
 Huelse, D., & Hemmer, M. (2009). Generic implementation of a modular gcd
over algebraic extension fields. Paper presented at 25th European Workshop
on Computational Geometry, Brussels, Belgium.

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73981114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/generic-implementation-of-a-modular-gcd-over-algebraic-extension-fields(31de42be-b4c3-435a-a325-166a4838b834).html
http://research-information.bristol.ac.uk/en/publications/generic-implementation-of-a-modular-gcd-over-algebraic-extension-fields(31de42be-b4c3-435a-a325-166a4838b834).html

Generic implementation of a modular gcd over Algebraic Extension Fields

Michael Hemmer ∗ Dominik Hülse †

Abstract

We report on several generic implementations for uni-
variate polynomial gcd computation over the integers
and, in particular, over algebraic extensions. Our
benchmarks show that the generic implementation
compares favorably to well established libraries. Even
for the integer case our implementation is competitive
to the one provided by the NTL, which does not sup-
port algebraic extensions. Our software is part of the
new Polynomial package of Cgal release 3.4.

1 Introduction

For exact computation with non-linear geometric ob-
jects, such as semi-algebraic curves and surfaces, it
is evident that the computation of the gcd of poly-
nomials is one of the fundamental tools. This is the
case for polynomials defined over rational coefficients
as well as over algebraic extensions [6, 2]. It is known
that methods based on modular arithmetic are indis-
pensable for an efficient implementation [7, 5]. To
the best of our knowledge there was no generic open
source code available that supports algebraic exten-
sions. Our software is generic in the sense that it uses
C++’s template techniques [1] such as traits classes,
and function objects. In particular, our code is in-
dependent from the coefficient type, even though we
only report on algebraic extensions of degree 2 here.
The presented implementation is part of the new Poly-
nomial package of Cgal1 release 3.4.

The paper is structured as follows: Section 2 pro-
vides an overview of the investigated algorithms. Sec-
tion 3 presents the comparison of the different imple-
mentations including a comparison with the NTL2 for
integer polynomials and a comparison with Singular3

for algebraic extensions of degree 2. Section 4 con-
cludes the paper.

2 The Modular Methods

We now recall the principal ideas of modular gcd algo-
rithms and the most fundamental modular methods of
interest. In particular, we refer to Brown [3], who gave

∗MPII Saarbrücken, hemmer@mpi-inf.mpg.de
†JoGU Mainz, dominik.huelse@gmx.de
1http://www.cgal.org/
2http://www.shoup.net/ntl/
3http://www.singular.uni-kl.de/

a solution for polynomials in Z[x1, . . . , xn]. This was
extended by Langemyr and McCallum [9] to polyno-
mials over algebraic extensions using results from [14]
in order to bound appearing denominators. Encar-
nacion [4] proposed a variant which uses rational re-
construction by Wang [12] in order to deal with de-
nominators. We also present a hybrid approach that
combines the ideas of both algorithms. All implemen-
tations are output sensitive, that is, the number of
primes used within the computation depends on the
size of the coefficients of the computed gcd and not
on bounds based on the input polynomials.

2.1 Fundamentals

We restrict the presentation to univariate polynomi-
als with integer coefficients. For more details study
[3, sec. 4.3]. The principal idea is to compute the
gcd with respect to several primes and to recover the
original gcd in Z[x] or Z(α)[x] using the Chinese Re-
mainder theorem, e.g. see Knuth [7]. This avoids
the exponential growth of coefficients in intermediate
steps, whereas the actual gcd in practice has moder-
ate coefficient size. Of course, it is important that
the modular methods are output sensitive and do not
rely on worst case bounds for the coefficient size in
the final gcd, which is exponential [3].

For a given prime p ∈ Z, let Fp = Z/pZ be the
Galois field with p elements and φp : Z → Fp the
field homomorphism defined by φp : x 7→ (x mod p).
The homomorphism from Z[x] to Fp[x] induced by φp

will also be denoted by φp. The image of φp will also
be denoted as the modular image of some entity.

Let F be some polynomial in Z[x], we will use
the following notation: deg(F) - the degree of F ;
lc(F) - the leading coefficient of F ; cont(F) - the
content of F , that is, the gcd of all coefficients;
pp(F) = F/cont(F) ∈ Z[x] - the primitive part of F ;
monic(F) = F/lc(F) ∈ Q[x] - the monic associate
to F ; disc(F) - the discriminant of F .

2.2 GCD over the Integers

In this section we outline Brown’s algorithm for poly-
nomials with integer coefficients. Given F ′

1, F
′
2 ∈ Z[x],

the algorithm computes G′ = gcd(F ′
1, F

′
2) ∈ Z[x].

The core part of the algorithm is a while loop
(step 5-13) that computes the gcd with respect to sev-
eral primes until it is possible to recover the gcd using
the Chinese Remainder Theorem.

1

Algorithm 1: (Brown’s algorithm)
Given the polynomials F ′

1, F ′
2 ∈ Z[x] with

deg(F1), deg(F2) ≥ 1. Compute G′ ∈ Z[x] the
greatest common divisor of F ′

1 and F ′
2.

(1) Set c1 = cont(F ′
1), c2 = cont(F ′

2), c = gcd(c1, c2).
(2) Set F1 = F ′

1/c1, F2 = F ′
2/c2.

(3) Set f1 = lc(F1), f2 = lc(F2), g = gcd(f1, f2).
(4) Set n = 0, e = min(deg(F1),deg(F2)).
(5) Let p be a new odd prime not dividing g

(6) Set g̃ = φp(g), F̃1 = φp(F1), F̃2 = φp(F2).
(7) Invoke the Euclidean algorithm to compute

G̃ = g̃ · gcd(F̃1, F̃2), over Fp[x].

(8) If deg(G̃) = 0: set G = 1 and goto (15).

If deg(G̃) > e: (p is an unlucky prime) goto (5).

If deg(G̃) < e: (the former primes were unlucky)

Set n = 0, e = deg(G̃).
(9) Set n = n+1.

(10) If n = 1: set (q, G?) = (p, G̃) and goto (5).
(11) Use Chinese Remainder to update (q, G?):

(q, G?) := chinese remainder((q, G?), (p, G̃)).
(12) If the coefficients of G? have changed goto (5).
(13) If G? - g · F1 or G? - g · F2 goto (5).
(14) Set G = pp(G?).
(15) Output G’ := cG;

For some (unlucky) primes it happens that the
gcd loses a non trivial factor, which implies that the
prime divides lc(F1) and lc(F2). The algorithm dis-
cards such primes in step 5. For other (unlucky)
primes it happens that the gcd in Fp[x] contains ad-
ditional factors. Therefore, the algorithm keeps track
of deg(G̃), that is, it incorporates only those primes
for which deg(G̃) is minimal (step 8).

Algorithm 1 deviates from the one of Brown [3] in
the sense that it is output sensitive. Instead of com-
puting as many primes as needed to guarantee a cor-
rect recovery of the gcd, it checks whether the recov-
ered polynomial G? becomes stable (step 12). If this
is the case, G? is in all probability the desired polyno-
mial, which is verified in step 13. An idea which can,
for instance, be found in Langemyr and McCallum [9].

Note that the Chinese Remainder can only re-
cover polynomials in Z[x], that is, the algorithm
must ensure that G? is the image of a polyno-
mial in Z[x]. Therefore, G̃ is multiplied by g̃ =
φp(gcd(lc(F1), lc(F2))) (step 7). Otherwise, G̃ as well
as G? would represent monic(G) which is (in general)
a polynomial in Q[x].

2.3 GCD over Algebraic Extension Fields

Given an algebraic number α and two polynomi-
als F1, F2 ∈ Z(α)[x], the following algorithms com-
pute the greatest common divisor G ∈ Z(α)[x] of F1

and F2 up to some constant factor. Note that it makes
no sense to care about constant factors since Z(α)

does not support a gcd [5]
In principal, all algorithms have the same layout

as Algorithm 1. However, a first fundamental dif-
ference is that the gcd in step 7 is computed over
Rp = Fp[t]/Mp, where Mp ∈ Fp[x] is the modular
image of the minimal polynomial M of α. In general
Mp is not irreducible, thus in general Rp is not a field.
Therefore, the computation in step 7 can fail, namely
in that case that it needs to invert a zero divisor. If
this happens, p is also considered as an unlucky prime
and discarded.

We continue with details about the algorithm by
Langemyr and McCallum [9], Encarnacion [4], and
our hybrid approach combining the advantages of
both algorithms.

The Algorithm of Langemyr and McCallum:
In contrast to Algorithm 1, the main point is that
the algorithm must take additional steps in order to
ensure that the polynomial which is supposed to be
recovered by the Chinese Remainder contains no de-
nominators. In a first step, the input polynomials are
normalized which removes superfluous constant fac-
tors and ensures that the leading coefficients are in Z.
This allows the computation of g̃ as in Algorithm 1
(step 7). However, in the presence of algebraic exten-
sions, the multiplication with g̃ may not be enough
to remove all denominators [14]. Therefore, G̃ is also
multiplied by a multiplicative bound for these remain-
ing denominators, namely D = disc(M), the discrim-
inant of the minimal polynomial of α. This finally
ensures that G̃ is the modular image of a polynomial
in Z(α)[x], which can be recovered by the Chinese
Remainder. For more details we refer to [11, 14, 8].

The Algorithm of Encarnacion: The algo-
rithm does not multiply G̃ by any constant at
all and the Chinese Remainder indeed tries to re-
cover monic(G) ∈ Q(α)[x] which is not possible. In-
stead, G? is a polynomial in Z(α)[x], where each co-
efficient is just in the same residue class as the cor-
responding coefficient of monic(G). Therefore, the
algorithm has an additional step that applies Wang’s
rational reconstruction [12, 13] to each coefficient in
order to obtain monic(G) ∈ Q[x]. Once the polyno-
mial obtained in this step is stable, the verification
(step 13) is applied.

The hybrid approach: For Langemyr and Mc-
Callum the weak point is that gcd(f1, f2)D can be a
very loose upper bound for the denominator of the
gcd which causes the use of additional superfluous
primes. Encarnacion’s algorithm tries to avoid this,
but has the overhead due to the additional rational re-
construction step which is performed in each round.
In our benchmarks, see also Section 3, we observed
that gcd(f1, f2) is a good denominator bound in prac-
tice. Indeed, within all our examples the additional
factor D was needed only once.

Our hybrid approach incorporates these observa-

2

tions in the sense that it modifies the algorithm by
Langemyr and McCallum by using gcd(f1, f2) as the
denominator bound. This has the effect that the al-
gorithm saves O(log(D)) rounds in almost all cases.
However, for the unlucky case that D is indeed needed
the algorithm would not terminate. Therefore, it uses
the rational reconstruction as a fall back. More pre-
cisely, it calls Wang’s algorithm if the fiftieth part of
the accumulated time spent within the Chinese Re-
mainder exceeds the time spent in the last call of
Wang’s algorithm. Hence, in practice our hybrid is
as output sensitive as Encarnacion’s algorithm but,
de facto, without the extra costs of the rational re-
construction.

3 Benchmarks

Since our code is implemented within Cgal, we fol-
low the generic programming paradigm using C++
templates and programming concepts such as traits
classes and iterators. We introduced several traits
classes to provide the functionality needed by the
algorithms, for instance, providing the denominator
bound required by Langemyr-McCallum. This ab-
stracts from the actual coefficient type in use.

For the benchmarks we generated various families
of 50 pairs of polynomials with fixed degree. Each
pair is composed of three factors, the gcd and the two
cofactors. All polynomials are random in the sense
that their diced scalar coefficients have the desired
bitsize. Within each family we always varied only one
parameter, for instance, the bitsize of coefficients, or
the degree of the gcd.

The benchmarks were measured on a Pentium(R)
M processor 1.7 GHz with 512 KB cache under Linux
and the GNU C++ compiler v3.4.6 with optimiza-
tions (-O3) and disabled assertions (-DNDEBUG). The
used number type was CORE::BigInt.

3.1 Polynomials over the Integers

First we study the impact of a modification of the gcd
and cofactor bitsize. For this purpose we generated
polynomial pairs of degree 25 with gcd degree 1 and
increasing bitsize of gcd and cofactors.

Generally we can say that Brown’s algorithm per-
forms far better than the old, non-modular implemen-
tation, hence we don’t compare these two approaches.
For a better quantification of the results we mea-
sured the same polynomials with the Computer Al-
gebra Systems Ntl and Singular. Figure 1 shows,
that the Ntl implementation performs about twice as
well as our generic implementation of Brown. Note,
that there is another curve that also covers the time
to convert our polynomials (i.e. the coefficients) to
NTL polynomials and back. This curve is included
for comparison with Singular, which uses Ntl as well,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim
e

in
 s

ec

 gcd and cofactor bits

Singular
NTL (with conversion)

NTL
Brown

Figure 1: Growing bit size of gcd and cofactors, polynomial
degree 25, gcd degree 1.

but who’s conversion costs are apparently more ex-
pensive.

Furthermore, we generated polynomial pairs of de-
gree 50 with 500 gcd bits and 5000 cofactor bits. The
gcd degree ranges from 1 to 49. Figure 2 reveals a
strange discontinuous behavior of the Ntl: The first
and the last 8 gcd degrees are computed faster than
the others. Other test series show the same behavior.
It seems that Ntl uses two different approaches for
the gcd computation. This has the consequence that
our approach is even faster for moderate gcd degrees.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20 25 30 35 40 45 50

tim
e

in
 s

ec

 gcd degree

NTL
Brown

Figure 2: Growing gcd degree; scalar coefficients gcd 500 bit;
cofactors 5000 bit; polynomial degree 50.

The behavior of Brown’s algorithm can be ex-
plained as follows. Since degree and bit size of the
polynomials are fixed, the time for the modular im-
age is constant. With increasing degree of the gcd,
the time spent in the Euclidean Algorithm decreases
as it needs less steps whereas the Chinese Remainder
has to recover more coefficients. These effects cancel
out. The bow like form is due to the trial-division
which is most expensive for moderate gcd degree.

3.2 Polynomials over Algebraic Extension Fields

To study the impact of a modification of the gcd bit-
size we generated polynomial pairs of degree 10 with
gcd degree 1 and 2000 cofactor bits. The Polynomials
were defined over an algebraic extension of degree 2.

First of all, we can say that the hybrid approach
performed far better than the non-modular implemen-

3

 0

 0.5

 1

 1.5

 2

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tim
e

in
 s

ec

gcd bits

Encarnacion
Langemyr-McCallum

Hybrid

Figure 3: Growing bitsize gcd; polynomial-degree 10; gcd-
degree 1; scalar coefficients cofactors 2000 bit.

tation. Hence, we don’t consider the non-modular im-
plementation.

Figure 3 shows that our hybrid approach performs
better than the algorithms of Langemyr-McCallum
(LM) and Encarnacion. Encarnacion’s algorithm is
not competitive, and for a sufficiently large bit size
even slower than the old, non-modular implemen-
tation. This is due to the considerable runtime
of Wang’s rational reconstruction algorithm. For a
higher bit size, the disadvantage of the LM approach
due to the multiplication with the superfluous denom-
inator bound becomes evident as well. The Singular
algorithm is the least successful, for a 500 bit gcd it
needs already 128 sec. Hence, we refrained from in-
cluding it in Figure 3.

A detailed decomposition of the total time spent
in the hybrid algorithm is given in Figure 4. With
growing gcd bits the algorithm needs more primes to
reconstruct the coefficients. Additionally every call of
the modular image, the Chinese remainder and the
test division gets more expensive. The time for nor-
malization and computing the denominator bound is
slightly increasing, too.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tim
e

in
 s

ec

gcd bits

total time
normalization & dfai

modular image
euclid. algo.

chin. remainder
Wang

test division

Figure 4: Decomposition of total time for hybrid approach:
Growing bitsize gcd; polynomial-degree 10; gcd-degree 1; scalar
coefficients cofactors 2000 bit.

4 Conclusions and Further Work

We have presented an open source implementation
and comparison of several variants of gcd algorithms

for algebraic extensions. Our benchmarks indicate
that the hybrid approach has considerable advantages
compared to the other implementations.

It is obvious that we should aim for a multivariate
gcd in the spirit of [3]. As this is independent from
the coefficient type, this should be straight forward.

We also expect some minor improvements for En-
carnacion’s algorithm, since the current implementa-
tion of Wang’s algorithm does not take advantage of
the known multiplicative denominator bound, as it is
indicated in [10]. The algorithms are implement in
CGAL, and part of the new Polynomial package of
CGAL release 3.4.

References

[1] M. H. Austern. Generic Programming and the STL:
Using and Extending the C++ Standard Template Li-
brary. Addison-Wesley, 1998.

[2] E. Berberich, M. Caroli, and N. Wolpert. Exact
computation of arrangements of rotated conics. In
Proc. EWCG’07, pages 231–234. Technische Univer-
sität Graz, 2007.

[3] W. S. Brown. On euclid’s algorithm and the com-
putation of polynomial greatest common divisors. J.
ACM, 18(4):478–504, 1971.

[4] M. J. Encarnacin. Computing gcds of polynomials
over algebraic number fields. J. on Symbolic Compu-
tation, 20(3):299–313, 1995.

[5] J. Gathen and J. Gerhard. Modern Computer Alge-
bra. Cambridge University Press, 1999.

[6] M. Hemmer. Exact Computation of the Adjacency
Graph of an Arrangement of Quadrics. Ph.D. thesis,
Johannes Gutenberg-Universität Mainz, 2007.

[7] D. E. Knuth. Seminumerical Algorithms, volume 2 of
The Art of Computer Programming. Addison-Wesley,
Reading, MA, 2nd edition, 1981.

[8] S. Landau. Factoring polynomials over algebraic
number fields. J. on Computing, 14:184–195, 1985.

[9] L. Langemyr and S. McCallum. The computation
of polynomial greatest common divisors over an al-
gebraic number field. J. on Symbolic Computation,
8(5):429–448, 1989.

[10] M. Monagan. An almost optimal algorithm for ra-
tional reconstruction. In Proc. ISSAC’04, pages 243–
249. ACM Press, 2004.

[11] P. S. Wang. Factoring multivariate polynomials over
algebraic number fields. Math. Comb., 30:1215–1231,
1978.

[12] P. S. Wang. A p-adic algorithm for univariate partial
fractions. Proc. SYMSAC ’81, pages 212–217, 1981.

[13] P. S. Wang, M. Guy, and J. Davenport. P-adic re-
construction of rational numbers. SIGSAM Bulletin,
pages 2–3, 1982.

[14] P. J. Weinberger and L. P. Rothschild. Factoring
polynomials over algebraic number fields. J. Transac-
tions on Mathematical Software, 2(4):335–350, 1976.

4

