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Abstract: Analysis of spatio-temporal point patterns plays an important
role in several disciplines, yet inference in these systems remains computa-
tionally challenging due to the high resolution modelling generally required
by large data sets and the analytically intractable likelihood function. Here,
we exploit the sparsity structure of a fully-discretised log-Gaussian Cox pro-
cess model by using expectation constrained approximate inference. The
resulting family of expectation propagation algorithms scale well with the
state dimension and the length of the temporal horizon with moderate loss
in distributional accuracy. They hence provide a flexible and faster alter-
native to both the filtering-smoothing type algorithms and the approaches
which implement the Laplace method or expectation propagation on (block)
sparse latent Gaussian models. We demonstrate the use of the proposed
method in the reconstruction of conflict intensity levels in Afghanistan from
a WikiLeaks data set.

Keywords and phrases: variational approximate inference, latent Gaus-
sian models, sparse approximations, log-Gaussian Cox process.

1. Introduction

Spatio-temporal point-process modelling finds application in several fields such
as epidemiology, [5], ecology [10] and criminology [20]. However, despite their

∗Footnote to the title with the “thankstext” command.

1

ar
X

iv
:1

30
5.

41
52

v3
  [

st
at

.M
L

] 
 1

5 
A

ug
 2

01
3

http://arxiv.org/abs/arXiv:1305.4152
mailto:bcseke@inf.ed.ac.uk
mailto:gsanguin@inf.ed.ac.uk
mailto:a.zammitmangion@bristol.ac.uk
mailto:t.heskes@science.ru.nl


B. Cseke et al./Sparse Approximations in Point Process Models 2

importance and prevalence, inference in these systems remains computation-
ally challenging. Markov chain Monte Carlo (MCMC) is frequently employed,
however sampling is expensive and the problems under investigation are gen-
erally only of moderate size and complexity. On the other hand deterministic
approximate inference methods for inference are rapidly gaining popularity in
this field. These approaches can be classified as dynamic or static: The former
class consists of filtering-smoothing type approaches such as the variational ap-
proach in [28] or the expectation propagation (EP) algorithm exploiting low
rank approximations in [8]. The static approaches cast the discretised model
as a latent (sparse) Gaussian block model and apply the Laplace method [21]
or a corresponding EP algorithm [e.g. 2]. However, the computational scaling
of these approaches is fixed and they may become untenable for large state
dimensionality and long time series.

In this paper we derive an EP algorithm that reduces the computational com-
plexity not by the above mentioned low rank approaches, but by exploiting the
sparsity (in canonical/precision parameters) of the underlying latent Gaussian
model. The approach we take exploits this sparsity in a similar way as in [21] and
[2], however, the crucial step is the distribution of the computation. The expen-
sive (sparse) linear algebraic operations are performed not on the (concatenated)
block model, but instead on the two-time slice marginals characteristic to the
dynamic approaches. The complexity of these local computations depends on
the graph structure of the expectation constraints imposed on the approximate
marginals, namely the sparsity structure of the Gaussian messages that these
constraints result in. We introduce a class of constraints that result in messages
having the following precision structures: (i) diagonal (factored messages), (ii)
spanning tree (iii) chordal and finally (iv) fully connected (full messages). The
latter corresponds to the standard filtering-smoothing type EP algorithm. An
algorithmically similar approach to (i) for discrete Bayesian networks is pre-
sented in [15]. Comparisons on data generated from the model show that these
algorithms scale well and depending on the complexity of the messages we can
do approximate inference on hundreds or a few thousands of state variables and
hundreds of time-steps with reasonable time and memory requirements.

This paper is structured as follows. In Section 2 we introduce the log-Gaussian
Cox process and present the discretisation and approximation steps that sim-
plify this model to a dynamic latent Gaussian model with non-Gaussian obser-
vations. In Section 3 we derive a class of dynamic EP algorithms that exploit
sparse interaction structures. In Section 4 we discuss the performance of these
algorithms and apply them to the WikiLeaks Afghan War Diary, a data set
containing tens of thousands of events. The underlying system, known to expe-
rience micro-dynamic effects, can be modelled at a high resolution using one of
the proposed approaches. Section 5 concludes the paper.
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Fig 1. An illustration of the spatio-temporal discretisation. The right panel illustrates
two basis functions defined according to the triangular finite element spatial discreti-
sation. The bases are shown for two nodes/vertices one in the interior and one on the
boundary of the domain. The left panel illustrates some of the temporal connectivity
for some nodes resulting from the spatio-temporal discretisation described in Section 2.
Similarly, the temporal connectivities are shown only for an interior and a boundary
node/vertex.

2. Model and likelihood approximation

In this work we address point-processes with the following, underlying, spatio-
temporal autoregressive system

x t+1 = Ax t + et, (2.1)

where t is a discrete temporal index, each x t ∈ Rn, et ∼ N (0,Q−1) with both
A and Q sparse. Equation (2.1) can be obtained from spatio-temporal models
commonly employed in practice, such as the integro-difference equation (IDE)
[26], and the stochastic partial differential equation (SPDE) [27]. Sparsity in
A and Q ensues either by gridding the domain or by employing a Galerkin
reduction on an infinite-dimensional system in zt(s), s ∈ O ⊂ R2, using basis
functions of compact support. In both cases we can denote the approximate
field as zt(s) ≈ φ(s)Txt where {φi(s)}ni=1 is the basis; when using a grid the
approximate field is discontinuous.

As is typical in spatio-temporal point-process applications, we model the in-
tensity function of observed events as λt(s) = exp(zt(s)); in practice additional
covariates may be included, however we omit these in order to facilitate the ex-
position. Let each observation window be of length ∆t and Yt = {si}i∈It where
It is the set of indices corresponding to events in (t − 1, t], then the likelihood
of each spatial point process is given by

p(Yt|x t) ∝∼ exp

(
−∆t

∫
O
eφ

T (s)x tds

) ∏
j∈It

eφ
T (sj)x t

= L1(x t)L2(x t;Yt) (2.2)
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This likelihood can be split into two components; the first (L1(x t)) is directly
related to the void probability of the process. We adopt the approach in [23] and
approximate the integral as:

logL1(x t) ≈ −∆t

p∑
i=1

η̃i exp(φT (s̄i)x t)

= −ηT exp(C 1x t), (2.3)

where η = ∆tη̃ are the scaled integration weights and C 1 = [φ(s̄1) . . .φ(s̄p)]
T

contains the values of the basis at the chosen p integration points {s̄i}pi=1. The
second component of the likelihood, L2(x t;Yt), adds contributions from the
observed events and can be represented as follows

logL2(x t;Yt) =
∑
j∈It

φT (sj)x t = 1TC 2(Yt)x t, (2.4)

where C 2(Yt)T = [φ(si)]i∈It . The log-likelihood can hence be written, up to a
proportionality constant, as

log p(Yt|x t) ≈ −ηT exp(C 1x t) + 1TC 2(Yt)x t. (2.5)

Both compact basis functions and gridded domains induce sparsity into the
observation matrices C 1 and C 2. In particular, if one chooses the integration
points to be the vertices of a triangulation or the centres of gridded cells, then
C 1 simplifies to the identity matrix I n×n where n = p. The integration weights
η̃ then correspond to the volumes of the basis with unit weight. In addition,
C 2(Yt) is again sparse with at most one non-zero element in each row for the
gridded case and three non-zero elements per row for the triangulated case.

The spatial discretisation results in a latent Gaussian model. Since C 1 is the
identity and (2.4) is linear, the non-Gaussian terms will depend on xjt+1 only

and from (2.3) we define the proxy ψt+1,j(x
j
t+1) = exp{−ηj exp(xjt+1)}. Letting

X = {xt}Tt=1 and Y = {Yt}Tt=1, the latent Gaussian model is given by

p(X|Y) ∝p1(x1)
∏
t

N(xt+1|Axt,Q−1)× exp(xt+1 · hyt+1)
∏
j

ψt+1,j(x
j
t+1),

where hyt+1 = 1TC 2(Yt+1).

3. Inference

We define the factors1 Ψt,t+1(xt,xt+1) = N(xt+1|Axt,Q
−1) exp(xt+1·hy

t+1)–considering
t = 1 as a special case including both the starting conditions and observations
at t = 1–and write

p(X|Y) ∝
∏
t

Ψt,t+1(xt,xt+1)
∏
j

ψt+1,j(x
j
t+1) (3.1)

1Because of the abundance of indices, we use “·” as a proxy for the inner product.



B. Cseke et al./Sparse Approximations in Point Process Models 5

 t�1,·

Fig 2. An illustration of the chain graphical model (left panel) and the factor graph
(right panel) corresponding to the model in (3.1).

Note that p can be viewed as a (block) sparse latent Gaussian model and there
are various approaches that approximate p and by a (block) Gaussian and ap-
ply corrections to it’s marginals: (i) the Laplace method and marginal correc-
tions [21] (ii) expectation propagation and marginal corrections [17, 2] and (iii)
the standard variational approximation (no corrections), see [16]. It is gener-
ally known that both EP and the variational approach outperform the Laplace
method and EP has a computational complexity that scales with that of the
Laplace method [11, 2].

However, since we have a dynamical model, we will try to exploit its structure
instead of viewing it as a generic sparse latent Gaussian model. Since we are
dealing with a chain structured time series model, inference could be done by
using the standard forward-backward message passing equations

αt+1(xt+1) ∝
∫
dxtαt(xt)Ψt,t+1(xt,xt+1)

∏
j

ψt+1,j(x
j
t+1) (3.2)

and

βt(xt) ∝
∫
dxt+1βt+1(xt+1)Ψt,t+1(xt,xt+1)

∏
j

ψt+1,j(x
j
t+1) (3.3)

and forming the one and two time-slice marginals

q(xt,xt+1) ∝ βt+1(xt+1)αt(xt)Ψt,t+1(xt,xt+1)
∏
j

ψt+1,j(x
j
t+1). (3.4)

Unfortunately, these computations are not tractable because: (i) both the for-
ward and backward message passing involve multivariate integrals that cannot
be computed analytically, (ii) in the cases we address the dimension of the state
space scales with 103 and thus even the Gaussian case becomes computationally
unfeasible. To address this problem we propose approximations that result in
(i) propagating Gaussian messages αt and βt (ii) we restrict the precision struc-
ture of these Gaussian messages to make use of the sparsity of A and Q in the
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parametric expression of q in (3.5) and thus all the matrix algebra we perform
will be carried out on sparse matrices.

In the following we present the basic idea behind the approximation we pro-
pose. Since the messages are not exact, one forward-backward cycle is not suf-
ficient to obtain the marginals and thus we have to turn (3.2) and (3.3) into
an iterative procedure where several message updates have to be performed.
In order to define the updates, we make use of (3.5). By multiplying (3.2) by
βt+1(xt+1) we obtain

βt+1(xt+1)αt+1(xt+1) ∝
∫
dxt q(xt,xt+1). (3.5)

We will approximate q(xt+1) from the equation above with a Gaussian having
a restricted precision structure. Let us denote it by, say, q̃(xt+1) and define an
iterative update procedure

αnewt+1 (xt+1) ∝ q̃(xt+1)/βt+1(xt+1) and βnewt+1 (xt+1) ∝ q̃(xt+1)/αt+1(xt+1),

where q̃(xt+1) is computed by approximating the marginal of q(xt,xt+1) which
in turn is recomputed according to (3.5). We iterate these updates until the
changes in αt and βt are within a predefined accuracy level.

3.1. Variational inference with expectation constraints

In order to define the approximation q̃(xt+1) and to formulate our approach in
a sound methodological framework, we resort to the so called variational free
energy approach in [9]. The main idea of this approach is that instead of ap-
proximating p with a Gaussian q, it only aims to approximate its marginals. It
defines a family of marginals that, as consistency criteria, are assumed to satisfy
a set of expectation constraints and then optimises them by finding a station-
ary point of a Kullback-Leibler divergence based variational objective. In the
following we show how and under what limitations this approach can be applied
to fit our requirements. Following standard variational approaches [e.g. 9], we
use the KL-divergence D[q||p] and its approximations as means to approximate
the marginals of p. We start from the standard variational approach, where due
to the factorisation in p, we have

D[q||p] =−
∑
t

Eq[logΨt,t+1]−
∑
t,j

Eq[logψt+1,j ]−H(q) + logZp, (3.6)

where H(q) is the entropy of q and logZp is the (unknown) normalisation con-
stant of p. Note that minimising (3.6) w.r.t. a q restricted to be Gaussian leads
to the standard (block) variational approximation (iii) mentioned above.

To exploit the decomposition of D[q||p] we define a family of approximate
marginals Q =

{
{qgt,t+1}t, {q

gs
t }t, {qlt+1,j}t,j , {qlst+1,j}t,j

}
which can be viewed as
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Fig 3. An illustration of the approximate marginals in Q and the expectation con-
straints defined over then. The figure also illustrates the relations embedded in the tree
representation in (3.7).

corresponding to the un-normalized tree-structured density

q(X) ∝

T−1∏
t=1

qgt,t+1(xt,xt+1)
T∏
t=1

∏
j

qlt+1,j(x
j
t+1)

T−1∏
t=2

qgst (xt)
T∏
t=1

∏
j

qlst+1,j(x
j
t+1)

. (3.7)

An illustration of the structure of (3.7) is shown on Figure 3. All densities in Q
are approximations of the corresponding marginals and, as we will see later, the
optimal marginals lead to a q for which q(X) ∝ p(X|Y) holds. In particular,
qgt,t+1 is assigned to the factor Ψt,t+1 and qlt+1,j is assigned to ψt+1,j , whereas

qgst and qlst+1,j correspond to the separator densities used in graphical models
[e.g. 12]. Let f(z) be the sufficient statistic of a (sparse) Gaussian with sparsity
structure G(f)—to be defined later—and let g(z) = (z,−z2/2) to denote the
sufficient statistic of the univariate Gaussian. We use first and second order
statistics as consistency criteria in the approximate marginals, and thus, we
define the (temporal) expectation constraints

Eqgt,t+1
[f(xt+1)] = Eqgst+1

[f(xt+1)] and Eqgt+1,t+2
[f(xt+1)] = Eqgst+1

[f(xt+1)]

(3.8)

as well as the (spatial) constraints

Eqlt+1

[
g(xjt+1)

]
= Eqlst+1

[
g(xjt+1)

]
and Eqgt+1

[
g(xjt+1)

]
= Eqlst+1

[
g(xjt+1)

]
.

(3.9)

When f corresponds to a fully connected Gaussian, the corresponding tempo-
ral expectation constraints are marginal matching constraints. We derive our
approach for a general f and we discuss possible choices in Sections 3.3 and 3.4.
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By making use of the tree structure of q, we define the entropy approximation
corresponding to Q by

−H̃(Q) =
∑
t

Eqgt,t+1

[
log qgt,t+1

]
−
∑
t

Eqgst
[log qgst ]

+
∑
t,j

[Eqlt+1,j

[
log qlt+1,j

]
− Eqlst,j+1

[
log qlst+1,j

]
].

Note, that due to the tree structure, when the members of Q are true marginals,
H̃(Q) is equal to the true/exact entropy. We approximate Eq[log p] by using
the corresponding members of Q and arrive to an approximation (without the
constant logZp) of the variational objective (free energy) in (3.6) which reads
as

F (Q) =−
∑
t

Eqgt,t+1
[logΨt,t+1]−

∑
t,j

Eqlt+1,j
[logψt+1,j ]− H̃(Q). (3.10)

To deal with the expectation constraints, we introduce the Lagrange multipliers
αt+1 and βt+1 for the (temporal) constraints w.r.t. qgt+1,t+2 and qgst+1, and qgt,t+1

and qgst+1, respectively. The multipliers corresponding to the (spatial) constraints
on qgt,t+1 and qlst+1,j , and qlt+1,j and qlst+1,j will be denoted by λgt+1,j and λlt+1,j ,
respectively. The stationary conditions of the Lagrangian corresponding to F (Q)
in (3.10) and the expectation constraints (3.8)-(3.9) result in the densities

qgt,t+1(xt,xt+1) ∝ Ψt,t+1(xt,xt+1) exp{
∑

j
λgt+1,j · g(xjt+1)} (3.11)

× exp {αt · f(xt) + βt+1 · f(xt+1)} ,
qgst+1(xt+1) ∝ exp {(αt+1 + βt+1) · f(xt+1)} , (3.12)

qlt+1,j(x
j
t+1) ∝ ψt+1,j(x

j
t+1) exp{λlt+1,j · g(xjt+1)}, (3.13)

qlst+1,j(x
j
t+1) ∝ exp{(λgt+1,j + λlt+1,j) · g(xjt+1)}. (3.14)

Since all qgst+1 and qlst+1,j are Gaussians, the stationary conditions corresponding
to the expectation constraints (moment matching) in (3.8) and (3.9) can be
rewritten in terms of natural or canonical parameters as

Collapse
[
qgt,t+1(xt+1);f

]
= αt+1 + βt+1, (3.15)

Collapse
[
qgt+1,t+2(xt+1);f

]
= αt+1 + βt+1, (3.16)

Collapse
[
qgt,t+1(xjt+1); g

]
= λgt+1,j + λlt+1,j , (3.17)

Collapse
[
qlt+1,j(x

j
t+1); g

]
= λgt+1,j + λlt+1,j . (3.18)

Here, Collapse[q;f ] and Collapse[q; g] are the projections of q into the Gaussian

families defined by f and g respectively. In other words, suppose S(Q̂) denores

the sparsity structure of the matrix Q̂, then

Collapse[q;f ] ≡ argmin
(ĥ,Q̂):S(Q̂)=G(f)

D
[
q(z)||N(z; Q̂−1ĥ, Q̂−1)

]
. (3.19)
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Fig 4. Illustration of the message passing inference algorithm.

By turning (3.15) and (3.16) into a pair of update formulae, we arrive at forward-
backward messages similar to (3.2) and (3.3): αt+1 is the canonical parameter
of the forward message αt+1(xt+1) and βt+1 is the canonical parameter of the
backward message βt+1(xt). In a similar fashion, the messages corresponding
to (3.17) and (3.18) correspond to the messages of an expectation propagation
algorithm in a latent Gaussian model: λgt+1,j corresponds to the parameters of

the term approximation while λlt+1,j corresponds to the parameters of the so-
called cavity distribution [18, 14]. As a result, the message passing algorithm
can be written as

αnewt+1 = Collapse
[
qgt,t+1(xt+1);f

]
− βt+1, (3.20)

βnewt = Collapse
[
qgt,t+1(xt);f

]
−αt, (3.21)

[λlt+1,j ]
new

= Collapse[qgt,t+1(xjt+1); g]− λgt+1,j , (3.22)

[λgt+1,j ]
new

= Collapse[qlt+1,j(x
j
t+1); g]− λlt+1,j . (3.23)

Appropriate damping of the form xnew = (1− ε)xold + εxnew might need to be
applied to help convergence [9]. We update λgt+1,j and λlt+1,j for all j simulta-
neously as in [2].

The message passing updates from above combine both temporal and spatial
inference methods in a simple way. They are suited to distributed computations
and, as we show in the next section, are more suited to exploit the sparsity of A
and Q than the typical Kalman filtering and R.T.S. smoothing methods that do
inference using prediction (marginalisation) and innovation (Bayesian update)
steps, resulting in operations on full matrices.

In retrospect, we provided solutions to the problems raised in the first part
of Section 3 in the following way: (i) We worked around the the numerical in-
tractability in (3.2) and (3.3) by separating the non-Gaussian terms ψt+1,j(x

j
t+1)

from Ψt,t+1(xt,xt+1) through the use of expectation constraints and thus the
marginalization is performed on the tractable qgt,t+1(xt,xt+1). As mentioned
earlier, the updates (3.22) and (3.23) implement the expectation propagation
procedure in a latent Gaussian model with sparse precision structure and thus
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qgt,t+1(xt,xt+1) is an accurate proxy for providing the required moments [2]. (ii)
We showed that expectation constrains provide a natural way to introduce a
message passing algorithm where the messages are Gaussian having canonical
parameters with sparse precision structure G(f); this relation provides a good
intuition for choosing the sparsity structure. In the following section we provide
a detailed discussion of when and how the above message passing can be done
in a computational efficient way.

3.2. Messages and collapse operations

As can be seen from (3.20)-(3.23), the sufficient statistics (structures) of the
messages are defined by the expectation constraints, that is, by the Gaussian
families defined by f and g. In the following we present the details of collapse
steps in these equations. These steps consist of computing the required first
and second order moments of the approximate marginals qgt,t+1 and qlt+1,j and
using them to project the approximate marginals—according to (3.19)—into
the canonical Gaussian families defined by f and g respectively.

The Collapse[qlt+1,j(x
j
t+1); g] step in (3.23) can be performed as follows. Since

ψt+1,j depends only on xjt+1, we have to compute the first and second mo-
ments of z, where z is distributed according to an un-normalised distribution
ψt+1,j(z) exp(hz−qz2/2), where h and q are the canonical parameters in λlt+1,j .
Since the computation of the moments cannot be carried out analytically (see
(2.3)) one has to resort to numerical approximations. We propose two alter-
natives: (i) applying Gauss-Hermite numerical quadrature w.r.t. z or (ii) find-
ing the Gaussian approximation of ψt+1,j(z) exp(hz − qz2/2) by the univariate
Laplace method and performing Gauss-Hermite numerical quadrature w.r.t. this
approximation. Because of the univariate Newton method we use, method (ii)
is slightly more computationally expensive than method (i), however, it is more
accurate when the masses of ψt+1,j(z) and exp(hz − qz2/2) are far apart as
it is often the case in the first cycle of updates. Due to the accuracy of these
univariate methods, the numerical error in computing the moments and thus
Collapse[qlt+1,j(x

j
t+1); g] is negligible.

The Collapse[qgt,t+1(xjt+1); g] step in (3.22) reduces to the computation of

the marginal means and variances qgt,t+1(xjt+1). This requires a marginalisation
which can be computationally expensive. The crucial ides that leads to signifi-
cant computational savings is that, in order to preserve sparsity, we carry out
the computations on the joint qgt,t+1(xt,xt+1) by using sparse partial matrix
inversion via sparse Cholesky factorisation and solving the corresponding Taka-
hashi equations [24]. Let αt = (hαt

,Qαt
) and βt+1 = (hβt+1

,Qβt+1
) denote the

canonical representations of αt and βt+1, and let us concatenate λgt+1,j into the
representation λgt+1,· = (hλg

t+1,·
,Qλg

t+1,·
) where, due to the univariate nature

of λgt+1,js the precision parameter Qλg
t+1,·

is diagonal. With this notation, the
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precision matrix of qgt,t+1 can be written as

Qg
t =

[
ATQA+Qαt

−ATQ
−QA Q+Qβt+1

+Qλg
t+1,·

]
, (3.24)

where Qαt
, Qβt+1

and Qλg
t+1,·

are the precision terms corresponding to the

messages αt, βt+1 and λgt+1,· and the rest of the parameters correspond to the
Gaussian transition probability Ψt,t+1. The sparsity of Qg

t is mainly determined
by the sparsity of ATQA and the sparsity of the messages precision structure
Qαt

and Qβt+1
, that is, by G(f). To compute the required moments we (i)

solve the system [Qg
t ]
−1[hgt ], where hgT

t = [hT
αt
,hT

βt+1
+ hyT

t+1 + hT
λ
g
t+1,·

] and (ii)

compute the diagonal of [Qg
t ]
−1. We do this by a sparse Cholesky factorisation

of a convenient reordering ofQg
t followed by (i) solving the linear system and (ii)

doing a partial inversion by solving the Takahashi equations. Let LLT = [Qg
t ]σ,σ

where σ is the permutation corresponding to a reordering. Then the partial
inversion using the Takahashi equations computes all entries of [[Qg

t ]σ,σ]−1 for
which L is non-zero. This implies that all entries of [Qg

t ]
−1 where Qg

t is non-zero
are computed [4]—a property which will be further exploited in the Collapse[·;f ]
step. The partial matrix inversion can be viewed as running a junction tree
algorithm on the Gaussian graphical model defined by Qg

t , where the junction
tree is constructed by the sparse Cholesky factorisation [4].

The Collapse[qgt,t+1(xt+1);f ] and Collapse[qgt,t+1(xt);f ] steps in (3.20) and
(3.21) compute the temporal messages and can be performed as follows. Let
q(x) = N(x|m,V ), then according to (3.19), Collapse[q(x);f ] simplifies to
solving

minimise
Q̂

tr
(
V Q̂

)
− log det Q̂

s.t. Q̂i,j = 0, for all (i, j) 6∈ G(f),

and computing ĥ = Q̂−1m. The optimisation can be solved by gradient based
methods or the Newton method, however, when the graph G(f) is chordal, the
optimality conditions lead to equations that can be solved exactly (instead of
expensive optimisation) by using the values Vij with (i, j) ∈ G(f) [3]. Since
the covariance values corresponding to the non-zeros in Qαt

and Qβt+1
are all

already computed by the partial matrix inversion of Qg
t no further covariance

computations are needed. This leads to significant computational advantages.
For chordal G(f)s the equations for the optimality conditions can be solved
as follwos [3]. Let C1, . . . , CK be the cliques of G(f). Assume further that the
cliques of the graph’s junction tree are ordered such that if Ci is an ancestor of Cj
then i ≤ j. Let Sj = Cj∩(C1∪C2∪. . .∪Cj−1) and Rj = Cj\(C1∪C2∪. . .∪Cj−1).

Then Q̂ = (I + U)D(I + U)T , where U and D can be computed iteratively
from

URk,Sk
= −V −1Sk,Sk

VSk,Rk
, (3.25)

DRk,Rk
= [VRk,Rk

− VRk,Sk
V −1Sk,Sk

VSk,Rk
]−1. (3.26)
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The computational complexity scales with
∑
k max{|Sk|3, |Rk|3, |Sk|2|Rk|}. The

size of the cliques depends on the structure of G(f), see Section 3.4 for further
details.

The above algorithm can be given the following intuitive interpretation. Sup-
pose again that we want to minimise the KL-divergence D[q(x)||p(x)] w.r.t. p
assuming that p is a tree structured distribution according to the clique structure
C1, . . . , CK . Then simple calculus yields that p(xCk

) = q(xCk
), k = 1, . . . ,K

and the above computations are implementing the computation of the precision
matrix of tree distribution p(x) form its optimal marginals q(xCk

). It also ex-
plains why correlations for which (i, j) 6∈ G(f) are omitted when computing the
approximation.

3.3. Inference schemes and scheduling options

The choice of the inference scheme, determined by G(f), and the scheduling of
the updates in the fixed point iteration in (3.20)-(3.23) govern the accuracy and
the speed of the inference algorithm. In the following we detail our choices and
show how these correspond to well known approaches to inference in or model.

Based on the complexity of Collapse[·;f ] consider three main classes forG(f):
(i) full, where G(f) is a fully connected, this corresponds to the classical ap-
proximate inference approach of propagating multivariate Gaussian (ii) chordal:
where, G(f) is chordal graph, corresponding to the propagation of messages hav-
ing precision matrices with restricted sparsity structured, and (iii) diag, where
G(f) is a disconnected graph and thus only marginal means and variances are
propagated.

In terms of scheduling we differentiate the following choices: (i) static, where
the forward backward updates (3.20)-(3.21) are iterated until convergence and
then an (3.23)-(3.23) update is performed, (ii) sequential, where the (3.23)-(3.23)
updates are iterated until convergence followed by the corresponding (3.20)-
(3.21) updates, and (iii) dynamic, where in order to minimise the number of
update steps we use greedy scheduling strategy, to be detailed later.
G(f) is fully connected (full). In this case both Qαt and Qβt are full matri-

ces implying that the diagonal blocks are Qg
t are full and thus we are no longer

dealing with sparse matrices. However, the sequential version of this algorithm
corresponds to the classical filtering-smoothing approach with local approxi-
mations of the non-Gaussian terms and is a state of the art method in many
statistical and machine learning applications. The static version of this algo-
rithm can be shown to the expectation propagation in a block Gaussian model:
the Gaussian forward-backward message passing corresponds to computing the
marginal means and variances needed for the (3.23)-(3.23) updates. However,
by considering the model as a latent block Gaussian model one can still preserve
sparsity and apply the expectation propagation approach in [2] and thus replac-
ing the forward-backward message passing with a partial matrix inversion on
a n × T sized sparse matrix. Due to the former connection, the approximation
provided by the latter two methods are identical.
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G(f) is partially connected (chordal, tsp). The chordal case is computationally
less intensive than the full because it can preserve sparsity. This is both due to
the sparsity of in Qαt

and Qβt+1
and thus of Qg

t and the computational cost
of the of (3.25) and (3.26), which is much less than the O(n3) complexity of
the full case. A special chordal case, when Collapse(·;f) is O(n), is when we
choose G(f) as the maximum weight spanning tree of |A|—we call this tsp. We
detail the choice of chordal graphs in Section 3.4, however, typically one can
assume that the computational complexity of the partial matrix inversion of Qg

t

and the collapse operations scales as O(n2), that is, in the worst case we expect√
n cliques of size

√
n. Operating on sparse matrices results in significant gains

in terms of computational time. Although one expects that due to the “less
informative” messages more update steps are needed, there is a very significant
overall gain in speed as shown in Section 4. This clearly comes at the price of
obtaining approximations that are less accurate than in case of full, however
in many large scale applications this loss is not vey significant and one ends
up with an overall advantageous compromise. The static scheduling option can
be viewed as using as replacing the forward-backward to compute the marginal
means and variances with an approximate (faster) forward-backward algorithm.
In the sequential case there is a very significant computational gain since the
linear algebraic operations are now carried out on sparse matrices.
G(f) is disconnected (diag). This case corresponds to the inference scheme

where the temporal messages are factorised. When G(f) is disconnected, Qαt

and Qβt+1 are diagonal, therefore, the temporal messages add no computational
cost. Collapse[·;f ] simplifies identifying marginal means and variances, that is,
it the same as Collapse[·; g]. As a result the partial matrix inversion of Qg

t is
extremely fast and Collapse[·;f ] comes at no computational cost. The computa-
tional cost scales with that of a sparse Cholesky factorisation and thus we expect
it to scale as O(n log(n)3). The static and sequential scheduling strategies have
the same properties as in the chordal case.

The computation is dominated by the number of partial matrix inversions
of Qg

t and ideally, in all inference schemes, we would like to design a message-
passing algorithm which achieves convergence with a minimal number of partial
inversions steps. Clearly, this is not a straightforward problem to solve. For this
reason, we propose a greedy dynamic scheduling where at every step we select
the message that has the largest (last) update, and update both the receiver
and the source of this message be it either qgt,t+1 or qlt+1,j . This is implemented

by (i) keeping track of the updates in each αt,βt,λ
g
t+1,j and λlt+1,j and (ii)

updating all the outgoing messages when updating an approximate marginal
density. The computational saving due to the greedy dynamic scheduling are
shown on the right panel of Figure 7. By constructing longer scheduling queues
(ranking the updates) one can distribute the computation to several processing
units and achieve a further reduction of computational time.
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3.4. Chordal G(f)s and matrix re-orderings

The computational time is dominated by the partial inversion of Qg
t . The com-

plexity of the computation is determined by the choice of G(f). As detailed in
Section 3.3 the structure of Qg

t can range from full in case of full to a minimally
sparse structure in case of diag. In this section we motivate our choices of chordal
G(f)s. We start from the intuition that G(f)s that reflect the spatial connectiv-
ity (finite element grid structure) of the model would be good candidates for the
precision structure of the messages. Note, that as shown in Section 2 and illus-
trated on Figure 1, this grid structure is identical to the sparsity structure S(A)
of the state transition matrix A. Unfortunately, S(A) is not a chordal graph.
In order to define a chordal G(f), we propose to complete S(A) to a chordal
graph by adding the least possible number of additional edges. These additional
edges might not have direct intuitive meaning in terms of the model structure,
however, their use makes inference work and minimises the computational effort.

It is well know that the sparse Cholesky factorisation creates sparsity struc-
tures that correspond to chordal graphs and that the structure of these graphs
as well as the number of additional, so called, “fill in” edges depends on the
row-column reordering methods applied prior to the factorisation [4]. These
sparsity structures of the factors are computed before any numerical evalua-
tions take place and are referred to as symbolic Cholesky factorisation. De-
pending on the sparsity structure of the matrix to be factored, various row-
column reorderings have been proposed to minimise the number of “fill-inn”-s.
We will make use of these properties of the factorisation to complete S(A) to
a chordal graph. Suppose σ is a reordering to be chosen later and that S(L)
is the symbolic Cholesky factor of S(Aσ,σ), the we will use the chordal graph
G(f) = [S(L) + S(LT )]σ−1,σ−1 to define our expectation constraints and the
precision structure of the forward and backward messages. There are several
well-known “fill-in” reducing reordering permutations, in this paper we will use
(i) the approximate minimum degree (amd) permutation, (ii) the symmetric
reverse Cuthill-McKee (rcm) permutation, and (iii) the nested dissection (nd)
permutation.

When performing the Cholesky factorisation and partial matrix inversion of
Qg
t , we consider the same permutation algorithms. We do an empirical estima-

tion of the computational complexity of the Collapse[qgt,t+1; g] and Collapse[qgt,t+1;f ]
steps and we choose the best performing pair of permutations. In the models
we considered the best performing pairs were the amd and nd permutations to
obtain G(f)—from S(A)—and amd for the factorisation and partial inversion
of Qg

t . The latter operation typically dominated the computational time and
amd outperformed the other methods. amd and nd led to structures in G(f)
that resulted in similar computational times (clique size distribution, see Sec-
tion 3.2) in the Collapse[qgt,t+1;f ] step. If none of the above mentioned or any
other chordal completion strategies are satisfactory, one can revert to a different
G(f) or perform the Collapse[qgt,t+1;f ] as most appropriate in his/her model’s
context, see Equation (3.19).

The panels of Figure 5 the sparsity structures of G(f), Qg
t and the corre-
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Fig 5. In illustration of the sparsity structures of the matrices G(f) and Qg
t on a grid

model similar to the one on Figure 1. The panels on the G(f) block show the chordal
completions of S(A) (shown on the off-diagonal of Qg

f ) obtained by symbolic Cholesky
factorisations with various reorderings. The rest of the panels show the structure of
Qg

t for the corresponding choice of G(f) as well as the structure of Cholesky factors
for various reordering applied to Qg

t .

sponding Cholesky factor for various choice of reordering permutations for a grid
structure similar to that in Figure 1. The G(f) group of panels show that no
reordering generates a significantly less sparse than the ones using reordering.
The amd and nd reorderings seem to generate structures with a similar number
on non-zero elements. Note that S(A) is shown on the off-diagonal block of
the Qg

t panels. The rest of the panels show the structure of Qg
t and its corre-

sponding Cholesky factors for the amd, rcm, and nd reorderings. Again the amd

and nd reordering are shown to lead to a similar number of non-zero elements.
Note that diag leads to structures that are significantly sparser and the average
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Fig 6. Running times for various state space sizes and scheduling options. (left) Run-
ning times for the inference schemes full, diag, and chordal schemes none, amd, rcm,
nd and tsp (left panel). Comparison in running times of the sequential (left bar) and
greedy (right bar) scheduling strategies. Local operations refer for the local linear al-
gebra whilst the temporal messages refer to the max-determinant optimisation (right
panel).

number of non-zeros per column in the Cholesky factor is much smaller than in
any other case. This has a significant impact on the performance of the partial
matrix inversion by the Takahashi equations which scale as

∑
j(
∑
i:Li,j 6=0 1)2

[e.g. 24, 2].

4. Experiments

In this section we assess the running times and accuracy of the inference methods
we introduced and show the potential use of this approach through the diag

method in the WikiLeaks Afghan War Diary data studied in [28]. The algorithms
were coded in Matlab and we used the partial matrix inversion algorithm of [7]
which is implemented in the C programming language.

4.1. Accuracy

To assess the accuracy of the different methods we constructed a 1-D grid toy
model with n = T = 64, where at each time point the hidden state at a grid point
becomes an average of itself and its 5 neighbours on either side. Hence the matrix
A is banded with bandwidth 5. Each ek was sampled with an exponentiated
squared covariance with variance 1 and length scale of 5 units (neighbours) -
this describes a correlation which decreases from 1 to 0.1 in 3.4 spatial units.
The algorithms were assumed to have converged when the maximum absolute
change in canonical parameters became less than 10−4.

We generated 150 realisations of this model and assessed the quality using
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Fig 7. Quantile-quantile plots for full and diag with n = 66, 362, 1008 in increasing
order of accuracy (right panel).

two criteria, (i) the mean total square error per time frame (MTSE) defined as

MTSE =
1

T

T∑
t=1

n∑
j=1

(xj
∗

t − x̂
j
t )

2

where x∗t is the simulated realisation and x̂t is the marginal mean at time t,
and (ii) the quantile-quantile bias, defined as

biasq = q − 1

Tn

T∑
t=1

n∑
j=1

[xj
∗

t ≤ x
jq

t ]

where [·] is the indicator function and xj
q

t is the inferred threshold of quantile
q of the approximate marginal, see [25] for details. Friedman tests for repeated
measures [6] found that there were significant differences in both the quantile
bias and the MTSEs in the proposed methods (p < 0.01). Post-hoc tests showed
that diag and the tsp are, as expected, less accurate than the chordal and
full and that there is no significant difference (p > 0.2) between the latter two
in both MTSE and bias. The tsp only slightly outperformed the diag, see Table
1.

Whilst it is hard to generalise conclusions regarding the performance, we do
note a slight decrease in performance of diag and tsp with increasing corre-
lations induced by Q and A; however, in all cases the difference proved to be
small relative to the overall performance of the algorithms. It should be noted
that in this example a damping ε = 0.75 was applied on the temporal messages
of diag to ensure convergence; because of this it was slower than the full and
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full chordal tsp diag

∆MTSE 0 0.000 0.017 0.018

∆qbias 0 3× 10−6 3× 10−4 3× 10−4

Table 1

Algorithmic performance with full as reference

chordal schemes. The good performance of the chordal is also due to the fact
that the banded structure is (already) chordal.

4.2. Running times and scalability

To compare running times, we choose a typical scenario where the latent field
is governed by

dz(s, t) = Az(s, t)dt+ dW (s, t),

z(s, 0) = z0(s),
(4.1)

with W (s, t) being a space-time Wiener process having a covariance operator
Σu(s) =

∫
k(s, r)u(r)dr . The operator A = D∆(·) where ∆(·) is the Laplacian

and we used a circular domain for O with radius r. Temporal discretisation
with ∆t = 0.01 followed by the Galerkin method in conjunction with a row-sum
lumping method [1, 13] was applied to obtain a sparse matrix A with n = 2267
for simulating data with T = 200. We set r = 10, D = 0.2 and assumed that
the discretised precision matrix Q is diagonal with elements 1/15.2 We found
that under this configuration, at stationarity, around 1000 points per time frame
were generated; a typical count for large data sets.

The algorithms were tested on Delaunay triangulations of the domain con-
structed using routines by [19] with varying mesh density, n ∈ {362, 562, 1008}.
Computational times were recorded using Matlab’s profiler. In both the static
and sequential scheduling schemes, λgst+1,· and λlst+1,· messages were run till con-
vergence. To ensure a fair comparison, all test results given here are with com-
putations restricted to a single processor core.3

The computational times for the sequential scheduling are plotted in the left
panel of Figure 7. We segmented the computational times to correspond to the
three main collapse operations: (1) temporal messages stands for the max de-
terminant optimisation problem (overhead in full) (2) overhead accounts for
initialisations, updating messages and monitoring convergence (3) lin-alg logs
the time for linear algebraic operations (Cholesky factorisation, partial matrix
inversion), and (4) non-Gaussian stands for the univariate moment matching.
For clarity, we omit results for the static case which was up to an order of mag-
nitude slower than the second worst-performing method. This slow performance

2This follows when modelling the covariance function k(s, r) =
∑

i φi(s)φi(r)λ̃i =
φ(s)TΛφ(r).

3All algorithms were tested on an Intel R©
CoreTMi7-2600S @ 2.80GHz personal computer with 8GB of RAM.
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Fig 8. The mesh and one time-slice log intensity map corresponding to the AWD on
the first week of October 2009.

is attributed to the number of iterations required for convergence, which is more
than the number of forward-backward cycles required by the full.

The left panel in Figure 7 shows that, for small n, the full inference scheme
is faster than the other schemes due to the fact that it is implemented more
efficiently in terms of matrix operations. However, the situation changes for large
n and for n = 1008, where we see that the full is slower than the best chordal
methods and much slower than the tsp and diag. Note that the increase in
computational time is well below cubic and at most quadratic for all methods
other than the full. We could not run the full for larger n due to memory
restrictions. As shown in the centre panel of Figure 7, in this case the increased
speed does not come at a loss in distributional accuracy and despite the data
being simulated at n = 2267 quantification of uncertainty at n = 1008 is very
good for all methods. This was unexpected given the correlations induced by A;
at this stage it is not yet clear to which extent the performance of the diag

varies with the parameters of the system.
A small note is due on the speed-ups made possible when using greedy

scheduling, as opposed to sequential scheduling (see right panel in Figure 7).
Although the scheduling itself does not affect the scaleability of the algorithm,
it can be seen that, as expected, the greedy scheduling can drastically reduce
the computational time. For instance, after the initial forward-backward, the
full needed only a few factor updates to achieve convergence within tolerance.

4.3. The Afghan War Diary

Zammit-Mangion et al. (2012) introduced point-process modelling methods for
conflict and employed an algorithm similar to the full described here in an
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iterative state-parameter update scheme on the WikiLeaks Afghan War Diary
(AWD). However modelling of micro-scale effects such as relocation or escalation
diffusions in conflict [22] were not possible at the resolution considered; whilst
an average basis there had a scope on the order of 100km, conflict diffusions
are observed at resolutions of ≈10km. The scope here is to show that we can
perform inference on the required spatial and temporal scales.

We assembled a mesh on Afghanistan using population density as a proxy
for mesh density. The resulting construction, shown in Figure 8 has the largest
triangles with sides of 22km and the smallest ones with sides of 7km. The total
number of vertices amounts to n = 9398 in a system with T = 313 time points
(weeks). We constructed A from the diffusion equation above with D = 1×10−4

with latitude/longitude used as spatial units. σ2
w = 0.2 was taken as rough value

from the full joint analysis using a low resolution model, see [28] for details.
We carried out inference in the AWD with the diag algorithm. A characteris-

tic plot showing one week of the conflict progression (first week of October 2009)
is given in Figure 8. At this point in the conflict activity in the south in Helmand
and Kandahar was reaching its peak and conflict at the Pakistani border was
intensifying considerably. The insets show how detailed inferences can be made
- note that here we have employed fixed hyper-parameters; spatially-varying
smoothness as in [13] may be introduced in the model with relative ease. Infer-
ence completed in just over 5 hours on a standard PC and consumed only about
4GB of memory. This performance implies that, with appropriate exploitation
of clustered/distributed computational resources, full state-parameter inference
of very large systems can be carried out in considerably shorter timescales and
with potentially less resources than previously envisioned.

5. Conclusions

In this paper we have presented a family of EP inference methods for spatio-
temporal log-Gaussian Cox process models; the algorithms are based on ap-
proximate inference methods using expectation constraints. We show how the
sparsity in the underlying dynamic model can be exploited in order to overcome
the limitations in the standard forward-backward and block inference schemes
which can become expensive w.r.t. both storage and computation for large n
and T . Our approach is applicable in any similar sparse latent linear dynam-
ical model. For the models we studied, diag is faster but less accurate than
chordal. The inference schemes using messages with chordal precision struc-
tures can serve as a compromise in complexity between schemes using diagonal
and full precision matrix structures.

In the future we intend to explore the set of structures that lie between the
fast and less accurate spanning tree and the somewhat larger chordal structures
employed in this work. We are currently working on including parameter infer-
ence and correction methods [2] in the methodological framework; this will be
addressed in a follow-up paper.
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