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A Machine Learning Approach to Objective Cardiac
Event Detection

N. Twomey, P. A. Flach

Abstract—This paper presents an automated framework for
the detection of the QRS complex from Electrocardiogram
(ECG) signals. We introduce an artefact-tolerant pre-processing
algorithm which emphasises a number of characteristics of the
ECG that are representative of the QRS complex. With this
processed ECG signal we train Logistic Regression and Support
Vector Machine classification models. With our approach we
obtain over 99.7% detection sensitivity and precision on the
MIT-BIH database without using supplementary de-noising or
pre-emphasis filters.

Index Terms—Pattern recognition, QRS detection

I. INTRODUCTION

Researchers have investigated algorithms to accurately and
consistently identify cardiac events for over forty years. The
ECG, as a measure of the electrical stimulation of the heart,
provides a means to measure one of the most important
characteristics of cardiac activity — the heart beat (Figure
1). A heart beat can be characterised by five deflections in the
ECG which are termed the P, Q, R, S and T waves. The region
between the Q and S waves is known as the QRS complex
and is generally the most pronounced feature of the ECG.
Discovery of the QRS complex is a preliminary requirement
for the assertion and quantification of a number of important
heart rate variability metrics and for automatically identifying
the less pronounced P and T waves.

The standard means of detecting these QRS complexes has
been to apply linear and non-linear filters to raw ECG streams
and then to compare the output of these filters to sets of thresh-
olds that have been heuristically chosen by the researchers.
Many algorithms also employ elaborate post-processing in
order to select and reject candidate QRS complexes so their
frequency is constrained to be within biologically feasible
bounds. Without such post-processing techniques many of
these filtering approaches often yield poor detection accuracy.

One shortcoming of this standard approach is that the
researchers must expend a great deal of time and effort to
select thresholds that generalise well, and there is no guarantee
that the chosen parameters are either calibrated or optimal
in any sense. Indeed, a number of the parameters that are
chosen are dependent on the age of the individual which
indicates that these hand-crafted algorithms should only be
applied to a particular age demographic. Reframing these
filtering algorithms to accommodate varying demographics
might necessitate the full redefinition of all parameters.

One final concern about the standard approach is that
few research groups have employed cross-validation during
performance evaluation or during parameter selection. This is
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Figure 1: An example ECG trace.

an important point and indicates that many of the results in
such publications may be optimistically biased.

In this work, we employ a machine learning approach to
QRS detection using the MIT Beth Israel Hospital (MIT-BIH)
[1] arrhythmia database; a standard ECG database upon which
many QRS detection algorithms are benchmarked. Using ma-
chine learning techniques enriches the affordances of QRS
detection as, in particular, computer-based parameter selection
can search very high-dimensional feature spaces. Additionally,
this approach is capable of utilising such feature spaces to
obtain calibrated decision boundaries that are optimal with
regard to particular operating characteristics.

Our experimental results are promising and we will show
that accurate QRS detection can be systematically obtained
from single-lead ECG signals. The contributions of this pa-
per include — 1) Our technique automatically obtains good
tolerance to signal artefacts, arrhythmia, ectopia, and other
anomalies that obstruct perfect QRS detection. 2) Our ap-
proach returns very high accuracy when using only basic pre-
and post-processing. 3) Our approach provides a grounded
means of specifying QRS points from a stream of ECG data,
as, when multiple candidates are available, we select the points
which yield the highest probability of being the true QRS
point. 4) We also present a general QRS complex detection
framework that can learn models for varying demographics.

II. METHODS

A. Data

In this paper, we investigate the MIT-BIH arrhythmia
database [1]. This database consists of 30-minute, two-channel
ambulatory ECG recordings, which were recorded between
1975 and 1979. Twice-validated expert annotations accompany
this database and these identify QRS and non-QRS periods.
Regions of artefact contamination are further identified. We do
not consider these times. The ECG is sampled at 360 Hz. We



assess the performance of our approach on the ECG channel
containing fewer signal artefacts.

B. Pre-processing

The intuition behind our pre-processing methodology will
first be introduced with reference to the idealised ECG trace
shown in Figure 1. In Section III we will show that this
algorithm is also capable of adapting to non-ideal ECG. In
Figure 1 one can observe a sharp positive deflection in the
ECG between the Q and R waves, and similarly a sharp
negative deflection between the R and S waves. No such
pattern is seen elsewhere in this ECG segment. The goal of
the proposed method is to provide a measure of these positive
and negative slopes in a manner that can be understood by a
learning algorithm.

The length of the QRS complex has been stated in a number
of studies as being ≈ 88 ms [2] (approximately 32 samples
at 360 Hz). Therefore, we employ a sliding window over the
ECG of length of 32 samples. If a QRS complex is centred in
this window (i.e. the R wave in Figure 1 is in the centre of the
window), the Q wave should be found in the left hand side
of the sliding window, and the S wave should be found in the
right hand side of the window. By computing the least square
slopes on the left and right hand halves of the sliding window
independently we measure the degree to which segments of
the ECG may resemble a QRS complex.

The final step in pre-processing is to compute the negative
product of the least square slopes from the left and right hand
sides of the sliding window. Observing steep positive slopes on
the left hand side and steep negative slopes on the right hand
side are indicative of a QRS complex. When outside of a QRS
complex, smaller slopes will be measured which will suppress
non-QRS shapes in the processed ECG. Therefore, computing
this product will emphasise the QRS segments and suppress
the representation of non-QRS segments. Furthermore, taking
the product of these slopes is a requirement to allow linear
classifiers to solve the problem (see Section III).

We demonstrate this algorithm in Figure 2. Figure 2a shows
the ECG signal trace (blue) and the sliding window localised
at these three periods in time (grey). Figure 2b has split each
sliding window into the left and right sections (red and green),
and it also shows the least square regression lines that are
computed for the ECG within these regions (see the locations
marked m1,l — m3,r). Finally, Figure 2c shows the negative
product of the least square slopes from the left and right hand
side of the sliding window. This example shows that the QRS
complex exemplifies the most significant deflections in the
ECG signal trace and this is also seen in Figure 2c.

We provide three simple feature to the learning algorithms:
the processed ECG signal and its first and second derivative.

C. Learning Algorithms

We investigate the performance of Logistic Regression (LR)
and Support Vector Machines (SVMs) on QRS detection. The
reason for assessing these two algorithms is because LR is a
simple algorithm that learns a decision boundary directly using
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Figure 2: Visual demonstration of pre-processing algorithm.

only the input features alone, whereas SVMs are capable of
increasing the dimensionality of the feature space to assist with
the classification problem. Assessment of both algorithms will
shed light on the complexity requirements of the task.

1) Logistic Regression: LR is one of the most commonly
used discriminative probabilistic models. Assuming an input
vector, x (length n) a LR model learns a weight vector, w
(length n) and a bias term, b. Decisions are made by testing
the value of w ·x+b after learning their values from data. We
condense our notation by assuming x0 = 1 and that w0 = b
so that

∑n
i=1wi · xi + b ≡

∑n
i=0wi · xi ≡ w · x.

The conditional probability of the class y is computed with
the sigmoid function

p̂ = p(y|x;w) =
1

1 + exp (−w · x)
. (1)

Assuming that y = 1 for positive examples (i.e. QRS
points), and y = 0 for negative examples, each example from a
dataset defines a Bernoulli distribution according to Equation
(1). The Log Conditional Likelihood (LCL) of the training
data (of length m) is computed with

LCL(w) =

m∑

i−1
yi log p̂+ (1− yi) log (1− p̂) , (2)

and the optimal weights, ŵ, are those that maximise this

ŵ = argmax
w

LCL(w). (3)

ŵ is learnt with algorithms such as gradient descent which
iteratively update these weights to maximise the LCL. Spec-
ification of ŵ defines a linear decision boundary in feature
space for a given probability threshold (e.g. 0.5). In general,
models with large weights tend to overfit the training data, so
we penalise these and get

ŵ = argmax
w

LCL(w)− λ

2
‖w‖22 , (4)

where λ is known as the regularisation parameter and is
selected by the user. Equation (4) defines a convex optimi-
sation problem, so the gradient of the data is calculated with



respect to the weighs. The weights are then iteratively updated.
Applying the gradient descent update rule specifies that the kth

weight will assume the following value after j iterations

w
(j)
k = w

(j−1)
k + η

(
m∑

i=1

(yi − p̂)xk − λw(j−1)
k

)
, (5)

where the value η is termed the ‘learning rate’ and defines the
size of the step that is taken in the direction of the gradient.
The initial weights, w(0), are randomly initialised. Weight
updating is repeated until changes in w have negligible effect
on the LCL.

2) Support Vector Machines: SVMs [3] are another popular
type of discriminative model. SVMs select the weight parame-
ters that maximise the margin of classification using the hinge
loss function [3]. We employ the condensed notation as before,
i.e. x0 = 1 and w0 = b, but also change the value of labels
for the negative class to y = −1. The following then specifies
the constrained optimisation problem for linear SVMs

ŵ, ζ̂ =argmin
w,ζ

1

2
‖w‖2 + C

m∑

i=1

ζi

subject to yi (w · xi) ≥ 1− ζi and ζi ≥ 0, ∀i
(6)

where ζi are known as slack variables and allow the SVM to
learn a maximum margin decision boundary when the data are
not linearly separable. C is known as the complexity parameter
and performs a similar role as λ in LR.

SVMs can convert classification tasks into higher dimen-
sions with the use of kernel functions [4]. We employ the
Radial Basis Function (RBF) kernel in this work which takes
an input example, x, a support vector, x′, and a scaling
parameter, γ, as arguments. Support vectors are the training
examples which were incorrectly classified or lay near the
decision boundary during training. The RBF kernel is given
by

KRBF(x,x
′; γ) = exp

(
−γ ‖x− x′‖22

)
. (7)

‖x− x′‖22 is nothing more than the squared Euclidean
distance between the test example and the support vector, and
so the RBF kernel can be viewed as a ‘similarity’ measure, as
small distances yield values close to 1 whereas larg distances
yield values closer to 0. γ, sometimes known as the bandwidth
parameter, must be positive and specifies the influence that a
particular support vector has in its locality in feature space.
Smaller γ will push the value towards 1, while larger γ will
draw the output of the kernel towards 0.

The optimisation problem in Equation (6) can be solved
with Lagrangian multipliers, and SVM models are trained
on computers with quadratic optimisation routines, such as
LibSVM [5]. The output of the SVM is the distance to
the decision surface which can be converted to probabilistic
outputs using calibration methods described in [6].
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Figure 3: The post-processing algorithm outputs.

D. Parameter Selection

We have already mentioned a number of parameters that
must be selected (λ for LR models, and (C, γ) for SVMs).
In many research papers, classification hyperparameters are
selected after a coarse-to-fine grid search which iteratively
‘zoom’ in on the best performing parameters for a fixed
number of steps or until termination criteria are satisfied.

In our work, however, instead of providing a set of parame-
ters, we provide a distribution of possible parameters. During
the selection routine, the algorithm randomly samples from
this distribution and assesses the performance at these random
samples. This approach provides a number of advantages over
a grid search. Most importantly, if one hyperparameter is
unimportant, a traditional grid search investigates many unim-
portant values while keeping important parameters constant,
and therefore wastes computation time queering redundant
parameters. However, when sampling from a distribution, this
is not the case and a greater assessment of the landscape of the
optimisation objective can be obtained after the same number
of iterations [7].

We perform five-fold cross validation on the training data.
Test data are never seen by the parameter selection algorithm.

E. Post-processing

We employ simple post-processing techniques in this work
in comparison to other approaches [8]. Figure 3 shows an
example of the post-processing methodology with unhealthy
ECG. The unhealthy ECG can be identified by noting that the
ECG in Figure 3a is dissimilar to the healthy ECG shown in
Figure 1. It is important to note that with unhealthy ECG,
it is often difficult to even assign P, Q, R, S and T labels
visually and algorithmically. Subsequently we must perform
post-processing on the classifier’s initial decisions.



In Figure 3b, we show the QRS probability as given by a
LR classifier. If these probabilities are thresholded at 0.5, we
obtain a set of plausible QRS regions that are shown with
values of 1 in Figure 3c. In some cases multiple plausible
regions are nominated from a single QRS complex, e.g. the
highlighted regions in Figures 3b, and these mostly occur with
unhealthy patients’ ECG.

Our post-processing algorithm ‘stretches’ these plausible
regions over time so that those in close proximity are absorbed
into one another (Figure 3d). Some researchers refer to this
technique as adding a ‘collar’ to the initial decisions [9], and
we adopt this terminology here.

After applying this collar (Figure 3d), the predicted location
of the QRS complex has become more ambiguous because the
plausible regions now occupy a longer duration of time. Recall
that we assume here that the QRS complex lasts for 88 ms, so
we must return a more specific decision. To do so, we consider
all possible sequences of probabilities of length 88 ms within
the jurisdiction of the stretched window. The sequence that
produces the largest sum is nominated by the algorithm as the
most likely candidate. This results in the narrower windows
in Figure 3e.

F. Performance Evaluation

We employ Leave One Out (LOO) for performance evalu-
ation as our database is relatively small and because LOO is
known to be an almost unbiased estimator of true generalisa-
tion error [10]. With LOO, data from all but one patient are
used to learn the model parameters. The resulting model is
then tested against the held-out data.

We assess the performance of our classifiers with the
sensitivity and precision metrics. Sensitivity measures the
true positive classification rate and precision measures the
proportion of true positives among the predicted positives.
These are computed by

Sensitivity =

∑
TP∑

TP +
∑

FN
, and (8)

Precision =

∑
TP∑

TP +
∑

FP
. (9)

We also compute the harmonic mean of these (F1 score).
We compare the average rank of the classifiers. Performance

assessment metrics are calculated over the whole database, and
for each patient the classifier that obtained in the best score is
given the rank 1, and the other is given the rank 2. Calculating
the average rank of classifiers identifies the degree to which
one classifier outperforms the other. Average ranks closer to 1
indicate that one classifier nearly always outperforms the other
on a particular metric.

III. RESULTS AND DISCUSSION

A. QRS Detection

Table I tabulates the sensitivity, precision and F1 scores that
were obtained from the 24 patients of the MIT-BIH database.
We obtained over 99.7% sensitivity, precision and F1 scores on

Table I: QRS detection results.
LR SVM

Sens. Prec. F1 Sens. Prec. F1

Mean 0.997 0.999 0.998 0.997 0.999 0.998
Std. Dev. 0.004 0.000 0.002 0.004 0.001 0.002

Min 0.978 0.996 0.989 0.981 0.995 0.991

Table II: Average rank of classifiers.
LR Rank SVM Rank

Sensitivity 1.17 1.22
Precision 1.00 1.17
F1 Score 1.13 1.30

average with both LR and SVM models. These are very high
results and indicate that our approach is well suited for QRS
detection. Indeed, our results are competitive, and sometimes
better, to those obtained by many other researchers in this area
[11] even having used much simpler pre- and post-processing
algorithms. In particular our approach yields a consistently
lower gap between the sensitivity and precision performance
where many researchers obtain differences of ≈ 1%. Indeed,
these results were obtained in an objective framework where
testing data were never seen in training. This is promising
as it suggests that our results may be improved even further
by adopting more elaborate procedures on top of those we
discussed earlier.

One of the most striking results is that the mean sensitivity,
precision and F1 scores from LR and SVM models are very
similar. The average ranks of classifiers are shown in Table
II. This table shows that the best rank is obtained by LR
models over all performance assessment metrics. This strongly
suggests that LR is the more suitable model for classification.

These results are somewhat surprising as the simpler model
seems to perform better on all performance assessment met-
rics. There are a number of possible explanations for this.
Firstly, due to the complex nature of training SVMs, we
provided them with 100,000 randomly selected training ex-
amples. LR, however, uses a simpler optimiser which does
not expand the feature space during training, and therefore
the final weights were learnt from approximately 1,000,000
labelled training examples. It is possible that the main strength
of the LR model is as a result of the larger quantity of training
data afforded to it.

It is worth noting, however, that only a few simple features
were used to perform classification in this work. Achieving
results that are competitive with the state of the art with such
simple classifiers suggests that our pre-processing algorithm
is very well suited to the QRS detection problem. We expect
that extracting more descriptive features from both the raw and
processed ECG signals would increase the overall sensitivity
and precision of our algorithm.
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Figure 4: Adaptation of the pre-processing algorithm to abnormal ECG signals.

B. Pre-processing

1) Representation: Figure 4 shows the outputs of our pre-
processing algorithm on various categories of non-normal
ECG. This image shows a grid of six ECG signal traces
(top row) and the six outputs of the pre-processing algorithm
(bottom row) during the same time period.

Our pre-processing algorithm boasts a number of interesting
features. Firstly, when considering a clear peak in the ECG,
the pre-processing algorithm is guaranteed to output a rectified
version of the peak. This is because a peak can be loosely
described as consisting of a positive and negative slope centred
on an apex. Taking the negative product of these slopes will
always yield a positive number. In other words, after pre-
processing, all QRS complexes should be found in the positive
half of the processed signal space. This is exemplified in
Figures 4e and 4f where the negative peaks (top) in the ECG
are rectified after the processing algorithm (bottom).

Similarly, sustained rising and falling trends are guaranteed
to yield negative values after pre-processing. This is because
the signs of both slopes on the left and right halves of sliding
window are the same, and their negative product must itself be
negative. As QRS complexes are defined by a peak, we can
note, therefore, QRS complexes should not be found in the
negative half of this space. Therefore only non-QRS waves
will be found in this region. Figures 4a, 4b and 4c show
examples of this.

Finally, ‘slow’ waves (Figure 4d) are also significantly
reduced in amplitude after pre-processing. This is due to the
fact that the slope products during these periods are close
to zero or are negative. We demonstrate this explicitly in
Figure 5 with artificial data. Figure 5a shows the output of
the pre-processing algorithm for an input signal of 1 Hz.
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Figure 5: Pre-processing algorithm on artificial input data.

There are two interesting features of this image. Firstly the
amplitude of the processed signal is significantly attenuated
with respect to the input, and secondly the majority of the
processed signal is in the negative half of the plane. Figure
5b shows the output of the pre-processing algorithm with
an input signal with identical amplitudes oscillating at 5 Hz.
Due to the increase in frequency of the input signal, the pre-
processing algorithm measures sharper slopes and the output
of the algorithm produces larger and mostly positive outputs.

Taking the product of the slopes of the left and right
halves of the sliding window, therefore, introduces relevant
context that assists with the classification problem. Figure 4f
demonstrates that in some cases a QRS complex can assume
the form of a negative peak. A classifier provided with only
the left and right slopes as two features may, therefore, need
to be capable of solving the XOR problem, and strictly linear
classifiers are incapable of doing this. Researchers typically
take the absolute value of filtered inputs to solve this problem,
but this removes the trending directional context of the signal.

2) Artefact: Figure 6 shows the output of the pre-
processing algorithm under the influence of artefact. In this
figure, the regions highlighted in grey are the times at which
QRS points have been annotated.

Baseline wander can be observed in Figure 6a. The algo-
rithm copes with these artefacts for the same reasons that the
algorithm copes with the slow wave in Figure 4d. However,
the cause of these wave shapes is different in these two cases
— the slow wave in Figure 4d is due to the unhealthy ECG,
whereas the contribution in Figure 6a is due to artefact.

Figure 6b shows the the ECG under the influence of high
frequency artefact. The amplitude of the artefact in the ECG is
comparable to the amplitude of the QRS complex, but the pre-
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Figure 6: Example of artefact in the ECG.



processing algorithm has eliminated a significant proportion of
this in its processed representation.

Typically, researchers cope with these kinds or artefact by
employing multiple stages of high-order digital filters (low-
pass, high-pass, pre-emphasis). We have not employed such
digital filters in our pre-processing steps. Even so, our results
are good, and we expect that introducing such noise removing
techniques would improve our results even further.

C. Post-processing

There are a number of differences between the post-
processing routine used here and others used in the QRS
detection literature. Firstly, we do not employ ‘back tracking’
to select QRS points when none have been detected for
a certain length of time. This must often be performed to
increase the sensitivity of other algorithms to detections to
permissible levels. We also select the period of which has
contributed to the highest cumulative probability of being
a QRS point within a wider remit of plausible candidates.
This has a favourable ‘moving average’ effect that may reject
spurious periods of high probability, and, as classifiers are
trained on examples of QRS points, this is a very reasonable
method with which to make decisions. Finally, we do not adapt
our threshold during decision making.

Our post-processing algorithm is considerably simpler than
those employed by other researchers (e.g. [8]). In these
publications, the researchers must perform multiple stages of
post-processing each of which introduces new metrics and
adaptive thresholds in order to produce reliable predictions.
Our approach, however, copes with this context well and even
with its relative simplicity performs competitively or better
than these more elaborate methods.

D. Analysis of errors

In previous sections, we have demonstrated the tolerance
of our framework towards artefacts. In some circumstances
the intensity of the artefacts are such that our pre-processing
algorithm is overwhelmed and false positives are classified;
this is a factor common to all detection algorithms. We now
discuss the more interesting circumstances that can lead to
false negative classifications of the QRS complex.

Figure 7 shows two examples of QRS points that were not
detected by our algorithm. The top row shows the raw ECG
signal trace and the bottom row shows the probabilities of QRS
complexes from by the LR (blue) and SVM (green) classifiers.
The regions shaded in red are the times annotated as QRS
complexes but which our algorithm has failed to detect.

In all these false negative cases one very striking feature can
be observed — these missed QRS points demonstrate very
few characteristics of the healthy ECG shown in Figure 1.
In Figures 7a the QRS complex is seemingly absent from
the highlighted region, and both classifiers yield only low
probabilities of positive detections.

In Figure 7b, we show a false negative that somewhat
resembles a QRS complex. This was not identified by the
algorithm due to its ‘slow’ nature. Comparing its width to the

ECG

a

p̂

b

Figure 7: Demonstration of false negatives.

width of the preceding QRS complex shows it to be abnormal,
and our pre-processing algorithm attenuated the intensity of its
representation accordingly.

In this work, however, we have only considered single-lead
ECG. This is does not always provide the most representative
view of cardiovascular activity, and it is likely that by consid-
ering a greater number of ECG channels fewer errors would
be obtained.

IV. CONCLUSION

We have presented a QRS detection algorithm which ac-
curately detects the QRS complex from ECG signals. The
performance of the detection algorithm is competitive, and
sometimes superior, to the performance of the state of the art
in QRS detection, but one of the advantages of our procedure
is that our results are obtained after applying significantly less
elaborate pre- and post-processing techniques. Our framework
also yields a significantly lower difference between the sen-
sitivity and precision of detection than are typically cited in
similar work.
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