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Prediction of Landing Gear Loads Using 
Machine Learning Techniques  
 

E. CROSS*, P. SARTOR†, K. WORDEN* and P. SOUTHERN†  
 

ABSTRACT 
 
This work aims to establish if significant correlations exist between flight 

parameters recorded on production aircraft and the loads induced in the landing gear 
by employing accurate nonlinear regression models developed using machine learning 
techniques.  The mathematical modelling approach used in the development of the 
regression model employs both classical Multi-Layer Perceptron (MLP) and Bayesian 
MLP neural networks.  The MLP neural networks in this work were developed using 
landing gear drop test data.  The inputs from the drop test data include shock absorber 
travel, tyre closure, shock absorber pressure, wheel speed, drop carriage accelerations, 
landing gear accelerations, while the initial output target to be predicted is the landing 
gear side stay load.  To demonstrate the fidelity of the model and avoid issues with 
overfitting to the data, the landing gear drop test data was divided into training, 
validation and test data sets, which did not overlap.  The performance of the neural 
network is defined by the Mean-Square Error (MSE) between model predictions and 
the measured targets.  In the preliminary model development, the MSE for the classic 
MLP implementation was 8.53% for the testing set, which is a very encouraging 
result. The Bayesian MLP was also found to perform well.  In conclusion, the neural 
network developed at this preliminary stage has performed well for the prediction of 
the side stay load in the drop test data. 
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INTRODUCTION 
 

There are several areas of interest in aircraft landing gear structural health 
monitoring: understanding the current operating environment of landing gear in order 
to allow for an improvement in the evaluation of fatigue design criteria, surveillance 
of the landing gear fleet in order to detect overload occurrences (and equally to 
indicate which occurrences were not overloads), and ultimately to allow the 
certification of the landing gear to be based on the actual life experienced in service. 

Different approaches can be taken when determining in-service landing gear loads, 
such as the use of kinematics (accelerations, velocities and displacements) or the use 
of force measurements (pressure or strain).  This work aims to establish if correlations 
exist between flight parameters recorded on production aircraft (such as accelerations, 
velocities, displacements) and the loads induced in the landing gear. The approach 
taken employs accurate nonlinear regression models developed using machine 
learning techniques. 

One of the key benefits of using machine learning techniques is that minimal 
additional aircraft instrumentation is required to establish the loads on the landing 
gear.  Ideally all of the required information will be available from the aircraft 
systems.  An additional benefit of this approach is that it could easily be expanded to 
the aircraft maintenance monitoring system.  This leads to a method of in-service 
loads monitoring that is advantageous in terms of weight, system complexity and 
reliability. 

This paper describes the machine learning technique that is used to predict landing 
gear loads from drop test data.  The mathematical modelling approach that is used in 
the development of the regression models is first discussed.  In this work, regression 
models are developed with a Multi-Layer Perceptron (MLP) neural network and a 
Bayesian MLP.  The results of applying the preliminary models to the drop test data 
are then explained and finally, future plans for model development and testing are 
discussed. 
 
MACHINE LEARNING 
 

The term machine learning, in the context of this work, applies to the gaining of 
knowledge about the relationships between recorded flight parameters and landing 
gear loads from data (in this case collected from a drop test).  Specifically in this 
paper, neural networks are trained to attempt to predict the landing gear side stay load, 
as a test case, from other measured parameters. 

Neural networks are a biologically inspired way of creating complex and nonlinear 
functional forms for modelling the relationship between variables in a data set.  The 
use of neural networks in the machine learning community is common and the theory 
behind them well established (see for example [1, 2]) hence, few details will be given 
here. 

The architecture of a simple neural network is illustrated in Figure 1, where the 
network is comprised of units which are arranged in an input layer, hidden layers and 
an output layer.  Inputs to the network, which are each individually weighted, w, are 
fed into units along with a bias, b, which then feed into other units arranged in layers. 
The bias for each unit in a network can be thought of as an extra weight for each unit 
and will be referred to as such in the remainder of this paper. 
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Figure	1.	A	typical	two‐layer	network	architecture	with	network	weights	and	biases.	
 
 
There are a number of common network architectures and in this work the 

regression model developed uses a Multi-Layer Perceptron (MLP), which has been 
shown to be a universal approximator [1]. 

For a fixed network architecture, network optimisation is achieved through the 
minimisation of the error function, which is dependent on the network weights. A 
number of algorithms are commonly used for the optimisation task with the simplest 
variants being versions of gradient descent; the current state-of-the-art is centred 
around second-order methods that require evaluation of a Hessian, and the 
predominant algorithms are Levenburg-Marquardt and scaled conjugate gradients (see 
[1] for more details).   

A significant issue when utilising neural networks, and indeed other machine 
learning techniques, is the risk of overfitting to the training data which can lead to 
poor generalisation capabilities of the network when used as a predictor for an unseen 
data set.  A common approach to avoid overfitting issues is to utilise, as well as a data 
set used to train the network, non-overlapping validation and testing sets of data.  
These additional data sets can be used to measure the network’s performance on 
unseen data.  In this work, a number of networks of varying complexities are trained 
using the training data set.  The network which performs best on the non-overlapping 
validation set is then selected for further trials.  To assess network performance in this 
work, a normalised Mean Square-Error taking the following form is used: 
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where y is the measured target, f(x) is the model prediction, 2
y  is the variance of the 

target data and n is the number of points in the test set. 
Despite the modelling capability and sophistication of neural networks, there is 

one aspect that remains unsatisfactory.  Even if a trained neural network does 
generalise well, if it were trained on a different dataset, the weights would more than 
likely be different, if only by a small margin.  This uncertainty about what the true 
weights should be is dealt with in Bayesian inference by assigning a probability 
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distribution for the weights.  This means that, for a neural network, all likely weight 
values are considered.  Through the use of Bayes’ rule, these distributions over all 
possible weight values can be used to obtain a distribution over the predicted values of 
the network.  The mean of that distribution can be used as the value of the prediction, 
and the standard deviation can be used to give confidence intervals on this prediction.  

As with all Bayesian techniques, a Bayesian MLP requires the specification of a 
prior, which incorporates one’s beliefs about the weights before any data has been 
seen.  In this work a Gaussian prior distribution is adopted, which enables the size of 
the weights to be restricted and fits with the idea that the generating function of 
interest should be smooth.  Following [3], for a set of weights w, in a network,  the 
Gaussian prior distribution has the form: 
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hyperparameter corresponding to the inverse variance of weight values that needs to 
be chosen.  Next, the likelihood must be specified.  With an ideal model, the 
prediction errors will simply depend on the noise of the measurements, which are 
usually modelled as Gaussian. In this case, the likelihood has the form: 
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the training data set, and   is another hyperparameter which represents the inverse 
variance of the measurement noise on the outputs.  If the likelihood and priors have 
the form of Equations 2 and 3, the posterior distribution of the weights can be 
expressed as: 
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Since the likelihood function represents the situation of an ideal model, Equation 4 
can be used as a target for choosing optimal weights.  The weight vector w, 
corresponding to the maximum of the posterior distribution can be found by 
minimising the negative logarithm of Equation 4 with respect to the weights.  This 
simply means that a new criterion for picking weight values (network training) given 
hyperparameters values   and   has been arrived at. 

Once a network has been trained, one can evaluate the probability distribution of 
network predictions, y*, from inputs, x*, with the following integration:  

wwwxx dDpypDyp )(),(),( ****   (5)	

assuming a likelihood for a new dataset in the form of Equation 3.  This is an 
integration over weight space and is therefore of the same dimension as the number of 
weights.  In practice, the calculation is unfortunately not tractable, which means that 
approximations must be employed.  A common approach is to approximate Equation 
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5 with a spherical Gaussian distribution around a mode of the posterior (see [2, 3] for 

more details).  Once ),( ** Dyp x  has been approximated, its expected value can be 

used as the network prediction, its variance will provide error bars (confidence 
intervals) that take into account the noise on the target data as well as the width of the 
posterior distribution of the weights. 

The choice of hyperparameters in the likelihood and prior affects the prediction 
capability of the final trained network.  If, for example, the   parameter in Equation 2 
has been set too large, the function implemented by the network might not be flexible 
enough to describe the data.  If the hyperparameter   in Equation 2 is set too large, 
the network may be modelling the noise, if it is set too small, the model may not be 
capturing the whole picture.  This means that hyperparameters need to be dealt with in 
a rigorous manner. 

The Bayesian way to deal with the uncertainty that comes from choosing specific 
hyperparameters is to remove their influence from any of the calculations through 
marginalisation (integrating the hyperparameters out).  Through marginalisation one 
can avoid the problem of choosing specific hyperparameters.  Unfortunately, the 
integrals required for this are usually intractable given any reasonable choice of priors 
for the hyperparameters.  Alternatively, the problem of selecting hyperparameters can 
be viewed as another optimisation problem, this is achieved through the evidence 
procedure [3].  The evidence procedure makes the assumption that ),( Dp   is 

sharply peaked around the most probable values of   and  , which means that 

finding these most probable values leaves the analytical expression for )( Dp w  

unchanged from Equation 5.  The procedure is, therefore, to find the hyperparameters 
that optimise )( Dp w  and then fix them for all further calculations that include 

)( Dp w . 

One distinct advantage of the evidence procedure is that one can gain information 
from the optimised hyperparameters using automatic relevance determination (ARD) 
[3].  If one sets a separate   hyperparameter for each input to the network, after 
optimisation, it will represent the inverse variance of all of the weights on the units 
that fan out from that input.  This can be used to gauge the importance of each input to 
the prediction being made; if an optimised hyperparameter is small, this means that 
large weights are allowed and that the corresponding input is important. 

The implementation of the neural networks in this work relies on the Netlab 
toolbox for Matlab [3], which is freely available for download from Aston 
University’s website [4]. 
 
PRELIMINARY RESULTS 
 
Each of the preliminary models developed has been tested using drop test data. 
Figure 2 shows a typical telescopic port main landing gear (MLG) structure that has 
undergone drop testing using a drop test rig. Drop tests are performed to verify the 
dynamic compression damping and energy absorption characteristics of the landing 
gear shock absorber [5].  In a drop test, the landing gear is mounted in a fixture that 
geometrically represents the aircraft landing gear attachment structure.  The landing 
gear is dropped from various heights onto a ground reaction platform.  The drop 
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height is set to achieve the required vertical descent velocity.  The correct 
proportion of landing weight is supported by the moving carriage and wing lift is 
simulated by upward acting jacks.  Prior to the drop, the wheels are spun to 
simulate the aircraft landing speeds.  Landing attitude is varied by angling the 
landing gear in the fixture or angling the ground reaction platform.  Loads are 
measured on the landing gear using strain gauges and the ground-to-tyre loads are 
measured using loads cells in the ground reaction platform. 
 
 

Figure 2. Main Landing Gear Structure and Drop Test Rig, after [6].	
 
 

A number of MLP neural networks have been developed using landing gear 
drop test data.  The inputs from the drop test data include shock absorber travel, 
tyre closure, shock absorber pressure, wheel speed, drop carriage accelerations, 
landing gear accelerations, while the initial output target to be predicted is side stay 
load.  The inputs and outputs have been normalised to ensure that no variable is 
considered more important by the neural network simply because of the magnitude 
of its measurements.  

After the MLP networks have been trained, a testing data set (which does not 
overlap the data used for network training) is used to judge the prediction 
performance of the networks on unseen data.  Figure 3 shows the predictions of a 
side stay load from a trained classic MLP network for a test set of input data.  The 
actual measured side stay load is also plotted for comparison.  The results of this 
implementation are very encouraging; the MSE of this prediction is a very low 
8.53%.  In a similar trial with a Bayesian MLP, the prediction capabilities proved to 
be just as good, and in this case the confidence intervals are calculated for each 
prediction.  Figure 4 shows a closer view of the prediction of a trained Bayesian 
MLP on the same test set of data shown in Figure 3.  A zoomed view has been 
selected to get a clearer view of the confidence intervals, which are at a 3σ level. 
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The preliminary neural network models have also been trained for the 
prediction of vertical, drag and side ground-to-tyre loads.  These ground-to-tyre 
loads are measured through the ground reaction platform during the drop tests.  
These preliminary results are very encouraging, and demonstrate that the 
preliminary models developed are fit for purpose.  The true test of course will come 
later if flight test data is considered. 
 
 

Figure 3. Side Stay Load Prediction from Preliminary Neural Network. 
 

Figure 4. Zoomed View of Side Stay Load Prediction from Bayesian Neural Network. 
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CONCLUSIONS AND FUTURE PLANS FOR MODEL DEVELOPMENT 
AND TESTING 
 

In conclusion, the MLP models developed at this preliminary stage have 
performed well for the prediction of the side stay load in the drop test data. The 
implementation of a Bayesian MLP has also provided a means of assessing 
confidence on any predictions made.  In the next stages of this work, the model will be 
developed further and tested more rigorously using drop test data from different test 
set ups, simulated landing data and flight test data.  Other mathematical modelling 
approaches will also be used in the development of high fidelity models including 
Gaussian Process regression, which, like the Bayesian MLP, will account for the 
uncertainty in the model predictions.  Finally, dynamic modelling will be explored.  
While the current models provide a static map between input and target variables, the 
aim is to develop the capability for any dynamic behaviour to be accounted for by the 
models. 
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