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An Adaptive Observer-based parameter estimation algorithm with
application to Road Gradient and Vehicle’s Mass Estimation

Muhammad Nasiruddin Mahyuddin*, Jing Na**, Guido Herrmann***, Xuemei Ren**** and Phil Barber*****

Abstract—A novel observer-based parameter estimation algo-
rithm with sliding mode term has been developed to estimate the
road gradient and vehicle weight using only the vehicle’s velocity
and the driving torque from the engine. The estimation algorithm
exploits all known terms in the system dynamics and a low pass
filtered representation to derive an explicit expression of the
parameter estimation error without measuring the acceleration.
The proposed algorithm which features a sliding-mode term to
ensure the fast and robust convergence of the estimation in the
presence of persistent excitation is augmented to an adaptive
observer and analyzed using Lyapunov Theory. The analytical
results show that the algorithm is stable and ensures finite-time
error convergence to a bounded error even in the presence of
disturbances. A simple practical method for validating persistent
excitation is provided using the new theoretical approach to
estimation. This is validated by the practical implementation of
the algorithm on a small-scaled vehicle, emulating a car system.
The slope gradient as well as the vehicle’s mass/weight are
estimated online. The algorithm shows a significant improvement
over a previous result.

I. INTRODUCTION
In the automotive industry, reliable online vehicle parameter

estimation is important to reduce emissions, improve fuel
efficiency and enhance the safety of the vehicle. The vehicle’s
mass and the road grade are two parameters that largely
influence a vehicles performance. This is particularly true
for heavy duty vehicles where the loadings due to the mass
and the grade can be significant [1]. The road gradient and
mass estimation provides useful information to a vehicle
in improving the transmission shift scheduling and vehicle
longitudinal control, including cruise control, hill holding and
traction control [2].

Having road inclination measured by a dedicated sensor
such as an inclinometer may be inaccurate. Inclinometers
are in fact accelerometers which can distort road gradient
measurement due to its susceptibility to noise in dynamic
conditions of a vehicle [3]. Therefore, the road grade should be
accurately estimated [4-7]. It is evident that the transmission
control unit and the anti-lock brake system can benefit from
mass and road gradient estimates [7]. To address this issue,
there has been significant interest in the estimation of the
road gradient and vehicle mass [2-9]. Some of these results
were developed based on on-board sensors and the use of
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sensor/data fusion methods. For instance, in [1], a GPS or
barometer sensor is utilized in addition to torque and velocity
sensors to obtain absolute road height information, while
Barrho, et al. in [9] require accurate information of the vehicle
mass which is not always possible. In recent work by [10],
[11] and [12], low-cost sensors were placed in the vehicle to
estimate the road grade ahead. In [13], the vehicle’s mass in
addition to vehicle speed and torque information is required.
Bae et al. [4] suggest a recursive least squares approach which
essentially requires acceleration information and then assumes
the existence of sufficient data points to solve for the missing
parameters, i.e. vehicle mass and gradient, by inverting a
regressor matrix in a batch process. Similarly, the work in [7]
and [2] estimate the road grade using the position, velocity
and driving torque or force signal. In [8], a combination of an
observer is suggested which provides for known mass the exact
estimation of the road gradient. In all of the aforementioned
approaches, however, some of the required information, e.g.
acceleration, mass and vehicle’s current location through GPS,
may not be readily available. Although most of the approaches
show good results, the convergence speed and complexity may
cast some problems.

In this paper, we revisit the online road gradient and mass
estimation of vehicular systems using only the vehicle’s veloc-
ity and the driving torque. This is achieved based on a novel
adaptive nonlinear observer design. Compared to previous
results (e.g. [14]) concerning the parameter estimation, some
appropriate information of the parameter error is derived,
and then incorporated into the parameter adaptation for the
observer design. In our work, the parameter estimation scheme
uses a filtered regressor matrix. Measurable system states,
a regressor vector and the known dynamics are collected
and filtered to form auxiliary variables. Moreover, vehicle
acceleration is not required in our estimation algorithm. Owed
to the special feature of a sliding mode term, the adaptation
algorithm guarantees robust finite-time convergence to a com-
pact set, provided that there is a Persistent Excitation (PE)
condition fulfilled so that the regressor matrix remains positive
definite. In contrast to [15], our scheme calculates the inverse
of the filtered and integrated regressor matrix without prior
invertibility checking of the matrix and direct matrix inverse
computation. The parameter error information can be explicitly
formulated by virtue of the filtered auxiliary variables. The
possible instability and infinite growth found in [15] due to
the existence of an unstable integrator (as a result of auxiliary
matrix and vector) are prevented in this paper. We also show
robustness of our adaptive scheme and we can verify the
PE condition in a straightforward and practical manner. The
proposed method is verified experimentally in a reduced-scale
vehicular system, which provide a significant improvement
over a previous algorithm.

II. SYSTEM FORMULATIONS

Consider a nonlinear system of the following structure:

ẋ = Ax+B1u1 +B2f(x, u2) + ζ, y = Cx (1)



where A ∈ Rn×n is the known system matrix, B1 ∈ Rn×m1

and B2 ∈ Rn×m2 are known input matrices, u1 ∈ Rm1

and u2 ∈ Rm̄2 are known inputs, whilst C ∈ Rp×n is
the corresponding output matrix and ζ ∈ L∞ is bounded
disturbance. The function f(x, u2) : Rn × Rm̄2 → Rm2 is
partially unknown for which the detail will be outlined below
and the pair (A,B1) is controllable. It is assumed that p ≥ m2.
The following assumptions are made:
Assumption 1 (C,A,B2) is minimum phase and (CB2) is
full rank.
Assumption 2 The function f(x, u2) can be represented in
a linear parameterized form: f(x, u2) = ϕ(x, u2)Θ, where
ϕ : Rn × Rm2 → Rm2×l is a known Lipschitz continuous
function, while Θ = const.,Θ ∈ Rl is an unknown parameter
vector which is to be estimated.
Assumption 3 The signals x, u1 and u2 are measurable and
bounded.

Assumption 3 is a common assumption for observer design
and can be easily achieved by suitable choice of the control
signal u1 (e.g. [15] [17]).
Under these conditions, the system is assumed to take the
following structure[

ẋ1

ẋ2

]
=

[
A11 A12
A21 A22

] [
x1
x2

]
+[

B11
B12

]
u1 +

[
0
B̄2

]
ϕΘ +

[
ζ1
ζ2

]
y = [0 I]

[
x1
x2

] (2)

where B̄2 ∈ Rp×m2 , I ∈ Rp×p and x2 = Cx. Note that
this reformulation is always possible from Assumptions 1
and 3 using Proposition 6.3 in [17]. Moreover, we make the
following assumption.
Assumption 4 A21 = 0, the second state equation in 2 is
decoupled.
Assumption 4 is possibly a strong assumption but it will fit the
generic practical system structures (e.g. vehicular) investigated
in this paper.

III. ADAPTIVE OBSERVER DESIGN

We will design an adaptive observer to estimate the state
vectors which will be suitably combined with a novel pa-
rameter estimation algorithm. The adaptive observer takes the
following form:

˙̂x = Ax̂+B1u1 +B2ϕΘ̂ + L(y − Cx̂) (3)

where x̂ is the estimated state vector, Θ̂ is the estimated
parameter vector. L is the observer gain matrix such that
Ac = A−LC is a stable matrix and there exist, according to
Proposition 6.3 in [17], positive definite matrices, P and Q so
that,

ATc P + PAc = −Q, P =
[
P1 0
0 P2

]
> 0 (4)

Q =

[
Q1 Q12

QT12 Q2

]
> 0, PB2 = CTFT (5)

and F ∈ Rm2×p is a positive definite matrix. From (4), it
follows,[

ATc11P1 + P1Ac11 P1Ac12

ATc12P1 P2Ac22 +ATc22P2

]
= −Q (6)

Let x̃ = x− x̂ and Θ̃ = Θ− Θ̂. We can then use (1) and (3)
to define the error dynamics x̃ = x− x̂ as

˙̃x = (A− LC)x̃+B2ϕΘ̃ + ζ
= Acx̃+B2ϕΘ̃ + ζ

(7)

where Θ̃ = Θ− Θ̂ is the estimated parameter error vector.

In the next section, the adaptive laws that will update the
estimated parameter vector, Θ̂ will be developed.

IV. ADAPTIVE LAW FORMULATION

In this section, we shall define the adaptive law for our
parameter estimator.

A. Filter design
From (2), the second state equation can be expressed as,

ẋ2 = (A22x2 +B12u1) + B̄2ϕΘ + ζ2 (8)

Let,
ψ = A22x2 +B12u1, φ = B̄2ϕ (9)

then, the following filtered variables can be defined as,

kẋ2f + x2f = x2, x2f (0) = 0
kψ̇f + ψf = ψ, ψf (0) = 0
kφ̇f + φf = φ, φf (0) = 0

(10)

In addition, we may introduce an auxiliary filter for the
bounded disturbance (which is only used for analysis),

kζ̇2f + ζ2f = ζ2, ζ2f (0) = 0 (11)

i.e. ζ2f ∈ L∞. Consequently, we can obtain from (8) and (10)
that,

ẋ2f =
x2 − x2f

k
,

x2 − x2f

k
− ψf = φfΘ + ζ2f (12)

B. Auxillary integrated regressor matrix and vector
The filtered variables introduced above will be used in the

definition of a filtered regressor matrix, M(t), and a vector,
N(t) as,

Ṁ(t) = −kFFM(t) + kFFφ
T
f (t)φf (t),M(0) = 0 (13)

Ṅ(t) = −kFFN(t) + kFFφ
T
f (t)

(
x2−x2f

k − ψf
)
, (14)

where, kFF ∈ R+, can be implemented as a forgetting factor
and the initial condition of N(t) is N(0) = 0. Note that (14)
is equivalent to:

Ṅ(t) = −kFFN(t) + kFFφ
T
f (t)(φf (t)Θ + ζ2f ) (15)

Consequently, we can find the solution to (13), (14) and (19),

M(t) =
∫ t

0
e−kFF (t−r)kFFφ

T
f (r)φf (r)dr

N(t) =
∫ t

0
e−kFF (t−r)kFFφ

T
f (r)

(
x2−x2f

k − ψf
)
dr

(16)

and

N(t) = M(t)Θ + ζ2N (17)

where ζ2N =
∫ t

0
e−kFF (t−r)kFFφ

T
f (r)ζ2fdr. Note that φ is

bounded since it is Lipschitz continuous and x, u2 are bounded
(Assumption 1). Thus, φf is bounded. Since ζ2f ∈ L∞, it
follows that N(t),M(t) and ζ2N are bounded.



Lemma 1: The auxiliary regressor matrix M(t) ∈ Rl×l is
positive definite, M(t) > 0, if and only if

∫ t
0
φTf φf > 0. •

Proof : It can be easily shown that∫ t

T

φTf (r)φf (r)dr ≥
∫ t
T
e−kFF (t−r)φTf (r)φf (r)dr (18)

≥ e−kFF t
∫ t
T
φTf (r)φf (r)dr

when T < t. For T = 0, the claim follows. �
Thus, if φf is persistently excited, M(t) > 0 is positive
definite. Clearly, if φ is persistently excited, then φf is also
persistently excited and M(t) > 0 [22], [20] (as derived
from the linear system (10) and definition (9)). Thus, if φ is
persistently excited then M(t) > 0 and

∫ t
T
φTf φf > 0. In this

paper, it is important to achieve M(t) > 0 for our adaptation
algorithm to work. This can be achieved through persistent
excitation of φ:

Remark 1: The Persistent Excitation (PE) condition for the
regressor φ can be achieved in the experiment through an
appropriate control signal, u. For instance, the control signal
can be augmented by a noise signal or the controller can
introduce for the system states, x, a tracking demand which
achieves ‘sufficient richness’ (SR) of x and guarantees M(t) >
λmI, λm > 0 as in [19]. Suitable analytical detail is avoided
here due to space reasons. ◦

Another auxillary matrix K(t) may be defined as,

K̇(t) = kFFK(t)− kFFK(t)φTf (t)φf (t)K(t), (19)

where the initial condition K(0) > 0 is specified as a diagonal
matrix, K(0) = 1

λI with λ > 0 being constant. It will be seen
that K(t) is an approximation of the inverse of M(t) where
lim
t→∞

K(t)M(t) = I . With the help of the following derivative
matrix identity,

d

dt
KK−1 = K d

dtK
−1 +K−1 d

dtK = 0 (20)

we can obtain,

K(t) = [e−kFF tK−1(0) +M(t)]−1 (21)

This also implies boundedness of K(t), if M(t) > 0. To
show the invertibility of K(t) as well as K(t)M(t) approaches
unity, we are to employ the singular value decomposition for
the matrix, M(t),

M(t) = U(t)S(t)V T (t) (22)

where S(t) = diag(s1, . . . , sn) is the matrix with si being
the singular values of matrix, M(t) whilst, U(t) and V (t) are
unitary matrices.

We know that K(0) = 1
λI is a diagonal matrix, thereby,

K(t) = V (t)(S(t) + e−kFF tλI)−1UT (t) (23)

Then,
K(t)M(t) = V (t)diag( s1

s1+e−kFF tλ
, . . . , sn

sn+e−kFF tλ
)V T (t)

(24)

and lim
t→∞

si
si + e−kFF tλ

= 1, if M(t) ≥ λmI > 0,

for λ > 0, adhering to the Persistent Excitation (PE)
condition [14]. Since V (t) is unitary, the matrix K(t)M(t)
can be represented as,

K(t)M(t) = I −∆(t) (25)

where ∆ converges to zero in infinite time. This shows that
K(t) is indeed a representation of the inverse of M(t) where
∆(t) denotes the effects of the initial condition K(0). Hence,
the parameter estimation error vector can be written as,

Θ̃ = Θ− Θ̂ = [K(t)M(t) + ∆(t)]Θ− Θ̂ (26)

where lim
t→∞

∆(t)→ 0

Remark 2: Note that a practical test for M(t) > 0 is to
verify in an experiment if K(t)M(t) ≈ I holds. This implies
non-singularity of K(t) and M(t). Again, this condition can
be achieved through PE of φ (see Remark 1) which can
be verified experimentally as will be seen in Section VII on
Practical Application Results. ◦
C. Parameter Estimation

We shall write our adaptive law as,

˙̂
Θ = Γ[ϕTF (y − Cx̂)− ΩR(t)] (27)

In (27), Γ and Ω are positive definite and diagonal design
matrices, i.e. Γ = diag(γ1, . . . , γl) and Ω = diag(ω1, . . . , ωl)
respectively. The term R(t) contains a sliding mode type term
to ensure fast parameter convergence,

R(t) = Ω1
Θ̂−K(t)N(t)

δ +
∥∥∥Θ̂−K(t)N(t)

∥∥∥ + Ω2(Θ̂−K(t)N(t)) (28)

where Ω1 and Ω2 are diagonal positive definite matrices, whilst
δ is a positive constant. It will be proven that the parameter
error matrix, Θ̃, converges to a small residual set around zero,∥∥∥Θ̃
∥∥∥ ≤ c, in finite time, where c > 0 is a positive constant.

Remark 3: Compared to previous results (i.e. the parameter
adaptation is only driven by the observer error in (27)), the
extra term R(t) taking parameter error information, Θ̂ −
K(t)N(t) is employed, which could enhance the parameter
convergence performance [21]. In particular, we incorporate
the sliding mode technique in (28) such that the finite-time
convergence to a set of ultimate boundedness is guaranteed
as stated in the next section. ◦

V. STABILITY AND PERFORMANCE

Theorem 1: Given a system (1), which satisfies Assumption
1-4, an adaptive observer (3) with adaptation law (27) using
(13) - (19), (28) can be designed for persistently excited φ (9)
so that the unknown parameter vector Θ can be estimated via
Θ̂ within finite time satisfying an ultimate bounded stability
characteristic for Θ̃ and the estimated state x̃. The set of
ultimate boundedness can be arbitrarily small for ζ = 0. ♦

Proof : The following Lyapunov candidate shall be em-
ployed,

V (t) =
1

2
x̃TPx̃+

1

2
Θ̃TΓ−1Θ̃ (29)

For ease of analysis, we shall decompose (29) as,

V (t) = 1
2 x̃

T
1 P1x̃1 + 1

2 x̃
T
2 P2x̃2 + 1

2 Θ̃TΓ−1Θ̃ = V1 + V2 + V3

(30)

We now analyse the functions of V1 = 1
2 x̃

T
1 P1x̃1 and Ṽ =

V2 +V3 = 1
2 x̃

T
2 P2x̃2 + 1

2 Θ̃TΓ−1Θ̃ separately for convenience.
The derivative of Ṽ = 1

2 x̃
T
2 P2x̃2 + 1

2 Θ̃TΓ−1Θ̃ can be verified
as,



˙̃V = 1
2 [x̃T2 P2(Ac22x̃2 + B̄2ϕΘ̃) + (Ac22x̃2

+B̄2ϕΘ̃)TP2x̃2] + Θ̃TΓ−1 ˙̃Θ + 2x̃T2 P2ζ2

Using (27), it follows:

˙̃V = − 1
2 x̃

T
2 Q2x̃

T
2 + x̃T2 P2B̄2ϕΘ̃

−Θ̃TΓ−1[Γ(ϕTFCx̃− ΩR(t))] + 2x̃T2 P2ζ2
(31)

The observer error, Cx̃ can be written as x̃2 from (2), Cx =
x2. From (5), knowing that P2B2 = (FC)T , equation (31)
can be further simplified as,

˙̃V = − 1
2 x̃

T
2 Q2x̃

T
2 + Θ̃TΩR(t) + 2x̃2P2ζ2 (32)

Taking care of the diagonal positive definite matrices, i.e.
Ω̃1 = ΩΩ1 and Ω̃2 = ΩΩ2 with ζ2KN = K(t)ζ2N for ease of
analysis, equation (32) can be written with the sliding-mode
term, R(t) using (26),

˙̃V = − 1
2 x̃

T
2 Q2x̃2 + (Θ− Θ̂)T Ω̃1

Θ̂−K(t)N(t)

δ+‖Θ̂−K(t)N(t)‖
+(Θ− Θ̂)T Ω̃2[Θ̂−K(t)N(t)] + 2x̃2P2ζ2

≤ − 1
2 x̃

T
2 Q2x̃2 − λmin(Ω̃1)‖Θ̂−K(t)N(t)‖2+δ‖Θ̂−K(t)N(t)‖

δ+‖Θ̂−K(t)N(t)‖

+λmin(Ω̃1) δ‖Θ̂−K(t)N(t)‖
δ+‖Θ̂−K(t)N(t)‖ + 2x̃2P2ζ2

+(K(t)N(t)− Θ̂)T Ω̃2[Θ̂−K(t)N(t)]

+(∆(t)Θ− ζ2KN )T [Ω̃2

(
Θ̂−K(t)N(t)

)
+Ω̃1

(
Θ̂−K(t)N(t)

δ+‖Θ̂−K(t)N(t)‖

)
]

≤ − 1
2λmin(Q2)λmin(P−1

2 )V2 − λmin(Ω̃2)λmin(Γ)
2 V3

−(λmin(Ω̃1)λmin(Γ1/2)
−λmax(Ω̃2)‖∆(t)Θ‖λmax(Γ1/2))

√
V 3

+2λmax(Ω̃2)‖∆(t)Θ− ζ2KN‖2 + λmin(Ω̃1)δ
+2λmax(Ω̃1)‖∆(t)Θ− ζ2KN‖+ 2‖x̃2‖‖P2‖‖ζ2‖

(33)

There are suitable positive scalars c1, c2, c3 for large enough
time, t > 0 such that:

Ṽ ≤ −c1Ṽ − c2
√
V 3 + c4 (34)

Therefore, x̃2 and Θ̃ converge to a compact set bounded by
parameter δ, ‖∆(t)‖( lim

t→∞
∆(t) → 0) and ‖ζ2KN‖. The term

∆(t) denotes the effect of the initial conditions of K−1(0). For
ζ2KN = 0, the size of the compact set can be adjusted to be
smaller by reducing δ and the elements λi in matrix K−1(0).
Note that ultimate bounded stability for x̃1 and subsequently
for x̃, now trivially follow. Again, for ζ = 0, the set of ultimate
boundedness can be arbitrarily small for suitable choice of δ.

�
Remark 4: The result in Theorem 5.1 in fact is quite

generic. It also allows for analysis of measurement errors
of x2 and φ. For this reason, we may have in the observer
some measurement errors affecting both x2 and also φ(x, u2)
measurement and in reality x̌2 and φ̌(x, u2) are provided in
the practical system. Thus, the observer equation is

˙̂x = Ax̂+B1u1 +Bφ̌Θ̂ + L(x̌2 − Cx̂) (35)

The plant dynamics in (8) can be rewritten as,

˙̌x = (Ax̌+B1u1) +B2φ̌Θ + ζ + ( ˙̌x− ẋ)
+A(x− x̌) +B2(φ− φ̌)Θ

(36)

where x̌ = [xT1 x̌T2 ]T . Assuming the measurement errors and
its derivative are bounded, (i.e. (x−x̌), (ẋ− ˙̌x), (φ−φ̌) ∈ L∞),
so that x̌2, ˙̌x2 ∈ L∞, then the plant dynamics (8) are,

˙̌x = (Ax̌+B2u1) +B2φ̌Θ + ζ̌, (37)

where ζ̌ = ζ+( ˙̌x−ẋ)+A(x−x̌)+B1(φ−φ̌)Θ can be regarded
as a bounded disturbance. Defining the error dynamics as ˜̌x =
(x̌− x̂) it follows that,

˙̌̃x = Ac ˜̌x+B2φ̌Θ + ζ̌ (38)

Under the assumption that ζ̌ is bounded, we can continue
the analysis as for Theorem 5.1. Boundedness of ζ̌ might
be achieved under suitable assumptions on the measurement
errors affecting x2 and an additional assumption on the
nonlinear functions φ. ◦
VI. PARAMETER ESTIMATION IN THE VEHICLE DYNAMICS

In this section, we will discuss the previously formulated
parameter estimation algorithm in the context of its application
to road gradient and vehicle’s weight estimation. Figure 1
shows the simplified model of the small-scaled model car
used in the experiment to validate the parameter estimation
algorithm.

Fig. 1. Simplified model of the small-scaled model car and the slope profile

A. Vehicle model
The parameters to be estimated are the road inclination, θ,

on which the vehicle traverses, the mass of the vehicle, m
and the viscous friction coefficient, Cvf . Referring to Figure
1, assuming the air drag, Fdrag and the rolling friction, Froll
are negligible, and the braking force, Fbrake is subsumed in the
driving force, Fengine, we may model the small-scaled model
car using Newton’s Second Law in the longitudinal direction
to yield,

mẍ = Fengine −mgsin(θ)− CV F ẋ (39)

where m is the mass of the vehicle, θ is the road gradient
on which the vehicle traverses, ẋ is the vehicle’s velocity and
CV F is the viscous damping coefficient.

B. Observer Design
Following the general structure presented in (3), the adaptive

observer with finite-time parameter estimation can be written
as,

˙̂x = Ax̂ +

[
0
1

]
[g Fengine ẋ]

 ŝ

b̂

f̂

+ L(y − ŷ) (40)

where A is the system matrix (adheres to the Assumption
4), ŝ, b̂, f̂ are the estimated parameters of −sinθ, 1

m and
−CV F

m respectively whereas L is the observer gain chosen to
deliver the positive definite Lyapunov matrix, P , such that
it satisfies (4). The engine driving force, Fengine is assumed



to be bounded to ensure that the system states, x remains
bounded. The vector ŷ = Cx̂ will be the corresponding
observer output and x̂ = [x̂ ˙̂x] is the observed state vector.
Thus, using this structure it follows,

B2 =

[
0
1

]
, Θ̂ =

 ŝ

b̂

f̂

 , ϕ =

[
g

Fengine
ẋ

]T
(41)

The observer adaptive weights are lumped such that,

Γ = diag(γ1, γ2, γ3), Ω = Γ−1diag(rs, rb, rf ) (42)

VII. PRACTICAL APPLICATION RESULTS

The small-scale model car, previously built by Foreman et
al. [18],was used in the experiment to evaluate the estima-
tion algorithm. The vehicle’s mass (nominally weighs 10kg)
and the road gradients on which it traverses were the two
parameters to be estimated. Figure 2 shows the implemented
controller system network and architecture which emulates the
system network of a road vehicle. Together with MatlabTM ,

Fig. 2. Functional Structure of the System Onboard

dSPACE MicroAutoBox, used in the experiment, is a dedi-
cated Rapid Prototyping embedded system suited to test the
proposed estimation algorithm. The drive train comprises of
an EPOS 24/5 motor driver and the brushless DC motor (EC-
i 40 Maxon) representing the vehicle’s engine. The motor is
current-controlled via the MicroAutoBox which subsequently
provides the driving force, Fengine, proportional to the current
signal being controlled. Gradient measurements provided by
the installed SCA61T inclinometer is entirely for reference
purpose and not to be used in the algorithm. In our experiment,
we would avoid the occurrence of significant slippage as this
would invalidate our estimation effort. The test slope was
constructed using three stiff wooden planks of 2 m in length
each. They are tilted and bolted together to give a slope profile
with tilting angle of 12◦ for the first slope, 15◦ for the second
slope and the last slope is horizontal i.e. parallel to the ground.
The small-scaled model car was required to traverse up the
designated slope at a constant speed of 0.2 m/s (Figure 1).

A. Parameters tuning
In our experiment, there were important parameters (see

Table I) of the adaptive observer algorithm needed to be
tuned to achieve satisfactory results. Realistic and acceptable
physical bounds/limits were considered and shown in Table II.
The corresponding values of the parameters displayed in the
table are used in the experiment. Noise injected to the velocity
and the control signal was kept constant in terms of power so
that the actuating signal applied to the motor exerts sufficient
and persistent excitation.

TABLE I
PARAMETERS TO BE TUNED

Parameter Description Symbols Values

Observer Adaptive weights, Γ
γ1 0.01
γ2 0.001
γ3 0.001

Sliding-Mode Adaptive weights, Ω
rs 0.01
rb 1
rf 0.00001

Forgetting Factor kFF 0.6
Filter Poles k 0.005
Regressor Matrix, K initial condition K(0) diag(0.4,0.4,1)

TABLE II
SATURATION LIMITS

Plant Parameters Estimation Lower Limit Upper Limit

Mass(m,kg) m̂ 0.1 20
b̂ = 1/m̂ 0.05 10

Gradient(θ,◦) θ̂ -20 20
ŝ = sin(θ̂) -0.4 0.4

Friction Coefficient −CV F 240 0.1
(CV F ,kg/s) f̂ = CV F /m̂ -12 -1

B. Results

The proposed adaptive observer algorithm with sliding-
mode term performance is compared with that of the recent
adaptive observer (without the term in (28)) previously carried
out by [18]. Referring to Table III, the Integral Absolute
Error (IAE),

∫∞
0
|e(t)|dt, is used as the performance index

measuring the difference between the actual and the estimated
road gradient. The low value of IAE translates to good
parameter estimation as the estimated value converges to the
true value. Figure 3(a) versus Figure 5(a) shows an excellent
estimation performance of the new algorithm, having the
estimated gradient converging close to the actual gradient
during the climbing of the slope although there is a slight
offset during the vehicle traversing the flat ground. A very
consistent mass estimation of the new estimator is evident in
Figure 3(b) as compared to the previous algorithm as shown in
Figure 5(b). The estimated mass value settles at approximately
14 kg throughout the test slope profile and slightly descends
to 12 kg towards reaching the flat ground at the end. The
recorded IAE for the road gradient estimation for the proposed
algorithm is 178.2402. In contrast, the previous algorithm
lacks in performance when it exhibits a large increase in
IAE of 229.9736. The estimated parameters, ŝ, b̂, f̂ in Figure
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Fig. 3. (a) Gradient comparison(in Degree) between the actual, θ and
estimated, θ̂ (b) Mass Estimation (kg) of the proposed novel algorithm



TABLE III
SUMMARY OF THE PERFORMANCE IN IAE

Algorithm IAE
Previous algorithm 229.9736
Proposed Finite-Time Estimation algorithm 178.2402
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Fig. 4. (a) Estimated parameters(Θ̂) consisting of ŝ, b̂, f̂ , (b) proof of PE by
which K(t)M(t) ≈ I holds experimentally, (c) Driving force,Fengine and
(d) vehicle’s velocity, V

4(a) also show excellent behaviour as they remain within the
bound of the given physical limit without saturation whereas
in Figure 5(b), the estimated parameters saturate at the given
bounds. Interestingly, the engine driving force, Fengine signal
in Figure 4(c) exhibits persistent excitation (PE) throughout
the test slope profile which assures the finite-time convergence
to the true value. Note that persistent excitation has been also
verified via the approach of Remark 3. The product K(t)M(t)
has converged to unity as evident in the experimental data
shown in Figure 4(b). Table III sums up the performance of
the proposed algorithm compared with the previous one in
terms of IAE.
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Fig. 5. (a) Gradient comparison between the actual, θ and the estimated, θ̂,
(b) Mass Estimation (kg) and (c) Estimated parameters(Θ) consisting ŝ, b̂, f̂
of algorithm from [18]

VIII. CONCLUSION

An adaptive observer with novel sliding-mode based param-
eter estimation algorithm to estimate the vehicle’s mass and the

road gradient is presented. The proposed parameter estimator
with the sliding-mode term has been proven analytically to
be finite time convergent to an error of well defined bound.
The algorithm shows significant levels of robustness to dis-
turbances and a particular class of measurement errors. The
analytical results are further supported and validated by the
practical implementation in a form of experiments conducted
on a small-scale vehicle traversing a designated test slope
profile with certain parameters tuned. The practical results
show a significant improvement over the previous algorithm
in terms of persistent excitation (PE), realistic values within
the physical bound, estimation accuracy and convergence.
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