F )| ≤ |V (F ′′)|+ (r − 2)|E(F ′′)|. This completes the induction and the lemma follows.

The proof of Lemma 3.4 immediately shows a further extremal result.

Corollary 3.5. For any t ≤ 1, up to isomorphism, Ft is the only minimal graph on vt vertices adding
e0 to the graph in exactly t time steps.

As usual, for any graph G and A,B ⊂ V (G), let E(A,B) = {{a, b} ∈ E(G) : a ∈ A, b ∈ B} and
e(A,B) = |E(A,B)|.

In the proofs to come, results on edge-densities of subsets of the graphs {Ft : t ≥ 1} are proved by
induction on t. To make the notation clearer, let us use Et(A,B) to denote the edges between A and
B in the graph Ft and et(A,B) = |Et(A,B)|. As usual, δ(G) = min{degG(v) : v ∈ V (G)} is used for
the minimum degree of G. We shall find the following simple estimate useful in our studies of Ft.

Lemma 3.6. For any t ≥ 2 and any set L ⊆ V (Ft)

et(L, Ft) ≥
r − 1

2
|L|.

Proof. Note that for t ≥ 2, δ(Ft) = r − 1. Thus

(r − 1)|L| ≤
∑

v∈L

degFt
(v) = 2et(L,L) + et(L,L

c) ≤ 2et(L, Ft).
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3.1. Overlapping copies of Ft

To prove Statement (i) of Theorem 1.1 we shall show that if p is large enough then with high probability
there is a copy of Ft anchored on every edge of Gn,p. Towards this aim, we shall show that a measure of
the variance of the number of such copies of Ft anchored on a fixed edge e0 is not too large compared
to their expected number. In Section 4, this fact together with Janson’s inequality is used to deduce
the desired result. Hence, we need to prove that it is significantly “harder” (in terms of the ratio of
the number of edges to the number of vertices) to find two different such copies of Ft that overlap in
at least one vertex (other than 1, 2 ∈ e0) than it is to find two disjoint such copies.

In particular, as the main result in this subsection, it is shown that for any L ⊆ V (Ft) \ {1, 2},

et(L, Ft)

|L|
≥

et
vt − 2

(15)

with equality only when L = V (Ft) \ {1, 2}. With this in mind, define εt to be such that

1 + εt =

(

vt − 2

et

)

min

{

et(L, Ft)

|L|
: L ( V (Ft) \ {1, 2}

}

. (16)

From the definition above, there is no guarantee that εt is non-negative. Using induction on t, we
shall prove that this is the case by first giving a weak upper bound on εt in Lemma 3.7 and then
using it to prove a relatively good lower bound on εt for all t ≥ 1.

Lemma 3.7. For all r ≥ 4 and t ≥ 1 we have εt ≤
1

r+1 .

Proof. First consider the case t = 1. For all L ⊆ V (F1) \ {1, 2} the vertices in F1 \ L are connected
to each other and to both 1 and 2. Hence, for 1 ≤ ℓ ≤ r− 3 and |L| = ℓ, the vertices in F1 \L induce
(

r−ℓ
2

)

− 1 edges, which gives

e1(L, F1)

|L|
=

1

ℓ

((

r

2

)

− 1−

(

r − ℓ

2

)

+ 1

)

=
1

2ℓ

(

r2 − r − r2 + 2rℓ − ℓ2 + r − ℓ
)

=
2r − ℓ− 1

2

≥
r + 2

2
,

with equality for ℓ = r − 3. Hence

ε1 =

(

r + 2

2

)(

v1 − 2

e1

)

− 1

=

(

r + 2

2

)

(

r − 2
(

r
2

)

− 1

)

− 1

= (r − 2)

(

r − 2

r2 − r − 2

)

− 1

=
r + 2

r + 1
− 1 =

1

r + 1
(17)

which proves the lemma for t = 1.
Now assume that t ≥ 2. Then in Ft there is a vertex v connected to 1 and not to 2. Let L =

V (Ft) \ {1, 2, v}. This implies |L| = vt − 3 and et(L, Ft) = et − 1. Thus, for t ≥ 2 and r ≥ 4,

εt ≤

(

vt − 2

et

)(

et − 1

vt − 3

)

− 1
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=
etvt − 2et − vt + 2− etvt + 3et

et(vt − 3)

=
et − vt + 2

et(vt − 3)

<
1

vt − 3
≤

1

v2 − 3

=
1

(r − 2)
(

r
2

)

− 1

≤
1

(r − 2)6− 1
≤

1

r + 1
.

This completes the proof of Lemma 3.7.

The following lemma gives us another result in a similar direction and is used in this section to
show that one need only consider certain choices for L ⊆ V (Ft) in order to determine εt.

Lemma 3.8. For all r ≥ 4 and t ≥ 2 we have

min

{

et(L, Ft)

|L|
: L ( V (Ft) \ {1, 2}

}

<
r + 1

2
.

Proof. We prove the lemma by giving an example of a simple set L ( V (Ft) \ {1, 2} that satisfies the
inequality. Let v ∈ V (Ft−1) \ V (Ft−2). Then, let

L = {v} ∪ {u ∈ V (Ft) \ V (Ft−1) : {v, u} ∈ E(Ft)} .

We have
|L| = 1 + degFt

(v) = 1 + (r − 1)(r − 2)

and

et(L, Ft) = (r − 1)

((

r

2

)

− 1

)

=
(r − 1)(r + 1)(r − 2)

2
.

Hence
et(L, Ft)

|L|
=

(r + 1)

2

(r − 1)(r − 2)

1 + (r − 1)(r − 2)
<

(r + 1)

2
.

Note that, in general, Lemma 3.8 yields a worse upper bound on εt than that given by Lemma 3.7,
but the form is useful in the proof of Lemma 3.11 to come.

The next Theorem is the main tool in the proof of Statement (i) of Theorem 1.1 to come. Here we
give a lower bound on εt that holds for all t ≥ 1.

Theorem 3.9. For all r ≥ 4 and t ≥ 1,

εt ≥
1

r + 1

(

2

r2 − 2

)t−1

. (18)

Before proving Theorem 3.9, a few auxiliary lemmas are stated and proved below, along with an
outline of the proof. These are then used to establish Theorem 3.9 by induction on t.

Recall that the graph Ft+1 is constructed by placing an independent copy of Kr − e on every edge
e of Ft. Further recall that for each e ∈ E(Ft) we write V (e) to denote this new set of r − 2 vertices.

For the induction step from t to (t+1) we will fix a set Lt ⊆ V (Ft)\{1, 2} and look for the smallest

possible edge densities et+1(Lt∪M,Ft+1)
|Lt∪M| among sets of the form Lt ∪M where M ⊆ V (Ft+1) \ V (Ft)

(see Figure 3).
In the following lemma we first deal with the case Lt = ∅, showing that no set contained entirely

in V (Ft+1) \ V (Ft) can minimise the edge density.
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e0

Lt

M

V (Ft) V (Ft+1) \ V (Ft)

Fig 3. Sets Lt and M in Ft+1 together with the edges counted in et+1(Lt ∪M,Ft+1).

Lemma 3.10. For all r ≥ 4 and t ≥ 2 we have

min

{

et(L, Ft)

|L|
: L ⊆ V (Ft) \ V (Ft−1)

}

≥
r + 1

2
.

Proof. Let L ⊂ V (Ft) \ V (Ft−1). Hence for every v ∈ L we have degFt
(v) = r − 1 and at most r − 3

neighbours of v are also in L. Thus et(L, Ft), the number of edges adjacent to L, satisfies

et(L, Ft) ≥ |L|

(

r − 3

2
+ 2

)

= |L|
r + 1

2

and the lemma follows.

Thus, by Lemma 3.8, the minimum in equation (16) is not attained with L ⊆ V (Ft) \ V (Ft−1).
We now show that if for some e ∈ E(Ft) certain conditions are fulfilled then moving all vertices

from V (e) into M does not increase the density. The details of this are given in the following lemma.

Lemma 3.11. Let t ≥ 2, Lt ⊆ V (Ft) with Lt 6= ∅, and M ⊆ V (Ft+1) \V (Ft). For every e = {x, y} ∈
E(Ft) with {x, y} ∩ Lt 6= ∅ then

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
≥

et+1(Lt ∪M ∪ V (e), Ft+1)

|Lt ∪M ∪ V (e)|
.

Proof. Set m = |V (e) \ M | and note that the conclusion is trivially true for m = 0. Thus, assume
1 ≤ m ≤ r − 2.

We consider two different cases. Suppose first that both x, y ∈ Lt. Then et+1(Lt∪M∪V (e), Ft+1)−
et+1(Lt ∪M,Ft+1) =

(

m
2

)

and hence

et+1(Lt ∪M ∪ V (e), Ft+1)

|Lt ∪M ∪ V (e)|
=

et+1(Lt ∪M,Ft+1) +
(

m
2

)

|Lt ∪M |+m

=
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

(

m
2

)

m

m

|Lt ∪M |+m

=
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

m− 1

2

m

|Lt ∪M |+m

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

r − 3

2

m

|Lt ∪M |+m

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
. (by Lemma 3.6)
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The case when x ∈ Lt and y /∈ Lt or when x /∈ Lt and y ∈ Lt, is similar. In this case, et+1(Lt ∪
M ∪ V (e), Ft+1)− et+1(Lt ∪M,Ft+1) =

(

m+1
2

)

, and thus

et+1(Lt ∪M ∪ V (e), Ft+1)

|Lt ∪M ∪ V (e)|
=

et+1(Lt ∪M,Ft+1) +
(

m+1
2

)

|Lt ∪M |+m

=
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

m+ 1

2

m

|Lt ∪M |+m

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m
+

r − 1

2

m

|Lt ∪M |+m

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
. (by Lemma 3.6)

This completes the proof.

On the other hand, when the edge e does not satisfy the conditions in Lemma 3.11, the following
lemma holds.

Lemma 3.12. Let t ≥ 2, Lt ⊆ V (Ft) with Lt 6= ∅, e ∈ Et(L
c
t , L

c
t) and M ⊆ V (Ft+1) \ V (Ft). If

|V (e) ∩M | > 0 then

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
> min

{

et+1(L, Ft+1)

|L|
: L ( V (Ft+1) \ {1, 2}

}

.

Proof. Set m = |V (e)∩M | > 0 and recall that we have m ≤ r−2. Since Lt 6= ∅, we have Lt∪M\V (e) 6=
∅. Thus,

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
=

et+1(Lt ∪M \ V (e), Ft+1) +
(

m
2

)

+m(r −m)

|Lt ∪M \ V (e)|+m

=
et+1(Lt ∪M \ V (e), Ft+1)

|Lt ∪M \ V (e)|
·

|Lt ∪M \ V (e)|

|Lt ∪M \ V (e)|+m

+

(

m
2

)

+m(r −m)

m

m

|Lt ∪M \ V (e)|+m

=
et+1(Lt ∪M \ V (e), Ft+1)

|Lt ∪M \ V (e)|
·

|Lt ∪M \ V (e)|

|Lt ∪M \ V (e)|+m

+

(

r −
m+ 1

2

)

m

|Lt ∪M \ V (e)|+m

≥
et+1(Lt ∪M \ V (e), Ft+1)

|Lt ∪M \ V (e)|
·

|Lt ∪M \ V (e)|

|Lt ∪M \ V (e)|+m

+
r + 1

2

m

|Lt ∪M \ V (e)|+m
.

If et+1(Lt∪M,Ft+1)
|Lt∪M| ≥ r+1

2 then the claim holds by Lemma 3.8. Otherwise we have that

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
>

et+1(Lt ∪M \ V (e), Ft+1)

|Lt ∪M \ V (e)|
.

This completes the proof.

Recall that by Lemma 3.10 any set Lt ∪ M that minimises the ratio et+1(Lt∪M,Ft+1)
|Lt∪M| has Lt 6=

∅. Furthermore, Lemma 3.12 tells us that any set Lt ∪ M with Lt 6= ∅ that minimises the ratio
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et+1(Lt∪M,Ft+1)
|Lt∪M| has |V (e) ∩M | = 0 for every edge e ∈ Et(L

c
t , L

c
t). Let us fix Lt ⊂ V (Ft) and take M

to be maximal such that Lt ∪M minimises the edge density.
Assume first that Lt 6= V (Ft) \ {1, 2} with Lt 6= ∅. By Lemma 3.11 we see that we then have

|M | = (r − 2)et(Lt, Ft). Since all edges incident to Lt ∪M in Ft+1 are, by the construction of Ft+1,
incident to M , and since M is a union of et(Lt, Ft) disjoint cliques on r − 2 vertices each, such that
every vertex in M has exactly two neighbours outside M , we have

et+1(Lt ∪M,Ft+1)

Lt ∪M
=

et(Lt, Ft)
((

r
2

)

− 1
)

|Lt|+ (r − 2)et(Lt, Ft)
. (19)

Note that when Lt = V (Ft)\{1, 2} this choice of M would result in having Lt∪M = V (Ft+1)\{1, 2},
i.e., the edge density is minimised by taking the whole graph. As we want to minimise among all
possible proper vertex subsets of the whole graph Ft+1, the case Lt = V (Ft) \ {1, 2} requires some
further consideration.

Lemma 3.13. Let t ≥ 2, Lt ⊆ V (Ft) with Lt 6= ∅ and M ⊆ V (Ft+1) \V (Ft). Let e = {x, y} ∈ E(Ft)
with {x, y} ∩ Lt 6= ∅ and let w ∈ V (e) \M . We have

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
≥

et+1(Lt ∪M ∪ (V (e) \ {w}), Ft+1)

|Lt ∪M ∪ V (e) \ {w}|
.

Proof. We prove this lemma analogously to the proof of Lemma 3.11 to obtain that if x ∈ Lt, y /∈ Lt

then

et+1(Lt ∪M ∪ (V (e) \ {w}), Ft+1)

|Lt ∪M ∪ V (e) \ {w}|
≤

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m− 1

+
r − 1

2

m− 1

|Lt ∪M |+m− 1

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
, (by Lemma 3.6)

while if x, y ∈ Lt then

et+1(Lt ∪M ∪ (V (e) \ {w}), Ft+1)

|Lt ∪M ∪ V (e) \ {w}|
≤

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
·

|Lt ∪M |

|Lt ∪M |+m− 1

+
r − 3

2

m− 1

|Lt ∪M |+m− 1

≤
et+1(Lt ∪M,Ft+1)

|Lt ∪M |
, (by Lemma 3.6)

Assume therefore that Lt = V (Ft)\{1, 2}. This implies that for all e ∈ E(Ft) we have e ∈ Et(Lt, Ft).

Let us again take M to be maximal such that Lt ∪M minimises the ratio et+1(Lt∪M,Ft+1)
|Lt∪M| .

Since M is maximal, we use Lemma 3.11 to show that there is exactly one edge e ∈ E(Ft) such that
|V (e)∩M | < r− 2. We then use Lemma 3.13 to show that for this edge we have |V (e)∩M | = r− 3.
Let {v} = V (e) \M . Since V (Ft+1) \ (Lt ∪M) = {1, 2, v}, v can have at most one neighbour, i.e.,
either vertex 1 or 2, not in Lt ∪M . This implies that we have

et+1(Lt ∪M,Ft+1)

Lt ∪M
≥

et+1 − 1

vt+1 − 3
. (20)

We are now ready to prove Theorem 3.9.
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Proof of Theorem 3.9. The proof proceeds by induction on t. We have already seen in the proof of
Lemma 3.7 that ε1 = 1

r+1 so the claim holds for t = 1. Thus assume the statement is true for some
value of t ≥ 1. We now proceed with establishing a recursive lower bound on et+1(Lt+1, Ft+1)/|Lt+1|.
As before, we consider sets of the form Lt+1 = Lt ∪ M , where Lt ⊆ V (Ft) \ {1, 2} and M ⊆
V (Ft+1) \ V (Ft), and we write ℓ = |Lt|.

Thus, if there exists a set Lt ∪ M that minimises the ratio et+1(Lt∪M,Ft+1)
|Lt∪M| for which we have

Lt 6= V (Ft) \ {1, 2} then by (19), we have

et+1(Lt ∪M,Ft+1)

ℓ+ |M |
≥

(r−2)(r+1)
2 et(Lt, Ft)

ℓ+ (r − 2)et(Lt, Ft)

≥
(r−2)(r+1)

2 ℓλ(1 + ct)(1 + εt)

ℓ+ (r − 2)ℓλ(1 + ct)(1 + εt)
(by ind. hyp. and (13))

= λ(1 + ct+1)

(r−2)(r+1)
2

(1+ct)
(1+ct+1)

(1 + εt)

1 + (r − 2)λ(1 + ct)(1 + εt)
.

Hence, using the fact that ct = 1/(τ t − 1), we see that εt+1 is at least

(r−2)(r+1)
2

(1+ct)
(1+ct+1)

(1 + εt)

1 + (r − 2)λ(1 + ct)(1 + εt)
− 1 =

(1 + ct)(1 + εt)
(

(r−2)(r+1)
2

1
1+ct+1

− (r − 2)λ
)

− 1

1 + (r − 2)λ(1 + ct)(1 + εt)

=
(1 + ct)(1 + εt)

(

1− 1
τ t

)

− 1

1 + (r − 2)λ(1 + ct)(1 + εt)

=
(1 + ct)(1 + εt)

1
1+ct

− 1

1 + (r − 2)λ(1 + ct)(1 + εt)

=
εt

1 + (r − 2)λ(1 + ct)(1 + εt)
. (21)

Using the bound εt ≤ 1/(r+1) in Lemma 3.7, we can bound the expression in (21) from below by

εt

1 + (r − 2)λ(1 + ct)
r+2
r+1

=
εt

1 + (r − 2)λ τ t

τ t−1
r+2
r+1

=
εt

1 + (τ − 1) τ t

τ t−1
r+2
r+1

≥
εt

1 + τ r+2
r+1

=
εt

1 + (r+2)(r−2)
2

=
2

r2 − 2
εt.

Thus in this case we obtain a lower bound on εt+1 given by

εt+1 ≥
2

r2 − 2
εt ≥

1

r + 1

(

2

r2 − 2

)t

.

If on the other hand there exists a set Lt ∪M with minimal ratio for which Lt = V (Ft) \ {1, 2}
then by (20) we have

et+1(Lt ∪M,Ft+1)

|Lt ∪M |
≥

et+1 − 1

vt+1 − 3
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=
τ t+1 − 1

(r − 2) (τ
t+1−1)
τ−1 − 1

=
et+1

vt+1 − 2





1− 1
τ t+1

1− (τ−1)
(r−2)(τ t+1−1)



 .

Thus, we see that in this case εt+1 is at least

1− 1
τ t+1

1− (τ−1)
(r−2)(τ t+1−1)

− 1 =

τ−1
(r−2)(τ t+1−1) −

1
τ t+1

1− (τ−1)
(r−2)(τ t+1−1)

=
τ t+2 − (r − 1)τ t+1 + (r − 2)

τ t+1(r − 2)(τ t+1 − 1)
·

1

1− (τ−1)
(r−2)(τ t+1−1)

>
τ t+2 − (r − 1)τ t+1

τ t+1(r − 2)(τ t+1 − 1)

>
τ − (r − 1)

(r − 2)τ t+1

=
1

τ t+1

(

r + 1

2
−

r − 1

r − 2

)

=
1

τ t+1

(

r + 1

2
−

1

r − 2
− 1

)

=
λ− 1

τ t+1
.

It remains to show that for all t ≥ 0 we have

1

r + 1

(

2

r2 − 2

)t

≤
λ− 1

τ t+1
. (22)

To see that the inequality in (22) holds, note that for t = 0, since r ≥ 4,

1

r + 1
=

r − 2

(r + 1)(r − 2)
≤

r+1
2 − 1

r−2 − 1
(r+1)(r−2)

2

=
λ− 1

τ
,

and moreover
2

r2 − 2
<

2

r2 − r − 2
=

1

τ
.

This completes the proof of Theorem 3.9.

Let us conclude this section by commenting on the sharpness of the bound in (18). We know that
ε1 = 1/(r+1) is obtained by taking L = L1 of size r−3, i.e., by leaving just one vertex in V (F1)\{1, 2}
outside L1. If we then continue by, for 2 ≤ i ≤ t, taking Li to be the union of Li−1 and all vertices
in V (Fi) \ V (Fi−1) that are adjacent to at least one vertex in Li−1, then the resulting set Lt has

1 + 2(r − 2) τ
t−1−1
τ−1 vertices and τ t−1(τ − 2) edges adjacent to it. This shows that for some Cr > 0,

one can obtain a bound εt ≤ Cr/τ
t. Since τ = (r2 − r − 2)/2, this implies that our lower bound on

εt is relatively sharp.
We have thus shown that the edge density of all proper subsets of V (Ft) is strictly bounded below

by et/(vt − 2). As we will see in Section 4, we are now equipped with the necessary means to prove
Statement (i) of Theorem 1.1.
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4. Upper bound on the critical probability

In this section we prove Statement (i) of Theorem 1.1. We shall use the following form of the Janson’s
inequality.

Theorem 4.1. Let R be a set and let S ⊂ R be a random subset of R, where each r ∈ R is in S
independently with probability p. Let {B1, . . . , Bm} be a collection of finite subsets of R and let Ci

be the event that Bi ⊂ S. Let Z =
∑m

i=1 1{Ci} and let µ =
∑m

i=1 Pp(Ci) = E[Z]. For 1 ≤ i, j ≤ m,
i 6= j, let i ∼ j if Bi ∩Bj 6= ∅, i.e., if the events Ci and Cj are dependent. Let ∆ =

∑

i∼j P(Ci ∩Cj).
Then

Pp(Z = 0) ≤ e−µ+∆/2. (23)

In this section we show that if p(n) ≥ n−
vt−2
et logn then we have Ppn

(e12 /∈ E(Gt)) ≤ n−3. By the
union bound this implies Ppn

(T ≤ t) → 1.

Proof of Statement (i) of Theorem 1.1. Fix n, sufficiently large, and t = t(n) ≤ log logn
3 log τ .

As always, fix two vertices 1 and 2 and let e0 = {1, 2}. Given any of the
(

n−2
vt−2

)

subsets Xi ⊂
{3, 4, . . . , n} of size (vt − 2), let Ft(Xi) be an arbitrary fixed copy of the graph Ft on Xi ∪ {1, 2} that
adds the edge e0 to the graph G in t time steps. We shall apply Theorem 4.1 to bound the probability
of e0 not being added to the graph by time t from above.

Let p(n) = n−(vt−2)/et logn, as in Statement (i) and let G = Gn,p(n). In Theorem 4.1 we shall take

R = [n](2), S = E(G) and for i = 1, . . . ,
(

n−2
vt−2

)

let Bi = E(Ft(Xi)). We define Ci, as well as Z, as in

Theorem 4.1. We clearly have µ =
∑m

i=1 Pp(Ci) =
(

n−2
vt−2

)

pet .
Lemma 3.9 can be used to give an upper bound on ∆ in Theorem 4.1 as follows,

∆ =
∑

i∼j

P(Ci ∩ Cj)

=
∑

1≤|Xi∩Xj |≤vt−3

P(Bi ⊂ S and Bj ⊂ S)

≤

(

n− 2

vt − 2

) vt−3
∑

k=1

(

n− vt
k

)

pet+k
et

vt−2 (1+εt) (by Thm. 3.9)

= µ

vt−3
∑

k=1

(

n− vt
k

)

pk
et

vt−2 (1+εt)

≤ µ

vt−3
∑

k=1

nkpk
et

vt−2 (1+εt). (24)

Note that, by the definition of εt and by Lemma 3.8,

et
vt − 2

(1 + εt) ≤
r + 1

2
= λ+

1

r − 2
< 2λ.

Now, using the fact that p(n) = n−(vt−2)/et logn we have since ,

vt−3
∑

k=1

nkpk
et

vt−2 (1+εt) ≤
vt−3
∑

k=1

nk(logn)2λkn−k(1+εt)

=

vt−3
∑

k=1

(logn)2λkn−kεt .
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Since εt ≥
1

r+1 (2/(r
2−2))t−1, we deduce, using t ≤ log log n

3 log τ , that εt > (logn)
−1/2

. Indeed, we have

εt ≥
1

r + 1

(

2

r2 − 2

)t−1

>
1

r + 1

(

1

τ

2τ

r2 − 2

)
log log n
3 log τ

=
1

r + 1
(logn)−1/3

(

r2 − r − 2

r2 − 2

)

log log n

3 log τ

.

Now, since for all r ≥ 4 we have τ ≥ 5,

(

r2 − r − 2

r2 − 2

)
1

3 log 5

> 0.93 > e−1/10

and the bound εt ≥ (log n)
−1/2

follows for n large enough. Consequently, for n large enough we have
that (logn)2λn−εt < 1/2. Hence continuing the string of inequalities from (24),

∆ ≤ µ

vt−3
∑

k=1

(

(log)
2λ

n−εt
)k

≤ µ

∞
∑

k=1

(

1

2

)k

= µ.

Thus, using Theorem 4.1 and the fact that for p ≥ n−
vt−2
et logn we have

µ =

(

n− 2

vt − 2

)

pet ≥
(log n)et

(vt − 2)vt−2
≥

(

logn

τ t

)τ t

,

we obtain

P(Z = 0) ≤ exp (−µ+∆/2)

≤ exp(−µ/2)

≤ exp

(

−
1

2

(

(logn)

τ t

)τ t)

.

Note that the function x 7→
(

log n
x

)x

is increasing for x ∈ (0, logn
e ]. When t = 1, for n sufficiently

large,
(

logn

τ

)τ

= logn
(logn)τ−1

ττ
≥ 6 logn.

For t ≤ log log n
3 log τ we have τ ≤ τ t ≤ (logn)1/3 < log n

e and so,

(

logn

τ t

)τ t

≥

(

logn

τ

)τ

≥ 6 logn

when n is sufficiently large. Thus,

P(X = 0) ≤ exp

(

−
1

2

(

(logn)

τ t

)τ t)

≤ exp(−3 logn) = n−3.

and applying the union bound yields

Ppn
(T ≤ t) ≥ 1−

1

n
.

This completes the proof of Statement (i) of Theorem 1.1.
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5. Lower bound on the critical probability

In this section we prove Statement (ii) of Theorem 1.1. More precisely, we show that if p(n) =

o
(

n−
vt−2
et

)

then the fixed pair e0 = {1, 2} is not added to the graph by time t with high probability.

Proof of Statement (ii) of Theorem 1.1. We use Lemma 3.4 to bound the number of vertices of sub-
graphs adding e0 after a particular number of steps from above, Corollary 3.3 to bound the number
of edges of these graphs from below, and Corollary 3.5 to bound the number of graphs on vt vertices
that add e0 in exactly t steps. Recall that E(Gt) denotes the edges of the graph after t time steps
and so

Ppn
(T ≤ t) ≤ Ppn

(e12 ∈ E(Gt))

≤
t
∑

i=0

Ppn
(e12 is added at time i)

≤ pn +

t−1
∑

i=1

vi−2
∑

j=r−2

nj2j
2

n−(λj+1)
vt−2
et +

vt−3
∑

j=r−2

nj2j
2

n−(λj+1)
vt−2
et

+ nvt−2n−et
vt−2
et /ω(n)et

(25)

For all t ≥ 1 we have

vt−1 − 2 = (r − 2)
τ t−1 − 1

τ − 1
<

r − 2

τ

τ t − 1

τ − 1
=

vt − 2

τ
.

Using (13) it follows that for i ≤ t− 1 we can bound the powers of n in the second term of (25) by

j − (λj + 1)
(vt − 2)

et
= j − j

λ(vt − 2)

et
−

vt − 2

et

= j

(

1−
1

1 + ct

)

−
1

λ(1 + ct)

=

(

jct −
1

λ

)

1

1 + ct

≤

(

(vt−1 − 2)ct −
1

λ

)

1

1 + ct

=

(

r − 2

τ − 1
(τ t−1 − 1)

1

τ t − 1
−

r − 2

τ − 1

)

1

1 + 1
τ t−1

=
r − 2

τ − 1

τ t−1 − τ t

τ t − 1

τ t − 1

τ t

= −
r − 2

τ
.

Analogously, for i = t and j ≤ vt − 3, we can bound the powers of n in the third term of (25) by

j − (λj + 1)
(vt − 2)

et
=

(

jct −
1

λ

)

1

1 + ct

≤

(

(vt − 3)ct −
1

λ

)

1

1 + ct

=

(

(τ t − 1)

λ

1

τ t − 1
− ct −

1

λ

)

1

1 + ct
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=
−ct
1 + ct

=
−1/(τ t − 1)

1 + 1/(τ t − 1)

=
−1

τ t
.

We can use these estimates and the fact that, for any i, vi−2 = τ i−1
λ < τ i/λ, to bound Ppn

(T ≤ t)
from above. Indeed,

Ppn
(T ≤ t) ≤ pn + t(vt−1 − 2)2(vt−1−2)2n−(r−2)/τ + (vt − 2)2(vt−2)2n−1/τ t

+ ω(n)−et

≤ pn + t
τ t−1

λ
2τ

2(t−1)/λ2

n−(r−2)/τ +
τ t

λ
2τ

2t/λ2

n−1/τ t

+ ω(n)−et . (26)

There is some constant C′
r > 0 such that for all t ≥ C′

r we have

2τ
2(t−1)/λ2

≥
tτ t−1

λ
and 2τ

2t(λ2−1)/λ2

≥
τ t

λ
.

For t < C′
r all four terms in (26) tend to 0 as n → ∞ and we clearly have Ppn

(T ≤ t) = o(1). For
t ≥ C′

r we continue (26) to obtain

Ppn
(T ≤ t) ≤ pn + 22τ

2(t−1)/λ2

n−(r−2)/τ + 2τ
2t

n−1/τ t

+ ω(n)−et

≤ pn + exp

(

2τ2t

λ2
log 2−

(r − 2)

τ
logn

)

+ exp

(

τ2t log 2−
1

τ t
logn

)

+ ω(n)−et .

Thus, for C′
r ≤ t ≤ log logn

3 log τ , with all logarithms having base e,

Ppn
(T ≤ t) ≤ pn + exp

(

2(logn)2/3

λ2
log 2−

(r − 2)

τ
log n

)

+ exp
(

(logn)2/3 log 2− (logn)2/3
)

+ ω(n)−et

= o(1).

This completes the proof of Theorem 1.1.

6. Open problems

In this paper we determine the critical probability for percolation by time t in Kr-bootstrap percola-
tion up to a logarithmic factor. The first obvious problem to consider is the following.

Problem 6.1. Close the gap between Statement (i) and Statement (ii) in Theorem 1.1.

The second open problems we pose here is of extremal nature. Lemma 3.4 tells us that minimal
graphs adding e0 to the graph at time t have at most (r − 2) τ

t−1
τ−1 + 2 vertices and τ t edges.

Problem 6.2. How small, both in terms of the size of the vertex set and the edge set, can minimal
graphs adding e0 at time t be?
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