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We introduce data assimilation methods for estimating past equilibrium states of the climate and environment. 
The approach combines paleodata with physically-based models to exploit their strengths, giving physically 
consistent reconstructions with robust, and in many cases, reduced uncertainty estimates.

Those seeking to understand the 
Earth’s past usually take one of two 

approaches: reconstructing paleocli-
mate and paleo-environmental states 
from proxy data derived from natural 
archives such as ice cores and trees; 
or simulating them with earth system 
models that contain theoretical knowl-
edge of physical processes. 

Proxy-based reconstructions are 
based on observations of the real world, 
but most consider data points indepen-
dently rather than accounting for cor-
relations in space, time and between 
climate variables. Therefore they risk 
being physically inconsistent. Models 
incorporate aspects of physical consis-
tency, but are imperfect and are tested 
during development only with present 
day observations. 

Data assimilation produces “best-
of-both-worlds” estimates that combine 
observational and theoretical informa-
tion while not ignoring their limita-
tions. We discuss data assimilation for 
estimating past equilibrium states of 
the earth system such as climate and 
vegetation. We use the term “paleodata” 
for measurement-based data: either the 
observations of proxies or the statistical 
reconstructions derived from them. 

Aims and methods
Equilibrium state, or “time slice”, data 
assimilation is estimation of a snapshot 
in time during which it is assumed the 
state variables are not changing. The 
state estimates may be the primary sci-
entific aim or simply a “bonus” of cali-
brating model parameters (Annan et al., 
this issue).

Time slice estimation is a natural 
starting point in data assimilation be-
cause it is more straightforward than es-
timating a transient state (Brönnimann 
et al., this issue) and is particularly ap-
propriate if spatial patterns are more 
important than temporal changes or if 
the model is computationally expen-
sive. For a given computational resource 
time slice estimation permits more 

complete exploration of model uncer-
tainties in parameters, structure, and 
inputs. Another advantage of a focus on 
time slices is that for eras studied by the 
Paleoclimate Model Intercomparison 
Project (PMIP) relatively large quantities 
of paleodata and simulations are avail-
able. Most data assimilation estimates 
of equilibrium paleo-states are there-
fore of the Last Glacial Maximum (LGM: 
21 ka cal BP), the most recent era for 
which annual mean climate is substan-
tially different to the present that also 
has a long history of study by PMIP. 

We use model simulations in pa-
leo-state estimation because models 
provide links across different locations, 
times (relevant to transient or multi-
state estimation) and state variables. 
This has two advantages: it helps ensure 
the resulting state is physically consis-
tent, and it also means we are not limit-
ed to assimilating the same variables we 
wish to estimate. We could assimilate 
data in one place to estimate another, or 
assimilate temperature data to estimate 
precipitation, or assimilate variables 
corresponding to the outputs of a mod-
el to estimate variables corresponding 
to the inputs. The last are termed “in-
version” methods, such as estimating 
atmospheric variables or terrestrial car-
bon from paleo-vegetation records (e.g. 
Guiot et al. 2000; Wu et al. 2007; Wu et 
al. 2009; Pound et al. 2011) or estimat-
ing oceanic variables from paleo-tracer 
records (e.g. LeGrand and Wunsch 1995; 
Roche et al. 2004).

Data assimilation requires the fol-
lowing ingredients: paleodata with un-
certainty estimates, simulations with 
uncertainty estimates, and a metric to 
quantify the dissimilarity, or “distance”, 
between the two. Climate state esti-
mates are obtained by searching for the 
simulation(s) closest to the paleodata 
(“optimization”) or calculating a weight-
ed combination of the two (“updating”). 

Distance is usually measured with 
the standard metric for normally dis-
tributed model-data differences, i.e. the 

sum of squared differences weighted 
by the uncertainties, though some use 
ad-hoc or fuzzy metrics (e.g. Guiot et 
al. 2000; Wu et al. 2007; Gregoire et al. 
2010). For non-continuous variables, 
for example with a threshold, variables 
must be transformed or a non-Gauss-
ian metric chosen (e.g. Stone et al. 
2013). 	

Optimisation methods search for 
the simulation with the minimum dis-
tance from paleodata. One approach 
uses numerical differentiation of the 
model with respect to the parameters, 
essentially least-squares fitting of a line 
or curve to one-dimensional data (e.g. 
LeGrand and Wunsch 1995; Gebbie and 
Huybers 2006; Marchal and Curry 2008; 
Burke et al. 2011; Huybers et al. 2007; 
Paul and Losch 2012). Another approach 
generates an ensemble of simulations 
using many different parameter values 
and then selects the members with the 
smallest model-data distance (“per-
turbed parameter ensemble” methods; 
e.g. Gregoire et al. 2010).

Updating methods combine model 
and paleodata estimates. Typically the 
model estimates are generated with a 
perturbed parameter ensemble, which 
permits well-defined sampling of pa-
rameter uncertainties; the model esti-
mates are reweighted with the model-
data distance using Bayesian updating 
(e.g. Guiot et al. 2000; Wu et al. 2007; 
Wu et al. 2009; Holden et al. 2009; 
Schmittner et al. 2011).

Interpretation
Figure 1 illustrates some strengths of 
data assimilation. The model propa-
gates information from LGM surface 
air temperature (SAT) reconstructions 
over land to other regions, and to sea 
surface temperatures (SST). In this ex-
ample assimilating SAT reconstructions 
produces an SST estimate with a warm-
ing at the LGM in the northern North 
Atlantic, which is consistent with the 
SST reconstructions. Uncertainties are 
reduced relative to the model estimate 
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in most locations (grayed out areas are 
reduced).

How should we interpret assimi-
lated paleo-states? Optimization meth-
ods select a single best simulation so 
the state estimate is physically self-
consistent according to the model. But 
the state estimate from updating meth-
ods is a combination of multiple model 
simulations and paleodata, therefore 
interpretation requires more care. An 
ensemble mean anomaly of zero might 
correspond to a wide spread of posi-
tive and negative results; this would 
be reflected in large model uncertain-
ties. A spatially coherent signal with 
small uncertainty might emerge from 
an ensemble after assimilating a single 
“pinning point” from paleodata; this sig-
nal should be physically consistent be-
cause it arises from the model physics. 
Such considerations are common to all 
multi-model ensemble summaries and 
reanalyses.

For statistically meaningful results 
it is essential to use a distance met-
ric grounded in probability theory, i.e. 

corresponding to a particular distribu-
tion of model-data differences (“likeli-
hood function” in Bayesian terms). This 
might preclude the use of non-standard 
variables such as biomes.

Data assimilation is a statistical 
modeling technique and should be 
evaluated. Testing the method with 
pseudo-paleodata can help avoid the 
(literal) pitfalls of finding local rather 
than global minima in high-dimension-
al spaces.

Future directions
Data assimilation is a formal method 
that not only highlights model-data 
discrepancies but also corrects them. It 
can be challenging, because it requires 
a process-based model and reliable esti-
mation of uncertainties for both paleo-
data and simulations. 

For paleodata, difficulties may arise 
from dating and time averaging. But im-
provements in estimating reconstruc-
tion uncertainties can be made by us-
ing forward modeling approaches (e.g. 
Tingley et al. 2012). These approaches 

allow greater freedom in specifying the 
behavior of climate-proxy relationships 
(such as nonlinearity and multi-modal 
uncertainties) and enables uncertain-
ties to cascade through the causal chain 
to allow full probabilistic quantification 
of the unknown state. Using physically 
-based forward models for reconstruc-
tion, i.e. data assimilation, incorporates 
information about the relationships 
between locations, times and variables 
and therefore minimizes the risk of 
physical implausibility. The long-term 
goal may be forward physical modeling 
of the whole causal chain from radiative 
forcings to proxy archives (e.g. Roche et 
al. 2004; Stone et al. 2013).

For paleo-simulations, we do not 
need models to be complex or state-
of-the-art, but we do need to estimate 
their uncertainties. If they are complex 
it is difficult to generate their deriva-
tives with respect to the parameters. 
If they are expensive it is difficult to 
sample, and therefore to assess, their 
uncertainties. Thoughtful experimental 
design with statisticians, and perhaps 
also statistical modeling of the physi-
cal model (known as “emulation”; e.g. 
Schmittner et al. 2011), can help in this 
regard. A research priority is to estimate 
the discrepancy between a model and 
reality at its best parameter values, and 
how this varies across different eras. 
New updating methods are emerging 
that use the PMIP multi-model ensem-
ble to explore structural uncertainties. 
For example, Annan and Hargreaves 
(2013) use the linear combination of en-
semble members that best matches the 
paleodata.

These challenges are worth tackling 
for the substantial benefits. Information 
from paleodata can be extrapolated to 
other locations, times and state vari-
ables, and uncertainties are smaller (or 
at worst, the same) than those of the 
individual model or proxy-based esti-
mates.
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Figure 1: LGM annual mean temperature anomalies from: A) surface air temperature (SAT) reconstructions based 
on pollen and plant macrofossils (Bartlein et al. 2010);  B) sea surface temperature (SST) reconstructions based on 
multiple ocean proxies (MARGO et al. 2009);  C, D) simulations from the HadCM3 general circulation model (mean 
of 17 member perturbed parameter ensemble; Edwards, unpublished data). Data assimilation estimates generated 
by updating with SAT reconstructions (E, F), and both SAT and SST reconstructions (G, H). Gray areas indicate 
regions with low signal-to-noise: magnitude of temperature anomaly is less than 3σ of uncertainty estimates.


