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Summary	

Recent studies of the sources and extent of variability 

in life cycle assessments of the climate impact of 

information and communication technology (ICT) 

have highlighted a need to further investigate the 

uncertainty related to the energy consumption during 

ICT operation. We use an improved, more accurate 

model to analyze the energy footprint of the audience 

of a major online newspaper, which allows for the 

development of tools to monitor the energy 

consumption of ICT in real time. We identify the 

footprint of consuming news with various types of 

access devices and quantify the impact of behavioral 

parameters on the overall footprint. Previous 

estimations of national and global consumption 

assume average values for all subcomponents. Our 

results indicate that previous analyses based on 

average figures for laptops or desktop PCs predict 

values that are too high for national or global digital 

media power consumption. Additionally, we identify 

which components contribute most to the total use 

phase energy consumption and which should be 

focused upon in any life cycle assessment of digital 

services. We find the origin data center to contribute 

between 4 to 46% of the total energy budget when 

reading news articles and between 2 and 10% when 

watching video content. Similarly, we find that user 

devices contribute between 6 and 90% and 0.7 and 

77% when consuming articles or video content, 

respectively. 

DISCLAIMER: This is a pre-press version of the text. 

The definitive version is available at 

www3.interscience.wiley.com. 

Introduction	

The climate change impact of ICT has been studied by 

the academic community for some time, for example 

most recently by Malmodin et al. (2010) and Weber 

et al. (2010a); it is also attracting increasing interest 

from the public (Greenpeace 2012). Attributional life 

cycle assessment (LCA), the quantifying of 

environmental impacts resulting from the creation, 

use and disposal of a product or service, has played a 

key role in this analysis. A recent study by Weber 

(2012) of the sources and extent of variability in life 

cycle assessments of a server computer has identified 

the use phase energy consumption to be the most 

uncertain. The observation that the variability in the 

use phase is very high has also been made for end 

user devices (Beauvisage 2009). 

The International Reference Life Cycle Data System 

(ILCD) Handbook distinguishes between variance as 

the degree of stochastic uncertainty in a single 

process within an LCA and variability as the single 

representation of multiple processes and systems 

with differing impact (EU JRC - Environment and 

Sustainability 2011). When faced with variability in a 

process flow, an LCA practitioner has a choice 

between a more detailed process model, which will 

require commensurately more acquisition of 

associated data, or a less detailed model, which takes 

an ‘average’ or ‘prototypical’ process and data set, 

concealing the underlying variability. The latter 

approach has the advantage of being easier, but may 

reduce the accuracy of the assessment and hide 

potential interventions.  

In this paper we present an analysis of energy use in 

the delivery and consumption of online digital news 

content per individual, with particular reference to 

the variability that occurs in the delivery of the 

service. To do this, we have developed a model of 

digital service delivery that is significantly more 

detailed than prior art, and gathered associated data 

from new primary and secondary sources.  The model 
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covers the use phase including the dynamic creation 

and delivery of content from a distributed set of data 

centers, transmission of content through routers, 

switches, and cable (‘the Internet’), delivery of 

content through the user access network and 

consumption of content on user devices. Regarding 

the access network, we consider connectivity via 

digital subscriber line (DSL) modems in combination 

with domestic wireless network (WiFi) and third 

generation mobile networks (3G). The model we have 

developed, and much of the associated data, is of 

general applicability to digital services. Our analysis is 

focused on a specific case study: the provision of the 

multimedia website by Guardian News and Media Ltd 

(GNM).  The functional unit we adopt in this paper is 

10 minutes of content browsing, and we explore the 

impact of variability in content type (video and 

webpage), end user device (desktop, laptop, tablet, 

and smartphone), access network, geographical 

location and browsing behavior on overall energy use. 

Regarding the latter, we consider the impact of 

varying the speed of changing between web pages. 

We present results for a number of scenarios 

exploring the impact of this variability and variance 

within each scenario modeled, using a Monte Carlo 

approach, and identify how the significance of 

different components of delivery and consumption 

alters between scenarios.  

This work contributes to state-of-the-art energy and 

carbon footprinting of ICT in a number of ways. 

Firstly, the model of energy use by digital services we 

present is both more detailed than previous studies 

and more complete in its ability to capture and 

distinguish between different usage scenarios. 

Secondly, using the primary and secondary data we 

have gathered, we present the first detailed analysis 

of a diverse set of scenarios for digital media 

consumption, and so update and complement 

existing studies of the environmental footprint of 

digital media. Thirdly, we present novel 

methodological advances in the modeling of digital 

services – specifically the use of Monte Carlo 

simulation to draw from alternative sub-scenarios 

rather than error estimates, and our discussion of the 

appropriateness of different allocation methods for 

different components of digital delivery. Fourthly, we 

present initial results that can be used for simplified 

analyses of digital services.  

Our analysis of a large set of typical scenarios of 

digital online media consumption provides results 

that can be compared to several previous studies. The 

existing studies vary in the degree to which they apply 

bottom-up or top-down models for the majority of 

the life cycle processes. Our own model and others 

(Moberg et al. 2010; Chandaria et al. 2011; Williams 

2011; Baliga et al. 2009)  apply bottom-up models in 

as far as they calculate the energy consumption from 

the additive impacts for the most impactful processes 

per functional unit. On the other hand, in studies that 

mostly apply top-down models, such as Taylor and 

Koomey (2008) and Koomey et al. (2009), the 

measured or estimated total aggregate impact of an 

entire (sub-)system is related to the total number of 

functional units provided by the system. The result of 

both top-down and bottom-up allocation is an 

average value for impact per functional unit, yet only 

the bottom-up model contains data about the 

elementary life cycle processes. Our work draws from 

these studies but goes beyond them in several ways. 

Firstly, while they use aggregate data and 

assumptions regarding the average or typical user, we 

model the variability explicitly in a number of 

scenarios. Secondly, we use a Monte Carlo approach 

to account for both variance and variability within 

each scenario. Thirdly, we present a principled 

approach to the allocation problem as applied to 

digital services and make use of it in our model.  

To our knowledge, ours is also the first study that 

relates the footprint of 3G networks to a functional 

unit of a media service. Although Scharnhorst et al. 

(2006) and Stutz et al. (2006) both provide an LCA 

assessment of a 3G cellular wireless network, their 

functional unit is that of a year’s mobile service. At 

this level of aggregation their results cannot be 

related to a single media service similar to our 

functional unit. Toffel and Horvath (2004), on the 

other hand, analyze the energy footprint of 

downloading newspaper content to a handheld 

reader via a mobile network but do so for a 2G 

wireless network. They  

Figure 1 System Boundaries. 

reference the total energy consumption of the 

wireless network based on an LCA study from 1999 

and relate it in top-down fashion to the total number 

of subscribers in the network. The most widely 
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referenced top-down model of the energy footprint 

of Internet data transfer is presented by  

Taylor and Koomey (2008) in a study of the impact of 

web advertisements and we compare its results to 

those derived from our model in the discussion. The 

findings by Taylor and Koomey (2008) are applied by 

Teehan et al. (2010) in a top-down model that is used 

to analyze the total energy consumption in the U.S. 

for a variety of tasks, assuming that user behavior in 

the U.S. is similar to survey data from France 2005-

2006. They do not capture the wide variability in the 

energy footprint resulting from individual user 

behavior and variability in the power consumption of 

devices.  

This paper is structured as follows: in the next section 

we present the system model in abstract and identify 

suitable allocation approaches for individual 

subsystems. This section is followed by a description 

of the most significant model parameters. In the 

subsequent section we present the results of the 

analysis. In particular, we demonstrate variance and 

variability between scenarios of device, service type 

and access network combinations. We close with a 

discussion and conclusion in the final section. 

Models		

Broadly four categories of devices are involved during 

the use phase of a digital service. Firstly, data centers 

consisting mainly of servers but also of networking 

and storage 

infrastructure provide 

the service content. In 

the case of GNM, this 

content is split between 

origin servers belonging 

to the organization itself 

and a number of third 

party servers.  These 

either provide additional 

content such as 

advertising, or belong to 

content delivery 

networks (CDNs), which 

cache content in 

different regions around 

the world to improve 

service performance.  

Secondly, the devices that make up the edge and core 

networks of the Internet, used to transport data from 

its sources to the end user. Thirdly, the access 

network used to link the user’s device with the 

Internet, and finally the user’s device itself. Figure 1 

captures this in a process model. Not included in our 

assessment is the impact of software development 

activities and editorial work. Our collaboration with 

GNM allows us to use primary data for many but not 

all processes.  

Our functional unit is 10 minutes of browsing, during 

which we assume the user issues one or more 

requests for content. Each such request involves 

opening an individual uniform resource locator (URL) 

with the web browser. The energy consumption for 

each individual request is the sum of the consumption 

by the four subsystems in the delivery model. The 

energy footprint for the functional unit is the sum of 

the energy consumption of all requests issued during 

the time of the functional unit. Not included in this 

energy footprint is the energy consumption of other 

life cycle phases, notably the manufacturing of the 

devices. In the remainder of this section we will 

present the model in detail, starting with the 

allocation technique for shared IT infrastructure: the 

origin servers of the content provider, third party 

servers and the Internet. We will then look at the 

energy consumption of the network connection 

between the servers and the end user. Finally, we will 
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discuss the energy consumption of the end user equipment itself. 

Allocation	 Approaches	 for	 Digital	

Products	

A key methodological decision in LCAs is made during 

the allocation of environmental burden, which is 

defined as the act of  “partitioning the input or output 

flows of a process or a product system between the 

product system under study and one or more other 

product systems”  (ISO 2006). In this section, we 

consider alternative allocation approaches possible 

for digital products, and discuss their appropriateness 

in different situations. In the case of digital products, 

allocation is necessary for two reasons. Firstly, 

equipment use may be shared between multiple 

users, such as a content server providing web pages 

to many people, or a digital subscriber line 

multiplexer providing broadband connections to a 

number of households. Secondly, equipment may be 

used for multiple services, such as a physical server 

running multiple virtual machines, or a domestic 

laptop providing web access as well as email, playing 

music and many other applications. 

The ILCD Handbook distinguishes between two 

approaches to allocation. The preferred approach, 

physical causality, allocates burden based on the 

share of some physical (or other) flow that is directly 

related to the environmental burden generated (EU 

JRC - Environment and Sustainability 2011). The 

second approach is to use some other relationship, 

such as economic activity. 

We consider three approaches to allocation for digital 

services: 

1. Data flow. In the case of digital services, there is 

no clear ‘physical’ flow to study, but there is a 

flow of data. Allocation can take place based on 

the share of data passing through an energy-

using device. This approach is adopted by Lee et 

al. (2011) and Baliga et al. (2009), which 

considered both energy consumption by Internet 

routers and home access network devices. 

2. Number of users. If a device is shared between 

services offered to a number of users, the energy 

can be allocated equally to each. 

3. Service ‘attention’ time. If a user is using a given 

device for a number of services, energy usage by 

the device can be allocated based on the amount 

of time the user spends using the different 

services. 

None of these cases correspond to the preferred 

approach of physical causality because energy usage 

of devices does not vary directly proportionally to 

data flow, users or services being used. We discuss 

this in more detail for each device in subsequent 

sections.  To determine which approach to use we 

adopt a principle of allocating based on which of 

these is the limiting factor to device usage – namely 

the factor which, if increased, would first limit or 

degrade the quality of service. In the case of most 

network devices, this is usually bandwidth. Similarly, 

video, audio or image content servers such as those 

used by CDNs conduct relatively little computation 

and are limited by their capacity to transmit data at 

speed. In the case of a DSL multiplexer, on the other 

hand, which is used to provide access to the Internet 

for a number of premises, the limiting factor is the 

number of connections it can provide, and therefore 

the number of users it supports. Also, in the case of a 

web server, the limiting factor is the computational 

power required to construct pages rather than the 

speed of data it outputs. Finally, in the case of a user 

device, the limiting factor is usually – but not always – 

the user’s attention: the device could easily run more 

applications, but the user would only be able to make 

use of a limited number at a time. In addition to the 

limiting factor, we allocate along that dimension 

which, if changed – given current levels of typical 

utilization – would result in the most significant 

change in the energy consumption. For user devices, 

for example, one such choice is between data volume 

received and time of service consumption. In the case 

of most online multimedia services, and in particular 

online news, a reduction or increase in the device 

operation time will result in a much greater change in 

the energy consumption of the service than a change 

in the data volume transferred. In the remainder of 

this section we formalize the allocation of energy 

consumption for each system component beginning 

with the network devices. 

Within the time interval of the functional unit, the 

user issues one or more requests for a URL each 

corresponding to a separate web page. For each 

request a browser opens several connections to 

servers to retrieve all resources referenced in the 
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HTML document such as images and JavaScript. In the 

connection between the end user device and the 

server, data travels through the network via a 

sequence of redundantly operated routers, 

sometimes referred to as network hops. These 

devices are operated with at least dual redundancy in 

order to cope with failure. They forward the data of 

several users, not all of which will be consuming 

content from the Guardian; hence, we need to 

allocate the total power consumption of the router to 

the functional unit. 

By application of the allocation principle of the 

limiting factor, explained above, we allocate to each 

network hop an amount of energy �� as a fraction of 

the total energy consumption of the device ��  

relative to the ratio of the data volume transferred 

for the individual connection �� to the total amount 

of data that the device serves ��:   

 �� � ����/��  (1)  

The total data volume that is served by a device is 

equal to its throughput of data � over time 	: 

 �� � 
 ��	� 
(2)  

The throughput � depends on the utilization  of the 

devices’ maximum throughput capacity � integrated 

over time 	. The utilization typically changes in a 

cyclical pattern over the time of day � so that  

��	, �� � ����	. We assume that the utilization is 

relatively constant during short timespans of 

processing an individual customer request which is 

usually less than a few milliseconds. The energy per 

hop �� allocated is then:  

 �� � ��
������
� ⋅ ��� 

(3)  

During its operation a device draws a minimum of 

power ��  when idle, which increases depending on 

the level of utilization  of its components up to a 

maximum �� . Formally, we define this with a function 

��� which ranges from 1 to ��/��:  

 ��� � �����  (4)  

Let �� , ��, and � be the power draw per hop, its 

throughput capacity and its utilization, respectively. 

Additionally, all industrial grade power consuming 

network equipment requires cooling and power 

transformation, the losses of which are commonly 

denoted as power utilization efficiency (PUE). Then, 

the energy consumption for the data transport of the 

functional unit �� 	over the all hops in the route � is 

defined as:  

 �� � 2�� � 	
��∈�

���
�����

��� !"#$�% 
(5)  

where ��� !"#$�% denotes 	the overhead for cooling 

and power transformation and the factor 2 accounts 

for redundancy. 

Regarding the servers, we distinguish between the 

origin servers (at GNM) and third party servers such 

as CDNs, advertisement and analytics services. At the 

origin data center at the GNM, the energy 

consumption of each origin server �& and the 

supporting networking infrastructure and storage 

devices in the data center � !" and �'"$�()!  can be 

measured directly. In the case of the origin servers at 

GNM, the energy per request was found to be 

relatively independent of its data volume. In other 

words, the limiting factor is the number of pages 

requested and we therefore allocate power 

consumption uniformly between all requests * served 

during a measurement interval. Including the 

overhead for cooling and power transformation, 

���$�+)+ , which is an independent value for each 

data center, the energy consumption per connection 

to an origin server �, is thus:  

 �, � -∑��&�� / � !" / �'"$�()!0 
1
* ���,�+)+  

(6)  

The power consumption of third party servers cannot 

be measured directly and must be estimated based 

on available public data. Below, we estimate a 

volume-dependent coefficient 2 of energy per data 

volume which is the only feasible allocation principle 

given the few available data on energy consumption 

of CDN servers. Each browser request for a URL 

results in multiple connections to third party servers. 

The total energy per request from third party servers 

is the product of 2 and sum of the data volume �� 

transceived for all connections of a request between 

a customer and the third party sources:  

 �34 � 2�� � 2 � ���
+∈5�$  !6"+$ '7

 (7)  

Next, we present the model for the mobile and wired 

access network. A mobile access network is 

composed of a set of base stations that provide a 

radio signal to smartphone client devices. The base 

stations are connected to the edge network via a 
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mobile service center. A base station provides signal 

coverage in a cell of a limited area. Multiple users can 

be connected to the same base station concurrently. 

In modern base stations, unlike network routers, 

power usage is affected by the load at a given time in 

two ways. At phases of sufficiently low utilization, 

power saving features can yield a substantial 

reduction of the base station’s power draw (Ericsson 

2007). If the utilization exceeds that threshold, the 

energy elasticity of a base station becomes very low 

(Eunsung Oh et al. 2011), to the degree that in the 

context of this work we consider it static.  

Mobile voice services require a constant bandwidth 

per user and thus the limiting factor is the number of 

users that can be served with the available base 

station capacity. Data services, on the other hand, 

vary significantly with regards of the bandwidth they 

consume and a single user can potentially consume 

the total available bandwidth of a base station (Julius 

Robson 2011), hence the limiting factor of a base 

station is its data throughput capacity. Given 

��& , ��& , �& and ����&, a base station’s power 

draw, data throughput capacity, utilization and 

overhead for cooling and transformation respectively, 

and the total data volume per request ��, then the 

energy consumption by the base station per request 

��&  is calculated as: 

 ��& � ��&�u�
��& ⋅ �&

������&  
(8)  

There are several alternative domestic wired 

broadband access network technologies available, 

such as DSL, cable or fiber-optic, of which DSL is the 

most popular in OECD countries (OECD 2011). A DSL 

connection requires two types of equipment:   

• A terminal unit such as a DSL Access Multiplexer 
(DSLAM) with a power consumption ��9   that 
provides Internet connectivity to a number  :�9 
of users. The DSLAM requires active cooling and 
high voltage power transformation the overhead 
of which we capture with a PUE factor ���;!". 

• A DSL modem at the user’s premises, which is 
frequently connected to a wireless router. We 
denote the sum of the power consumption of all 
network equipment at a given user’s premises as 
��<=  and the number of users connected to them 
as :�<=. 

DSLAM have a fixed capacity similar to Internet 

routers. The former, however, are hard-wired to a 

limited and fixed number of subscribers in contrast to 

Internet routers, which transport data from a 

changing number of users. We allocate the power 

consumption of the DSLAM uniformly among the 

subscribers and calculate the energy consumption 

based on service consumption time. We formally 

define the energy consumption of the access network 

�>;  as the product of the time of service 

consumption 	& and the sum of the power draw of 

each device type listed above: 

 �>; � 	& ?��<=
:�<=

/ ��9
:�9

���;!"@ 
(9)  

The access network devices are connected to end 

user computing devices such as smartphones, tablets, 

laptops or desktop computers. We do not consider 

the power consumption of printers, scanners and 

other peripheral components that can potentially be 

powered on during browsing.  

The energy consumption by the end user device is not 

primarily constrained by the data volume and the 

time for the reception of that data. With broadband, 

Internet text webpages and video buffers are often 

received within a few seconds, after which the 

connection to the server is paused. Instead, the 

energy consumption by the user’s device is primarily 

dependent on the time that users spend on 

consuming the content, hence we allocate energy by 

time. Note that user devices as well as home network 

equipment are often kept in idle mode during 

significant periods of time and continue to consume 

energy, the impact of which we exclude from our 

model but consider in the discussion. 

The base power consumption of end user computing 

devices ��AB fluctuates with the level of usage as 

described above in eq. 4. Carroll and Heiser (2010) 

find that this also is the case for smartphones. Hence, 

the energy consumption of the user device �9C is the 

product of its power consumption and the time 

during which the service is consumed 	&:  

 �9C � ���AB	& (10)  

 

Model	Parameters		

In the following section we present a 

parameterization that allows calculating an energy 

footprint for a media service provided by Guardian 

News and Media. The main model parameters are 
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power consumption values, throughput capacity and 

operational use time of servers, network devices and 

user devices. We will look at each parameter in turn 

and discuss possible sources for values and variability. 

Firstly we consider the GNM data center. GNM 

operates virtualized blade servers that are arranged in 

a tiered array of 25 blades, each of which has a power 

consumption varying between 140 and 300 watts 

(Beckett and Bradfield 2011) from base to peak load. 

Apportioned to the relative number of monthly 

visitors, this number of servers is similar to that 

reported for the German online magazine stern.de 

(heise Verlag 2011). The average number of pages 

served per second from all servers ranges from about 

40 to 200 with a trough during the early morning 

(Wood 2012). Also from internal data we know the 

load of the servers typically varies between 15 and 30 

percent, which is in agreement with typical utilization 

of data centers as presented by Barroso and Hölzle 

(2007). Network and storage equipment in the data 

centers are often shared between independent parts 

of organizations which necessitates allocation 

decisions. In order to assess the impact from varying 

the allocation of this equipment we sample this 

contribution from a triangular distribution between a 

minimum of 10%, a maximum of 30% and a mode 

value of 15% overhead each. For the additional 

overhead from cooling and power transformation 

���,�+)+  we apply a distribution based on the 

values from Bertoldi (2010) between 1.25 and 2.86 

(see appendix figure 12 for more details).  

The GNM commissions several CDNs, of which 

Akamai delivers the largest data volume for pages 

without video content. Akamai reports an annual 

carbon footprint of 8 kg CO2-eq/Mbps (Akamai 2010) 

and a carbon intensity of 0.59 kg CO2-eq/kWh, an 

average of 40% idle power consumption (Energy Star 

2011), and an average utilization of servers of 80% 

(Akamai 2010). Based on these values, we estimate 

the energy consumption per data volume to be 

2.14 ⋅ 10GH IJKLM NO	⁄  (J/b). This is roughly five times 

less than the value reported by Google for Youtube 

servers (1.33 ⋅ 10GR S N⁄ , assuming bit rate of 900 kilo 

bit per second (kbps) (Google 2011) and more than 

five times the value of 4 ⋅ 10GT S N⁄  assumed by 

Chandaria et al. (2011). Given the discrepancy 

between those values we do not make additional 

assumptions about the possible variation of energy 

efficiency from changing utilization over the time of 

day.  

A note regarding the usage of units for energy 

consumption: in the existing literature, values of 

energy consumption have been presented in joules 

and watt hours. Given that the numeric values per bit 

are already very small, we use joules in this text.  

Our network model, defined in eq. 5, is a bottom-up 

model that needs to be parameterized with the 

number of hops in the connection between a server 

and the user. The alternative modeling approach of 

top-down modeling, in the case of the core network, 

estimates the energy efficiency of a single service 

from the total energy consumption of the entire 

network and apportions it to all services delivered. 

Both approaches arrive at different values, and we 

discuss the discrepancy between top-down and 

bottom-up models in more detail below. During the 

Monte Carlo simulation, we evaluate the impact of 

these different assumptions by sampling from a 

triangular distribution. The minimum and mode 

values of 4.5 and 10.5 joules/megabit (J/Mb) are 

based on a bottom-up model which we present in 

detail elsewhere (Schien et al. 2012). For the 

maximum value we apply a value of 36J/Mb based on 

a top-down model (Malmodin et al. 2012). 

The power consumption per subscriber by the DSLAM 

was assumed to be around 2W by several studies 

(Aleksic and Lovric 2010; Lee et al. 2011; Baliga et al. 

2009). In addition to that prior research, our own 

measurements also find that the power consumption 

of DSL modems is approximately 5 watts. Separate 

WiFi routers have a similar power consumption, as 

measurements for the new Energy Star rating of small 

network equipment indicate (Energy Star 2012a). We 

assume a home setup of a single wireless router and 

single DSL modem with both being actively used for 

the same time as the end user devices. 

The energy efficiency of cellular wireless networks 

varies strongly with the allocation of the energy 

consumption for cell subscription required to receive 

calls. In our Monte Carlo simulation we apply a 

triangular distribution with a maximum value of 328 

J/Mb, which is based on uniform allocation of total 

power consumption to data packets. For the mode 

and minimum of the distribution we apply values that 

are based on the allocation of the instantaneous 
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power consumption of the base station and the data 

rate per subscriber. We apply 54.36 J/Mb as the 

mode and 13.29 J/Mb as the minimum, which are 

based on a power consumption of 460W per 

subscriber and a data rate of 11Mb/s and 45Mb/s for 

High Speed Packet Access, a third generation cellular 

network evolution from Deruyck et al. (2010). The 

minimum and mode value also include an overhead of 

1.3 to account for the energy consumption of the 

remaining parts of the cellular network in addition to 

the mobile base station. This is based on the yearly 

energy consumption of 4.177GWh for the whole 

network of the German mobile network operator 

Vodafone for operation of 224.000 base stations 

(Vodafone 2011), resulting in an allocated average 

power draw of 2129W per base station which is about 

30% more than the average nominal power 

consumption of base stations operated by Vodafone 

Germany (Zwemke 2012). We assume that the energy 

efficiency of mobile networks is similar between 

OECD countries although no systematic study exists.  

We distinguish between the following classes of end 

user devices: smartphones, tablets, laptops, and 

desktop computers. For the laptop and desktop 

computers (including monitors), distributions of 

power consumption are based on data from the 

Energy Star measurements (Energy Star 2011, 2012b). 

These extensive lists contain power measurements of 

several thousand energy efficient devices that were 

awarded the Energy Star rating. They do not 

represent the relative popularity of these devices. 

On top of the power consumption in active idle mode 

(non-standby), the computational complexity of 

programs introduces a dynamic portion of power 

consumption. The relative and absolute magnitude of 

this dynamic power consumption depends on several 

parameters: for example, the specific device and – in 

the case of browsing online news – the amount of 

JavaScript embedded in a page or the video codec 

used. Yet, systematic research of the influence of 

these parameters does not exist.  We conducted a 

scoping experiment on a single, modern Energy Star-

rated laptop and found no statistically significant 

variation from idle power when browsing text, hence, 

we set � � 1 in eq. 10. In the consumption of video, 

however, the same experimental setup found a 

significant increase in power consumption. In our 

model, we assume the power consumption of devices 

increases by 15%, hence, we set � � 1.15, which is 

similar to values reported in Somavat et al. (2010). 

Based on GNM data, we apply an empirical 

distribution of the duration that users spend reading 

or watching the news. The distributions can be found 

in the appendix in figures 9 and 10. The distribution of 

news reading is heavy tailed and has its average at 

one and a half minutes. Video content is being 

watched for approximately two minutes on average.  

Method 

We have conducted simulations of a number of 

different scenarios of users accessing GNM digital 

services to explore the impact of variability on the 

energy footprint. Each scenario has a specific user 

device, access network technology and service type 

associated with it. The service type can be either an 

HTML web page including text, images and gif 

animations, or HTML with embedded video content. 

The functional unit for either service is 10 minutes of 

browsing. The average duration spent per website is 

90s for reading text and 121s for videos. The precise 

value of the duration per page is randomly sampled 

during each iteration of the Monte Carlo simulation. 

We simulate the most popular user device 

technologies: smartphones, tablets, laptops, and 

desktop PCs. We exclude some exotic combinations 

of local access network types and user devices such as 

the combination of wired connection of a phone or a 

tablet to a DSL modem, but we include the simulation 

of smartphones connecting to a wireless home 

network. We only simulate mobile network access for 

phones, tablets, and laptops. We do not consider 

mobile access with a laptop in combination with an 

external screen.  
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For each scenario, we conduct a Monte Carlo 

simulation of 100,000 runs. This figure was 

determined by experiment to ensure convergence of 

average total energy consumption to within 0.1% 

overall for the same scenario. Each run draws from 

distributions based on both variance and variability 

within a given scenario. Variance is handled in the 

usual way, by using distributions around a mean value 

based on data quality factors and correlation 

between different secondary data sources. We give 

details of the distributions used in the appendix. Our 

approach to handling variability is novel; instead of a 

statistical distribution around a mean, we make 

random draws from a representative population of 

discrete observed values. For example, in the case of 

time taken to view a given web page or video, we 

make draws from a distribution generated from 

actual usage data provided by GNM. Similarly, the 

geographical location of the end user and the time of 

day accessed draw from distributions of GNM primary 

data. In the case of end-user device power 

consumption we make draws from a population of 

potential device models, each with an associated 

power consumption. Again, details are provided in 

the appendix except where commercially confidential. 

In all cases of variability represented in this way, our 

model allows values to be fixed to give results for a 

specific sub-scenario – for example, modeling a user 

accessing the service from Boston with an iPhone at 

6:00 P.M. GMT. 

Results 

We now present results of our simulations for the 

scenarios we explored. We start with the 

presentation of average absolute values of energy 

consumption, broken down according to 

contributions by different system components. We 

then show which components affect the total 

allocated individual power consumption most and 

explore this influence in more depth. Figure 2 shows 

the average energy consumption for the different 

scenarios. The error bars indicate the 25% and 75% 

percentile of the sample distributions. Both figures 

share the same vertical scale. The energy 

consumption varies widely between the scenarios 

highlighting the need to take the particular 

combination of device types, local access networks 

and service type into account. The average energy 

consumption for consuming video is higher than the 

energy for consuming text. Not surprisingly, in the 

case of reading articles, the scenarios with a desktop 

computer arrive at the highest total energy 

consumption with an average of 96J. The least energy 

is consumed when reading articles during 10 minutes 

with a smartphone over a cellular wireless connection 

with 9J energy consumption. In the case of consuming 

video content, the scenarios with a cellular wireless 

connection rank highest where the 3G network alone 

contributes 121J, which is up to 83% of the total 

energy consumption. The energy consumption by 

core and edge networks is smaller but – at 15J – not 

insignificant. The energy consumption of scenarios 

Figure 2 Average energy consumption for 10 minutes of news consumption by system components for selected 

combinations of access network and user device type. 
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with handheld devices (smartphones and tablets) is 

dominated by the network and servers while the 

energy consumption of scenarios with laptops and 

desktops is primarily dependent on the user device 

power consumption. The total energy consumption 

varies substantially between scenarios. The full 

numeric values are presented in the appendix in table 

1 and 2.  

Figure 3 shows histograms of selected sample 

distributions within the 2.5th and 97.5th percentile. 

The histogram for tablet scenarios is almost identical 

from that of the smartphone and is not shown. 

Considering the non-video scenarios, those with a 

smartphone show a much smaller degree of 

variability compared to those with PCs. This is mainly 

due to the larger variability in the power consumption 

of PCs in comparison to smartphones or tablets. The 

histograms also show that there is a clear distinction 

in energy use between laptop and desktop 

computers, with laptops only using more energy than 

desktops in 2.13% and 2.42% of the scenario samples 

for text and video respectively.  

Following Weber (2012), we use a Spearman rank 

analysis over several scenarios, varying the access 

network type and the service type, to determine how 

different parameters of the model affect the final 

result. It generates coefficient values ρ between 1 

and -1, with +/-1 indicating perfect correlation or anti-

correlation, and 0 indicating no correlation.   

 

Figure 3 - Histograms of total energy by all subsystems for selected combinations of access network and user 

device types and consumption of 10 minutes of news with and without video content. 
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Figure 4 shows the average values of those 

correlation ranks between scenarios of consuming 

video or text depending on the local access network 

type with an absolute value greater than 0.1. The top 

row shows the average values over scenarios with 

WiFi access, namely smartphones, tablets, laptops, 

and desktops and, similarly, the bottom row shows 

the average correlation values of scenarios that 

include 3G mobile access, namely smartphones, 

tablets, and laptops. The whiskers represent the 

maximum and minimum values for  between the 

scenarios within one analysis set. For example, in the 

scenario of consuming video over WiFi in figure 4, the 

average correlation between the power consumption 

of the user device and the total energy consumption 

is 0.42, yet in the specific case of a smartphone 

(minimum) it is 0.04 and in the scenario of a desktop 

(maximum) it is 0.92. Importantly for video services 

consumed on handheld devices, the total energy 

consumption depends most strongly on the access 

network rather than the user device. Also, for the 

video scenarios the access network is much more 

relevant to the total footprint than it is for the text 

scenarios. Not surprisingly, the correlation between 

server utilization, expressed by pages per second, and 

the total energy consumption is higher in the ranks 

for 3G mobile access than in those for WiFi, since the 

former do not include desktop scenarios. Negatively 

correlated coefficients indicate inverse correlation of 

components; for example, the lower the utilization of 

the origin servers the higher the total energy 

consumption. Also, duration appears negatively 

correlated with the total energy footprint as it is 

inversely proportional to the number of repeated 

page requests submitted within the 10mins. When 

connecting with 3G the shared access network has a 

stronger impact on the total power consumption than 

the home networking equipment when connecting 

with WiFi. In the case of watching video, the data 

volume is directly dependent on the duration of the 

service consumption. When consuming text only, the 

Figure 4 - Spearman rank correlation values between most impactful model variables and total energy consumption 

averaged over scenarios with smartphone, tablet, and laptops connecting for 3G wireless connections and averaged 

over scenarios with smartphone, tablet, and laptops for connections by DSL and WiFi. 
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data volume has much less impact on the total energy 

consumption.  

Discussion 

Analysis 

In this section we discuss our results in the context of 

previous work modeling the use phase energy 

consumption of digital media. We compare the 

quantitative results with those of other authors, 

where there is overlap of the models, and explore the 

reasons for differences. The energy per bit varies 

between cellular wireless and wired access network 

connections and also depends on the data volume of 

the service consumed. The average values are 17 

J/Mbit for the edge and core network and 132 J/Mbit 

for 3G text and 9J/Mbit for video over DSL and WiFi 

(compared to an average 577 J/Mbit for text as a 

consequence of the allocation model). Williams and 

Tang (2011) allocate power consumption only for the 

duration of the data transfer, resulting in an energy 

efficiency per bit for wired connections of circa 4 

J/Mb, which is a fifth of our results. For the servers, 

on the other hand, they arrive at a much higher 

energy footprint per user for browsing web pages by 

assuming that a server is occupied during 50% of the 

duration the user spends reading a page, while we 

use primary data from GNM showing that web 

servers complete page requests in sub-second time 

intervals. Figure 6 compares results for energy per bit 

on the Internet and access network in two of our 

scenarios with the results from the earlier works. In 

this table we include only the energy consumption 

per bit by the Internet and access networks, which we 

assume to be independent from the type data 

transferred. Baliga et al. (2009) estimate a value 

slightly lower than our minimum assumption of 

3.23 ⋅ J/Mb for the sum of edge and core routers and 

optical transport. While they assume 100% utilization 

of Internet routers and we assume between 12 and 

25% (TeleGeography 2005), our measurements of hop 

count per route (from 6.5 to 15) is on average lower 

than their assumed value of 14. The difference 

regarding the access network power consumption is 

the result of a different allocation model. They 

allocate by throughput capacity; we allocate by time. 

We argue in the model section above why we believe 

time to be a more appropriate metric. Moberg et al. 

(2010) do not take into account the energy 

consumption by servers. Idle energy consumption is 

then apportioned relative to the duration of service 

use. 

 

Figure 5 Comparison of average energy consumption for 

data transfer by Internet and access network for bottom-

up studies.

Chandaria et al. (2011) do not take account of the 

energy consumption of the Internet in their 

calculations. Their result for the wired access 

network is 11J/Mb	and ours is 9J/Mb. This similarity 

is accidental. They take into account the idle power 

consumption of the DSL modem based on the 

assumption that it is used for 10.75 hours per day 

and idle for the remaining time and allocate it to the 

active use time similarly to Moberg et al. (2010) We 

on the other hand include a wireless network router 

besides a modem (both 5 watts) but do not account 

for idle power consumption. The reason why we do 

not include idle power consumption of user 

equipment in this assessment is the current lack of 

systematic studies of this important factor to the 

energy consumption at the user premises. This 

problem is further compounded by allocation 

questions of the idle power consumption. Even 

though every new generation of mobile networks 

brought a decrease of the energy consumption per 

bit of data, the total power consumption of base 

stations increases with their total throughput 

capacity (Manner et al. 2010). This, together with 

higher bandwidth usage by mobile services (Cisco 

Newsroom 2012), means their relevance will grow.  

Our assumptions regarding the energy efficiency of 

mobile data transfer overlap with those by Toffel and 

Horvath (2004). They relate the total energy 

consumption of a 2G mobile network to the total 

number of subscribers in the network and determine 
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a power draw per minute of 840W. This average 

power draw is then applied to the transmission of 

data which is assumed to endure 60 seconds over a 

56kbps modem. The resulting energy efficiency of 

1.5 ⋅ 10G[S/N is circa two orders of magnitude higher 

than our average values. This discrepancy mainly 

results from outdated values for the utilization of 

mobile networks and from using the energy footprint 

of voice service to calculate the footprint of a data 

service.  

 In their top-down study, Taylor and Koomey (2008) 

find the energy footprint per data volume to range 

between 9 and 16kWh/GB. This figure has been 

referenced and updated by several other studies 

extrapolating using a trend identified by Taylor and 

Koomey. Weber et al. (2010a) use this in a 

comparison of the environmental impact of different 

methods for delivering music and assume a value of 

5-7kWh/GB.  Preist and Shabajee (2010) estimate an 

upper bound on future global energy use for the 

provision of media services and extrapolate to a 

value of 4kWh/GB from Weber’s value. In order to 

compare this value to the results derived from our 

model it is useful to consider the results separately 

for servers and the network in the way that Moberg 

et al. (2010) performed their calculation. For the data 

transport they also apply Taylor and Koomey’s (2008) 

values, excluding the contribution of servers, to give 

a value of 3kWh/GB. Taylor and Koomey (2008) take 

the energy consumption values from a study by Roth, 

which accounts for network components used in a 

commercial context (Roth et al. 2002). Roth’s 

inventory is now severely outdated but in order to 

compare Taylor’s values with ours it is necessary to 

analyze this data in more detail. They distinguish 

between several device types, among which only the 

WAN switches and routers map to our model of the 

public Internet. They calculate the energy 

consumption on total shipments of network devices, 

which include ISPs, commercial intranet, and 

domestic deployments, and accordingly their results 

are likely to overestimate the energy consumption 

when applied to calculate the power consumption of 

the public Internet. Assuming that the three device 

categories hubs, routers, and WAN switches contain 

the devices which we consider the public Internet, 

then the energy consumption of the Internet would 

only account for 14% of Taylor and Koomey’s values. 

Applied to the latest values extrapolated by 

Preistand Shabajee (2010), this would result in an 

energy footprint for the Internet of  2.4 ⋅ 10G\S/N, 

which is roughly 14 times higher than our values. 

This discrepancy is either the result of an 

overestimation on the side of Roth et al. (2002), an 

underestimation of the network traffic in the 

Internet or a severe underestimation of the number 

of devices and their energy consumption in our 

bottom-up model.  

Data Quality 

Data on GNM server energy consumption and 

duration of service use was provided as primary data 

by GNM, so it is of high quality. For energy 

consumption by third party servers, we use a figure 

estimated from annually aggregated publically 

available emissions data from Akamai, one of the 

largest content delivery networks for the media 

industry, and use this for all third parties. Other 

CDNs are likely to have similar figures for data 

intensive streams, but this is likely to be an 

underestimate of servers of less data intensive 

content, such as advertising content providers and 

data analytics servers. Our model of the Internet 

distinguishes between edge and core routers. For 

each class of router, we have a number of data 

points from manufacturers’ specifications and peer-

reviewed literature, which we use to generate a 

mean value and statistical distribution. Our model of 

the access network uses a similar approach. It omits 

certain equipment which is operated by some but 

not all ISPs – for example VPN connection servers 

between the access network provider and the 

Internet ISP or Remote Authentication Dial-In User 

Service servers – due to lack of publically available 

data. Although we believe that this is acceptable as a 

lower bound for the access network power 

consumption and that inclusion would increase the 

portion of the access network without significantly 

altering the result of the assessment, further 

research would benefit from transparency of ISPs in 

this area. Data on energy use of end-user devices 

comes from Energy Star and so can be considered 

primary data. The relative quality of the different 

data points was used in determining the range of 

variance of parameter distributions used within the 

Monte Carlo simulation described below. 
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Implications and Applications 

The use of aggregate figures and assumptions about 

typical user behavior may be adequate for 

environmental accounting and reporting purposes, 

yet it can conceal insights into the impact of 

variability on an energy footprint that can be used 

for a number of other purposes. As proposed by 

Weber et al. (2010b), a more detailed model can be 

used to support real-time feedback to a user about 

the energy and climate impact of their behavior. We 

discuss how distributed systems technology can be 

used to support this in Schien et al. (2011).  Such a 

model can also be used to support the 

environmental strategy of an organization wishing to 

reduce the footprint of its digital services. It can be 

used to assess different interventions for their 

potential impact, and support ‘design for 

environment’ of digital products. For example, in the 

case of the website analyzed here, a number of 

measures are suggested from the scenario results 

and the Spearman rank analysis. These show that 

choice of user device is the most significant factor in 

determining the use phase energy footprint of the 

service. This suggests that encouraging a move to 

smartphone and tablet access will have a significant 

positive impact. This can be done through the 

provision of apps that enable enhanced experiences 

on such devices, provided that such a move does not 

stimulate additional purchases or an increased 

upgrade rate of such devices. It shows that data 

transfer of video content has a significant energy use 

on the 3G mobile network, but less so elsewhere. 

Hence a strategy of reducing the resolution of video 

would be appropriate for mobile devices, but 

unnecessary for other devices. If the browsing time 

of users is assumed constant, the model also shows 

that the duration of time spent on a page is inversely 

correlated with energy consumption, particularly if 

that page is of text or images rather than video 

because the user is looking at multiple pages, the 

delivery of each of which adds to the energy 

consumption. This suggests that focusing on the 

design of web service and content to enable users to 

easily get to content that is most of interest to them, 

and ensuring it is of sufficiently high quality that they 

want to stay with it, is beneficial in terms of both the 

energy footprint and as a business strategy.  

Recently, data center energy consumption has 

received heightened public attention, for example by 

(Cook and Horn 2011). Though increasing awareness 

of this issue is justified, our analysis, together with 

that of others, shows that for many organizations 

energy use by user equipment and the mobile 

network are bigger contributors to the service 

footprint. Data centers are assuming the role that 

plastic bags have for super markets, receiving 

attention disproportionate to their relative 

contribution of environmental burden compared to 

other parts of the retail business. It is important that 

the analysis of the impacts of IT, and the means to 

mitigate these, takes a view of the entire system. 

Our work also highlights the importance of allocation 

techniques that are in accord with the technical 

functionality and usage of the system under study, 

and this is particularly challenging in the area of 

distributed IT systems. The choice of an allocation 

technique can have a significant impact on the 

results of the LCA. Our work makes a contribution to 

the debate of how best to do this, although we do 

not claim that we have provided the definitive 

answer. In particular, we allocate all energy of a user 

device to one function – namely browsing a website 

– while the user is carrying this out, even though the 

system could be carrying out other functions 

simultaneously. For example, it may be playing 

music. And it is likely providing instantaneous 

availability of services such as email, Internet 

telephony or instant messaging chat. The question of 

how best to allocate user device energy between 

these requires further work. Furthermore, a user 

device has periods when it is consuming energy on 

standby, or is on but not providing any active 

functionality. How best to allocate the energy used 

during these periods between the various 

functionalities it provides is also a question meriting 

further exploration.  

Beyond the scope of this paper, it is relatively 

straightforward to extend our analysis to cover 

greenhouse gas emissions. The model identifies the 

different locations where electricity consumption 

takes place in the use phase of a service. This can be 

combined with national and regional carbon 

intensity figures, where they exist, to give a more 

precise estimate than would be possible using a 

single global or national intensity figure. Our work 
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can also be extended to allocate energy and carbon 

emissions associated with manufacturing the 

equipment to the digital services. This is obviously an 

important part of the overall footprint, and should 

be accounted for when making comparisons with 

alternative delivery methods of news content, such 

as paper-based.  

The global IT system is responsible for the 

consumption of 3.9% of electricity (Malmodin et al. 

2010). A significant amount of effort has been put 

into reducing energy use of individual components – 

such as laptops and data centers – motivated by eco-

efficiency and cost savings. While this is valuable, it 

does not address the energy and environmental 

consequences of design decisions taken by the 

various parties involved in providing services across 

the internet. The complexity of the business 

ecosystem involved in such services means that a 

design decision by one can have energy (and 

therefore environmental and cost) implications on 

many others. Similarly, choices by the end user have 

effects throughout the system, and those choices are 

influenced by the service provider. The energy model 

presented in this paper is detailed enough to allow 

assessment of the implications of such decisions and 

choices. It allows the systemic approach that 

characterizes industrial ecology to be applied to the 

IT business ecosystem in a number of ways.  

Firstly, such a model can be used to support real-

time feedback to a user about the energy and 

climate impacts of their online behavior, as proposed 

by Weber et al. (2010). We discuss how distributed 

systems technology can be used to support this in 

Schien et al. (2011). While this may be of interest to 

some users, we do not see this as likely to lead to 

significant energy reduction without action by the 

service providers. Service providers can use our 

model to assess the effect of possible user trends on 

energy use by their service, and use this to consider 

which trends to encourage and which to discourage. 

For example, in the case of the website analyzed 

here, the Spearman rank analysis shows that choice 

of user device is the most significant factor in 

determining the use phase energy footprint of the 

service. This suggests that encouraging a move to 

smartphone and tablet access will have a significant 

positive impact. This can be done through the 

provision of apps that enable enhanced experiences 

on such devices, provided that such a move does not 

stimulate additional purchases or an increased 

upgrade rate of such devices.  

Secondly, such a model can be used to assess the 

impact of decisions by designers of a digital service 

on the energy use of that service across the IT 

system, and propose design modifications that result 

in reduced energy use. For example, our analysis 

shows that data transfer of video content has a 

significant energy use on the 3G mobile network, but 

is less when transferred over other networks. Hence 

a possible design intervention would reduce the 

resolution of video automatically when the service 

provider detects the service is being delivered over 

3G, but leave high resolution at other times. Such an 

intervention, if widely adopted among video service 

providers, could significantly reduce load on the 3G 

mobile network, and hence associated energy use, 

environmental impacts and costs. Beyond the GNM 

website analysis presented in this paper, our 

approach can be used to evaluate other IT design 

and architectural decisions from an energy 

perspective. For example, Apple’s iCloud music 

match service fingerprints songs of a user’s music 

collection locally and adds the identified songs to the 

cloud library from the existing cloud repository and 

thus avoids redundantly uploading terabytes of 

music files (Schien 2012). Another intervention that 

can be evaluated with the model is increasing 

outsourcing of data from the servers of a host such 

as GNM to the CDNs, who can serve content more 

efficiently and benefit from economies of scale at the 

same time as reducing bandwidth in the core 

network, realizing additional energy savings.  

More broadly, such a detailed model can be applied 

to questions of ‘virtual industrial symbiosis’. Certain 

internet architectures used by service providers, such 

as the peer-to-peer architecture used by the Spotify 

music streaming service, use ‘waste’ compute cycles 

on customer machines to deliver content on other 

machines. The prime motivation of such 

architectures is cost reduction (by avoiding energy 

and infrastructure) at the service provider. Our 

model could be extended to allow assessment of 

such architectures to determine if they do reduce 

energy consumption across the system, or simply 

move the energy burden away from the service 

provider. 
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With the increasing pervasiveness of digital 

technology, the increasing sophistication of online 

services, the increasing energy consumption by IT 

and the increasing complexity of the business and 

technical systems which deliver them, it is necessary 

to go beyond local optimization of energy use and 

environmental impacts, and adopt a systemic 

perspective to mitigation as advocated by Industrial 

Ecology. By providing a model of digital services 

detailed enough to explore the impact of design 

interventions on energy use across the system, we 

facilitate the adoption of such a perspective. 
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