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Disruptive Colouration and Perceptual Grouping
Irene Espinosa*¤, Innes C. Cuthill

School of Biological Sciences, University of Bristol, Bristol, United Kingdom

Abstract

Camouflage is the primary defence of many animals and includes multiple strategies that interfere with figure-ground
segmentation and object recognition. While matching background colours and textures is widespread and conceptually
straightforward, less well explored are the optical ‘tricks’, collectively called disruptive colouration, that exploit perceptual
grouping mechanisms. Adjacent high contrast colours create false edges, but this is not sufficient for an object’s shape to be
broken up; some colours must blend with the background. We test the novel hypothesis that this will be particularly
effective when the colour patches on the animal appear to belong to, not merely different background colours, but
different background objects. We used computer-based experiments where human participants had to find cryptic targets
on artificial backgrounds. Creating what appeared to be bi-coloured foreground objects on bi-coloured backgrounds, we
generated colour boundaries that had identical local contrast but either lay within or between (illusory) objects. As
predicted, error rates for targets matching what appeared to be different background objects were higher than for targets
which had otherwise identical local contrast to the background but appeared to belong to single background objects. This
provides evidence for disruptive colouration interfering with higher-level feature integration in addition to previously
demonstrated low-level effects involving contour detection. In addition, detection was impeded in treatments where
targets were on or in close proximity to multiple background colour or tone boundaries. This is consistent with other studies
which show a deleterious influence of visual ‘clutter’ or background complexity on search.
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Introduction

The ubiquitous threat of predation has led to the evolution of

different camouflage strategies that make an animal difficult to

detect or recognize because of its similarity to the background or to

irrelevant background objects [1–5]. The better the animal

matches its background, the less likely it is to be detected by a

predator [6].

Although background matching can be highly effective, this

alone may not optimize camouflage because, even if an animal

matches the background fully, any disparities between the phase of

the pattern on the animal and the background, or notably its

shadow [7–10], might give its location away. As one strategy to

overcome the limitations of crypsis, Thayer [11] proposed a theory

of disruptive colouration, extended later by Cott [12], which

argued that strongly contrasting shapes and patterns can break up

an animal’s form, giving the impression of a series of distinct and

apparently unrelated objects. A predator might be able to see

elements of a disruptively coloured animal, but it might not

necessarily identify them as belonging to a potential prey [13–15].

Typical disruptive camouflage, animal or military, places

strongly contrasting tones next to each other and, because the

outline of an object is a potent cue to both its presence and

identity, disruptive patterns at the body’s edge may be particularly

effective [12–14]. As such, peripheral disruptive patterns have

been proposed to exploit edge detectors in low-level vision [15].

The sharp transitions between the adjacent shades in disruptive

patterns create false contours within the body that are more

conspicuous than the real contours at the body’s edge. For the true

outline to comprise a weak edge, significant portions must match

the background [15]. Cott [12] described this as ‘differential

blending’, proposing that a mixture of background-matching and

maximally conspicuous tones might be especially effective

(Figure 1). Experiments suggest that Cott was wrong here:

mixtures of contrasting, but background-matching, colours are

best [16] and very conspicuous unusual colours simply attract

attention [17,18]. Nevertheless, Cott’s general intuition about the

importance of differential blending in disruptive coloration seems

sound: different patches on an animal should match different

patches in the background. As such, disruptive colouration works

against perceptual grouping mechanisms [19,20]. If adjacent

colour patches on the animal are more dissimilar to each other

than they are to adjacent background colours, then elements of the

animal are more likely to be grouped with the background rather

than with each other [2]. Given that our brain relies on grouping

mechanisms to distinguish an object from the background, we

hypothesized that disruptive colouration would be especially

effective when different components of the target resemble

different objects within the background as opposed to otherwise

identical background colours on a single background object. It is

noteworthy that in Cott’s original illustrations of the role of

differential blending in disruptive coloration, the different colour

patches on the animals matched different foreground and

background objects (Figure 1). We suggest that differential

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e87153



matching of colours on objects that have already been segmented

by the visual system was implicit in Cott’s thinking and this would

enhance the effectiveness of disruptive coloration. We tested this

proposition by presenting cryptic targets on structured artificial

backgrounds to human participants using computer displays

(Figure 2). The stimuli were designed so that the target matched

the different colours of what appeared to be the same background

objects or matched contrasting colours on what appeared to be

different objects. In each case however, the level of local

background matching, in terms of colour contrast between the

target’s edge and the adjacent background, was identical.

In two computer-based experiments human participants had to

find a coloured cryptic target hidden on a bi-coloured background.

A simple optical illusion, itself reliant on Gestalt principles of

contour continuity and feature grouping [19], was used to create

scenes (images) in which there appeared to be two-tone striped

squares resting on a two-tone striped background. In one

experiment two grey tones were used, in the other two hues.

The target could be placed on a single background tone, and was

monotone itself, or could be placed at the boundary of two tones,

and was bi-coloured itself. For (bi-coloured) targets placed at

boundaries, the target could be located on either just one single

feature of the scene (foreground square or background stripes) or

on two (overlapping a foreground square and its background).

We predicted that, first, because of differential blending and

disruption, targets on colour boundaries would be harder to detect

than targets on homogeneous regions of colour. Second and most

importantly, by creating scenes with apparent foreground objects

(the squares), targets on boundaries between (illusory) objects

would be better concealed than targets on otherwise identical

boundaries in colour within a background feature/object

(Figure 2). In other words, we predicted that targets located on

two objects within the background would be harder to detect than

targets placed on just one object within the background, even

though the local contrast between the target and the background is

identical in both cases. If such an effect existed, this would show

that disruptive colouration could be effective through interference

with a later stage in visual processing (figure-ground segmentation

and object recognition) as well as the low-level mechanism of edge

detection.

Methods

Ethics Statement
The research had ethical approval from the University of Bristol

Faculty of Science Human Research Ethics Committee. All

experiments were conducted according to the principles expressed

in the Declaration of Helsinki and written consent was obtained

from every human participant. The 25 volunteers for each of the

experiments were students from the University of Bristol, all

participants were naı̈ve, and had normal or corrected-to-normal

vision.

We used computer-based experiments where participants had to

look at bi-coloured background displays and find a coloured

cryptic target. The target was small (16 pixels diameter) and

similar in tone to its local background (10% lighter), and so hard to

detect. Subjects were told that each display contained one circular

target hidden anywhere in the background, then told to press the

Figure 1. Illustrations from Cott (1940) of the principles of differential blending and disruptive contrast. Note that the form-disrupting
effect of high contrast between colour patches within an animal is more effective when these different parts of the animal match different parts of
the background (right-hand versus middle pictures). Drawings were reproduced from the book Adaptive colouration in animals [12].
doi:10.1371/journal.pone.0087153.g001

Disruptive Colouration and Perceptual Grouping

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e87153



computer key ‘‘A’’ if the target was found on the left half of the

screen, or the computer key ‘‘S’’ if the target was located on the

right half of the screen. Displays were created such that target

location was unambiguously on the left or right half of the scene.

Every subject was presented with four blocks of 50 trials, each

block containing a randomised sequence of 5 replicates of each of

the 265 factorial combinations of treatments (see below).

Therefore every subject saw 20 replicates of each treatment

combination and 200 screens in total. Subjects were told they

could take a break between blocks; in practice none paused for

more than a few seconds. All subjects were given 10 practice trials,

containing two replicates of each treatment combination (ran-

domly selected) before beginning the experiment proper. Subjects

were told to respond accurately and that, if they did not find the

target and did not respond within 15 seconds, the computer would

advance to the next display. The participants were discouraged

from guessing the position of the target but any guesses would have

only contributed noise to the data.

There were two experiments; the first was a sequence of grey-

scale displays; the second experiment was either a green-red

display or a blue-yellow display. There were 25 participants for

monochrome experiment 1, and 25 for each of the green-red and

blue-yellow displays in experiment 2. In the latter two cases the

colours were chosen to be approximately isoluminant (based on

CIELab colour space coordinates; [21]). Prior to the experiments,

we calibrated the monitors used for the experiment using an Eye-

One Pro spectrometer (Xrite Inc., Regensdorf, Switzerland) and

calibration software (Colour Management Check-up Kit, Kodak

Professional, Eastman Kodak Company 2004). We stress that

exact calibration and isoluminance, which if desired would have

had to have been determined psychophysically for each test

subject, were not necessary components of the experiment.

Displays were 1024 pixels wide by 768 pixels high, with four

stripes either side of the midline, which itself was always a colour

boundary. Stripe locations were on average at 128 pixel intervals,

but exact locations of colour boundaries varied randomly

according to a normal distribution of standard deviation 16. This,

and the fact that the order of colours (left-to-right A-B-A-B-… or

B-A-B-A…) varied randomly with probability 0.5, insured that

scenes were variable and targets could not be located by a single

change from one trial to the next. Squares were always two-tone

with the colour boundary on the midline, and the midline

coincident with a stripe boundary on the background. The reversal

of colour compared to the background on which each square lay

(e.g. square colours A-B on a background stripe B-A) created the

illusion of striped squares on a striped background (Figure 2).

There were always four squares on each stripe except the midline

of the display, with the vertical location of each of the squares

varying randomly within each vertical quadrant according to a

uniform distribution between 1 and 192 (one quarter of the

vertical display size) minus twice the square width. This was done

to achieve variable square placing, but with none of the squares

too close together.

Each experiment had a factorial design of two square sizes

(small: 32632 pixels, or large: 64664 pixels) by five treatments. In

the first two treatments, the targets were monotone and on a

matching monotone background (dark target on dark background:

‘Dark’; or light target on a light background: ‘Light’). The target

was located randomly within a dark or light area comprising any

of the background stripes (i.e. on a homogenous dark or light

background, and not within a square). In the other three

treatments the target fell on the edge of a dark-light boundary

and was perfectly in phase with it (dark portion on the dark side of

the boundary, light on the light side); however the location of the

boundary varied. In ‘Stripe’, the target fell on the border between

two stripes (not within or on a square); in ‘Square’, the target lay

on the dark-light boundary inside, and the midline of, a square; in

‘Border’, the target lay on the dark-light border between a square

and its background (Figure 3). Subject to these placement

constraints, the position of a target (which stripe/square, which

side, what vertical displacement) was chosen randomly from a

uniform distribution.

The screen displays were created with a custom program

written in MATLAB (The Mathworks Inc., MA, USA). The

software used to display the stimuli and record the responses was

Display Master using Direct X (DMDX for Windows; software

developed at Monash University, Australia, and at the University

of Arizona, USA, by K.I. Forster and J.C. Forster); the software

was calibrated to the computer-specific frame and refresh rates

using TimeDx by the same authors.

The time taken to detect the target, to the nearest 10 ms, and

search success was recorded immediately after the subject pressed

the computer key ‘‘A’’ (if target was judged to be on the left half of

the screen) or ‘‘S’’ (right half). The mean time to detect the target,

and the number of errors (false positives) were calculated for each

treatment for each subject. Because of the time-out criterion of 15

seconds, trials where subjects failed to respond within this time

period can be considered to be ‘censored’: including these data as

’15 s’ or, even worse, treating them as missing data would lead to

an underestimation of true response time. Therefore, although

time-outs only occurred in 2.17% of all trials, to get a more

accurate estimate of the mean response time for each subject and

each treatment, survival analysis was used [22]. Using a custom

program to automate the process, and the parametric survival

analysis function from Matlab’s Statistics Toolbox, a separate

survival analysis was performed for each subject and treatment,

fitting a log-normal distribution to the data. The estimated means

were then used as the data for subsequent generalized linear mixed

models (GLMMs) fitted using the lme4 package [23] implemented

Figure 2. Example of a screen display from the achromatic
contrast experiment. The display shows an example from the large
square size conditions. The subject has to indicate (by key press)
whether the small circular target is on the left or right half of the screen.
In this example, the target is located on the right half of the screen
(bottom row of squares, second-from-right column) on the right-hand
border of a square. We caution that the target itself, being close to
threshold detectability when presented on our specific colour-
calibrated computer monitor, may not be visible when reproduced at
smaller size in the paper and viewed on other displays.
doi:10.1371/journal.pone.0087153.g002
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in the R environment [24]. Times were modelled with normal

error (although raw response time data were skewed, the

distributions of estimated means were not); the proportions of

trials with errors were modelled with binomial errors and logit link

function. The proportions were calculated in relation to trials

where a response had been made (i.e. no time-outs), as failure to

make a response is a different (and rare) class of error compared to

a wrong decision. Initial GLMMs included square size (two levels),

treatment (five levels), plus their interactions, as fixed effects and

subject (random intercepts) as a random effect. Significance of

terms was tested by the change in deviance between models with

and without the term in question, using a chi-square distribution

[23]. Pair-wise contrasts between levels within a significant factor

were tested with t-tests. The key a priori treatment comparisons are

with Border, so we tested all four other treatments against this

using a matrix of simple contrasts (tested simultaneously and

without correction for multiple testing). Additional pair-wise

comparisons (e.g. of two-tone treatments with monotone, or

square vs stripe) are of secondary interest and so were corrected for

simultaneous multiple comparison using the Tukey-type proce-

dure in the R package multcomp [25].

We note that analysis of the data using classical univariate

ANOVA on mean response time and arc-sine-square-root

transformed proportions (subject as a random effect, all other

effects fixed), with no model simplification, yields very similar

conclusions in terms of the magnitude of effects and which are

statistically significant. We present the GLMM results because, in

particular for the analysis of errors, they yield more precise

estimates of the effects of interests (due to their higher power).

Results

Achromatic Experiment
We found a significant interaction between square size and

treatment on the time taken to detect the target (X2 = 63.49, df= 4,

p,0.0001). For the small square size displays, treatment was

significant (X2 = 80.97, df= 4, p,0.0001) and subjects took longer

to find targets located on boundaries than on monotone

backgrounds (Figure 4; Table S1). The difference in time taken

to detect the target between treatments can be summarised as

(Square = Border).Stripe.(Dark = Light) (Table S1). For the

large square size displays treatment was also significant

(X2 = 118.71, df= 4, p,0.0001) and the differences in time can

be summarised as Stripe.(Square = Border).(Dark = Light) (Ta-

ble S1); it is the reversal of the relative times to find the target in

the Square and Stripe treatments that accounted for the

treatment*square size interaction in the first analysis. There was

no significant interaction between square size and treatment in the

proportion of errors made (X2 = 1.06, df= 4, p= 0.901), nor was

there a main effect of square size (X2 = 2.64, df= 1, p= 0.105).

However, errors did vary depending on the treatment (X2 = 69.11,

df= 4, p,0.0001), with the highest error rate being for targets

located on borders; (Figure 4,Table S1; p,0.0001 for border vs.

other treatments). In other post hoc comparisons, Square had more

errors than Light but all other comparisons were non-significant

(Table S1).

Chromatic Experiment
In the Red-Green displays, there was no significant interaction

between treatment and square size for the time taken to detect the

target (X2 = 2.97, df= 4, p= 0.563), nor was there a main effect of

square size (X2 = 1.63, df= 1, p= 0.202). Treatment was significant

(X2 = 99.52, df= 4, p,0.001), with the times taken having the

pattern Border.(Square = Stripe).(Dark = Light) (Figure 4; Ta-

ble S1). There was no significant interaction between treatment

and square size for the proportion of errors made (X2 = 7.47,

df= 4, p= 0.113), nor a main effect of square size (X2 = 0.64, df= 1,

p = 0.422). Treatment was significant (X2 = 30.55, df= 4,

p,0.0001) and the difference in errors between treatments can

be summarised as Border.(Square = Stripe).(Dark = Light)

(Figure 4; Table S1).

Looking at the Yellow-Blue displays, we did not find a

significant interaction between square size and treatment for the

time taken to detect the target (X2 = 2.22, df= 4, p= 0.695), nor a

main effect of square size (X2 = 0.05, df= 1, p= 0.829). However,

there was a significant effect of treatment (X2 = 78.91, df= 4,

p,0.0001), with decreasing detection times in the order

Border.(Square = Stripe).= (Dark = Light) (Figure 4; Table S1;

the.= notation here indicates that Stripe was significantly

different from Light at p= 0.025 but not significantly different

from Dark at p= 0.068). There was a significant interaction

between square size and treatment on the proportion of errors

made (X2 = 15.155, df= 4, p= 0.004). Differences in the proportion

of errors were not significant between treatments with a small

square size (X2 = 4.488, df= 4, p= 0.344), but were for large

(X2 = 41.15, df= 4, p,0.0001). The difference in errors between

treatments can be summarised as Border.(Square = Stripe = -

Light).= Dark (Figure 4; Table S1), although the comparisons

Figure 3. Treatments and examples from the achromatic experiment. The left hand rectangle shows an example from the small square size
conditions, while the right hand rectangle shows an example from the large square size conditions. In the middle there are enlarged versions of the
five different treatments used, with a white circle used to indicate one of the possible target locations for a treatment (real targets were mono- or
two-tone grey, 10% lighter than the immediate background, and placed randomly within the constraints of a treatment); top to bottom: treatments
Dark, Light, Stripe, Square, and Border. We used the same square sizes and treatments for the achromatic and the chromatic experiments; the latter
involved either (approximately isoluminant) red and green or blue and yellow colour combinations rather than two shades of grey.
doi:10.1371/journal.pone.0087153.g003
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with treatment Dark could not be computed due to zero errors,

and so no variance, in this treatment.

Discussion

Two main patterns are evident across the achromatic and the

two chromatic experiments. First, the quickest targets to locate,

with lowest error, were monochromatic targets placed on a single

matching background colour. This could be because matching

multiple background objects is better than matching one, even

when the local contrasts at the target edge are identical, and is

what we might expect from disruptive coloration. Dimitrova and

Merilaita [26] had similar findings with blue tits searching for

artificial targets; targets which bore multiple elements found in the

background were harder to find than those bearing fewer

background elements. However, in our experiment, as the

hardest-to-detect targets (Stripe, Square, Border) were also all on

colour boundaries, this could also be consistent with a crowding

effect, which we discuss later.

Our second result and the motivation behind the experimental

design, is that as predicted, subjects often found it more difficult to

detect targets on the border between the (illusory) foreground

squares and the background than targets on boundaries with

identical local contrast that lay within squares or on background

stripes; subjects made more errors in all experiments. Moreover, in

the two chromatic experiments they took longer to find the targets,

whereas in the achromatic experiment they took a similar amount

of time for treatments Border and Square. Our interpretation is

that targets with colours matching two (apparently) different

objects were harder to detect than targets matching two colours on

the same (apparent) object. This provides evidence for differential

blending, whereby a benefit exists for having patches with a

mixture of contrasting colours or luminance that match different

patches in the immediate adjacent surroundings. More impor-

tantly, the benefit is greater if those adjacent background colours

are perceived as belonging to objects that are themselves distinct.

As such, we argue that disruptive colouration exploits perceptual

grouping mechanisms; if neighbouring colour patches on the

target are less similar to each other than to those on neighbouring

background objects, then the target’s patches are more likely to be

grouped with the different background objects rather than with

each other, making segmentation of the target very difficult. While

the camouflage literature has frequently referred to interference

with higher cognitive functions, including attention, the only

mechanism that has been experimentally investigated is interfer-

Figure 4. Mean error rates and response times as a function of treatment, square size and experiment. In separate experiments,
backgrounds and targets consisted either of two greyscale tones (‘Grey’), approximately isoluminant red and green (‘RG’) or yellow and blue (‘YB’)
shades, with squares either small or large in size (see Figure 2 & Figure 3). Estimated means and standard errors for each treatment were taken from
generalized linear models. Where standard errors are not visible it is because they are smaller than the symbol representing the mean.
doi:10.1371/journal.pone.0087153.g004
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ence with edge-detectors [15]. In showing that highly contrasting

patterns when combined with differential blending are effective in

exploiting perceptual grouping mechanisms, our results indicate

effects beyond the lowest level in visual processing.

In both the achromatic and in the chromatic experiments,

targets located near or within other objects were harder to detect,

particularly when in a constricted space (within the small squares

or on background stripes between the large squares). This is

consistent with a crowding effect, known to have a negative

influence on object recognition tasks in humans (for the predicted

role in camouflage see [19,27,28]). Crowding is generally defined

as ‘‘the deleterious influence of nearby contours on visual

discrimination’’ [29]; in other words, crowding effects impair the

ability to recognize objects in clutter [29–31]. Crowding effects are

typically observed in peripheral (non-foveal) vision when there are

features in the background in close proximity to the target, and

these background features are similar in type to features on the

target (such background features are termed distractors). There-

fore it is reasonable to think that crowding effects could explain

some of the treatment differences observed in our experiments.

Interestingly, in the achromatic experiment, the relative response

times for the Stripe and Square treatments were reversed in the

large and small square treatments (Figure 4). Response times were

longest for treatment Square when squares were small (and so the

proximity of colour boundaries, near the midline of the squares on

which targets were placed, was greater); conversely response times

were longest for Stripe when squares were large (and so the length

of available stripes, between the squares, on which targets could lie

was smaller; the corollary being that colour boundaries on squares

were again closer). This reversal is consistent with a crowding

effect. Crowding could not, however, explain the greater difficulty

in locating targets on square-background boundaries (treatment

Boundary) compared to targets on boundaries within a square

(treatment Square) seen in both error rates and response times in

the two chromatic experiments, and error rates (though not

response times) for the achromatic experiment. In the Square

treatments, there were more nearby and surrounding contours and

so the crowding effect should have been larger than for the Border

treatment. The congruence of disruptive contours in the target

with perceptual segregation of square from background therefore

seems to have had an independent effect on top of the effects of

visual clutter/complexity in our study.

In conclusion, a potent form of camouflage is to combine highly

contrasting markings near the edge of the body with differential

blending. Disruptive colouration works by breaking the form of

the animal through the use of high contrast colours and/or

luminance. Differential blending groups different patches of the

animal’s body with different shades/colours in the background.

We perceive individual objects as possessing multiple attributes or

features. A critical task of the visual system is to bind those features

into a single percept; however, feature binding can fail, resulting in

the experience of illusory conjunctions of physically disjointed

features. With this study we provide results suggesting that is even

better to group different patches of the target’s body with different

objects in the background and not rely solely on matching those

patches to various background shades.

Given his drawings (Figure 1), it would not surprise us if Cott

(1940) had matching multiple background objects in mind when

defining components of disruptive coloration such as differential

blending. Classic military disruptive patterns, such as US

Woodland or British DPM, also employ sharply contrasting green

and brown tones; we would suggest it is relevant that these are not

simply two colours found in the background, but the colours of

distinct background objects: vegetation and earth. We note also

that an additional interpretation of our findings is that the hardest-

to-find objects (treatment Border) blend differentially with

background features that are perceived as lying in different depth

planes (the squares are perceived as lying on top of the striped

background). Cott’s drawings also illustrate animals matching

background objects in different depth planes and, in a separate

section of his book, argued strongly that animals use shading to

create depth illusions. Co-location in the same depth plane

contributes to perceptual grouping [32,33], so using colour to

disrupt this percept should be advantageous [20]. Some previous

experiments on disruptive coloration, where two-tone 2D moth-

like targets were placed on the 3D textured background of tree

bark [13,16,18], could also be interpreted in this way: the light

colours of the target match the raised bark and the dark colours

match the shadows of the furrows between the ridges. The possible

distinct benefits of matching objects in different depth planes

deserves further investigation; neither our experiment, nor those

above that we suggest could be interpreted this way, were designed

to isolate any such effect. Distinct from the effects of differential

blending, our results also suggest animals would be better

concealed if they hid near strongly contrasting edges and other

prominent features in the background. This echoes other studies

showing reduced detection of prey on complex backgrounds [26–

28] and can be usefully linked to the literature on visual clutter

[30].

Our findings suggest that disruptive colouration might interfere

with later stages in visual processing in addition to previously

demonstrated effects involving low-level contour detection [15].

We would suggest that disruptive coloration can be usefully

defined by interference with perceptual grouping mechanisms

[19,20]. This is implicit in most accounts of disruptive coloration,

and we feel that this is what most people mean by colours that

‘‘break up shape and form’’. This approach also helps in

distinguishing this form of camouflage from other mechanisms

such as background matching and distraction patterns.

Supporting Information

Table S1 Pairwise comparisons between treatments in
the time taken to detect the target and the proportion of
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