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Estimation of the Shear Force in Transverse Dynamic Force

Microscopy using a Sliding Mode Observer

Thang Nguyen3, Said G Khan1, Christopher Edwards3, Guido Herrmann1, Loren Picco2,

Robert Harniman2, Stuart C. Burgess1, Massimo Antognozzi2 and Mervyn Miles2

Abstract— This paper concerns the application of a sliding
mode observer to the problem of estimation of the shear force
affecting the cantilever dynamics of a Transverse Dynamic Force
Microscope (TDFM). The oscillated cantilever in proximity to a
specimen permits the investigation of the specimen topography
at nano-metre precision. The oscillation amplitude, but also in
particular the shear forces, are a measure of distance to the
specimen, and therefore the estimation of the shear force is
of significance when attempting to construct TDFM images at
submolecular accuracy. For estimation of the shear forces, an
approximate model of the cantilever is derived using the method
of lines. Model order reduction and sliding mode techniques are
employed to reconstruct the unknown shear force affecting the
cantilever dynamics based on only tip position measurements.
Simulations are presented to illustrate the proposed scheme,
which is to be implemented on the TDFM set up at the Centre
for NSQI at Bristol.

I. INTRODUCTION

Atomic Force Microscopy (AFM) [1] can produce high

resolution images in ambient, aqueous and vacuum environ-

ments, making it particularly suited to the study of biological

specimens in physiological conditions. The force interaction

between the tip of a cantilever and a sample is measured

through the induced bending of the cantilever. The force

interaction measure, obtained in a raster scan over a sample

surface, creates a high resolution topographical image. These

devices are typically operated in a contact [1] or intermittent-

contact mode [2], [3].

To observe dynamic bio-molecular processes and larger

sample areas, a high (sub-second) frame rate is required

[4]. Great technological advancements have been made to

achieve a higher temporal resolution through improved elec-

tronics combined with advanced control approaches [5], [6],

via stable fast scan sample stages together with new control

approaches [7] and through miniaturisation of cantilevers [8].

Miniaturisation of cantilevers of a given material dramati-

cally increases their resonance frequency and increases the

bandwidth of the detection system [9]. The dimensions of

AFM cantilevers have been reduced to almost the optical

limit of the AFM detection system [4].

The Transverse Dynamic Force Microscope (TDFM) ad-

dresses the issue of non-contact imaging from a different an-
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gle (see Figure 1): The vertically oriented cantilever (VOC) is

horizontally, sinusoidally oscillated by a piezo actuator close

to its fundamental flexural mode, typically with an amplitude

of less than 1 nm. As the tip is lowered via a z-actuation

system towards the surface, a shear force interaction pro-

duces a reduction in the oscillation amplitude, measured

on the photo-detector. Thus, the short-range (less than 2

nm) lateral force between a vertically oriented cantilever

(VOC) and a surface is measured by recording changes in the

cantilever resonant dynamics. It has been shown that when

the TDFM operates in ambient conditions, the visco-elastic

response of the water layer between the tip and the surface

is responsible for the contrast mechanism [10]–[12]. The

vertical orientation of the cantilever in the TDFM prevents

the “snap-to-contact” experienced by conventional AFM

cantilevers when the gradient of the surface attractive force

becomes larger than the spring constant of the cantilever

[13]. The combination of VOCs with a scattered evanescent

wave (SEW) detection system [14] (Figure 1, items A, B and

photo-diode) provides increased TDFM scan rates [15]. The

high resolution of the SEW system allows miniaturisation

of VOCs far beyond those of standard AFM cantilevers,

providing a higher force sensitivity [16]. The SEW feedback

enables the user to control the vertical position of the tip

with less than a nano meter accuracy.

From the arguments above, the micro cantilever probe

in the TDFM (and in AFMs in general) is the most vital

part of an atomic force microscope. The dynamic changes

occurring in the cantilever probe while interacting with

the bio-specimen carry a wealth of information related to

the bio-specimen topography and mechanical characteristics.

Hence, it is very important to understand the dynamic

behaviour of the cantilever scanning probe and identify its

key model parameters. The problem of estimation of the

cantilever parameters in AFM devices has been investigated

for many years. Besancon et al. considered an observer-

based approach to estimate some unknown force affecting

the dynamics of a cantilever in Electric Force Microscopy

devices [17]. Xu et al. studied a two degree of freedom

mathematical model of a tapping mode AFM when the

cantilever is immersed in liquid, from which the tip-sample

interaction forces are extracted [18]. In contrast to much of

the AFM research literature (which uses horizontally oriented

cantilever), we investigate the problem of estimating the tip-

sample interaction forces in the TDFM, which employs a

non-contact scanning regime and the cantilever probe has

vertical orientation.
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It is well established that sliding mode observers exhibit

a high degree of accuracy in estimating state variables and

unknown inputs, see [19]–[23] and the references therein.

For this reason, various problems in fault detection and

isolation can also be addressed using sliding mode observers,

which can detect or reconstruct parameters such as state

variables, faults or unknown inputs, from the available in-

formation from the system under consideration [24]–[26]. In

this paper, an observer will be designed based on the method

presented in [19], where the equivalent output injection

signal is exploited to accurately reconstruct the unknown

tip-sample shear force, which results from the interaction

of the cantilever with the ordered liquid layers just above

the specimen.

Fig. 1. Simplified schematic of the TDFM together with SEW system
(adopted from [15]).

There are two main contributions in this research work.

Firstly, it proposes an ordinary differential equation (ODE)

model for the dynamics of the vertically installed cantilever

(fully immersed in liquid) of the TDFM. Secondly, a sliding

mode technique is introduced to estimate the tip-sample

interaction force, which is novel in terms of its realm

of application. Understanding the dynamics of the TDFM

cantilever probe is also an important pre-requisite for high

speed control at nano-precision.

A. Problem formulation

To model the cantilever shear force interaction [27], the

spatio-temporal dynamics of the cantilever with shear force

are best presented in the following equation

∂4EI(Y + αẎ )

∂ζ4
+ ρAsŸ + γwẎ = 0 (1)

with boundary conditions

Y (ζ = 0) = u(t) = d0 sin(ωt), (2)

∂Y

∂ζ
(ζ = 0) = 0, (3)

∂2Y

∂ζ2
(ζ = L) = 0, (4)

EI
∂3Y

∂ζ3
(ζ = L) = −f(t), (5)

where E is the Young’s modulus, α is the internal damping

constant of the cantilever, I is the second moment of area,

As is the cross-sectional area, ρ is the density of the probe,

γ is the damping coefficient of the surrounding fluid, L is

the length of the cantilever, w is the width of the cantilever,

ζ denotes position along the probe axis, Y is the transversal

displacement at any point along the probe during vibration, Ẏ
and Ÿ are the first and second derivatives of Y with respect to

time t, u(t) is the harmonic excitation signal with frequency

ω and amplitude d0 applied at the top of the cantilever, and

finally f(t) is the tip-sample interaction force applied at the

tip of the cantilever. Furthermore the tip sample interaction

force applied at the tip can be split into a viscous and an

elastic force [28]:

f(t) = − ν
∂Y

∂t

∣

∣

∣

∣

ζ=L

− κY (L) (6)

where ν is the dissipative interaction constant and κ is

the elastic interaction constant. Our aim in this paper is to

estimate the unknown shear force signal f(t), which will

allow better interpretation and understanding of the scan

result.

II. MAIN RESULTS

In this section, we will introduce the method of lines to

approximate the partial differential equation (PDE) (1) by

a system of linear time-invariant (LTI) ordinary differen-

tial equations (ODEs) [29].1 Subsequently, a reduced-order

model will be obtained by balanced truncation [30] of the

LTI. A sliding mode observer will be presented to reconstruct

the tip-sample interaction shear force.

A. Modelling of the cantilever using the method of lines

The idea is to divide the probe into n−1 equal sections and

to consider n nodes distributed along the probe. Denote Yj

as the displacement at node j and δζ as the distance between

two consecutive nodes. Using finite difference formula the

boundary condition (3) for the approximate model becomes

∂Y

∂ζ
(ζ = 0) ≈

Y2 − Y1

δζ
= 0 (7)

which implies

Y2 = Y1. (8)

The boundary conditions in (4) becomes

∂2Y

∂ζ2
(ζ = L) ≈

Yn − 2Yn−1 + Yn−2

δζ2
= 0 (9)

or equivalently

Yn − 2Yn−1 + Yn−2 = 0. (10)

Finally (5) can be approximated as

EI
∂3Y

∂ζ3
(ζ = L) ≈ EIn

Yn − 3Yn−1 + 3Yn−2 − Yn−3

δζ3

= −f(t) (11)

1This approach also retains some of the versatility of the PDE, as forces
and the level of ambient fluid can be modeled with good accuracy by
choosing for instance the model parameter γ as function of ζ . In our case,
the cantilever is fully immersed in fluid, and homogeneous values for γ will
be used.
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From (2), (8), (10) and (11) it is clear that the values of

Y1, Y2, Yn, and Yn−1 are ‘known’, i.e dependent on the

dynamics of the remaining nodes. Hence, we only need to

understand the dynamics of n−4 nodes. Each of these nodes

is described by a second-order ODE. Hence, the dynamics

of the cantilever can be represented by a state space system

of order of 2(n− 4).

The fourth partial derivative of Y with respect to the

spatial variable ζ in the PDE can be approximated as follows

∂4Yj

∂ζ4
≈

Yj+2 − 4Yj+1 + 6Yj − 4Yj−1 + Yj−2

δζ4
(12)

for j = 3, ..., n − 3. From the boundary conditions for the

approximate model, the dynamics of nodes Y3, Y4 are given

by

Ÿ3 =
1

ρA3

(

−(
6αEI3
δζ4

+ γ3w3)Ẏ3 −
6EI3
δζ4

Y3 +
4EI3
δζ4

(Y4

+ αẎ4)−
EI3
δζ4

(Y5 + αẎ5) +
3EI3
δζ4

(u+ αu̇)

)

, (13)

Ÿ4 =
1

ρA4

(

−(
6αEI4
δζ4

+ γ4w4)Ẏ4 −
6EI4
δζ4

Y4+

+
4EI4
δζ4

(Y3 + αẎ3) +
4EI4
δζ4

(Y5 + αẎ5)

−
EI4
δζ4

(Y6 + αẎ6)−
EI4
δζ4

(u+ αu̇)

)

, (14)

From (8) and (10), we have

Yn−1 =2Yn−2 − Yn−3 +
δζ3

EIn
f (15)

Yn =3Yn−2 − 2Yn−3 + 2
δζ3

EIn
f (16)

For node j = n− 3, we have

∂4Yn−3

∂ζ4
≈

1

δζ4
(−2Yn−2 + 5Yn−3 − 4Yn−4 + Yn−5

+
δζ3

EIn
f

)

. (17)

As a result, the dynamics of Yn−3 are given by

Ÿn−3 =
1

ρAn−3

(

−(
5αEIn−3

δζ4
+ γn−3wn−3)Ẏn−3

−
5EIn−3

δζ4
Yn−3 +

4EIn−3

δζ4
(Yn−4 + αẎn−4)

−
EIn−3

δζ4
(Yn−5 + αẎn−5) +

2EIn−3

δζ4
(Yn−2 + αẎn−2)

−
In−3

δζIn
(f + αḟ)

)

, (18)

Similarly for node j = n− 2, we have

∂4Yn−2

∂ζ4
≈

1

δζ4

(

Yn−2 − 2Yn−3 + Yn−4 − 2
δζ3

EIn
f

)

.

Thus, the dynamics of Yn−2 are described as

Ÿn−2 =
1

ρAn−2

(

−(
αEIn−2

δζ4
+ γn−2wn−2)Ẏn−2

−
EIn−2

δζ4
Yn−2 +

2EIn−2

δζ4
(Yn−3 + αẎn−3)−

EIn−2

δζ4
(Yn−4 + αẎn−4) +

2In−2

δζIn
(f + αḟ)

)

, (19)

An ODE for node j (j = 5, ..., n− 4) is given by

Ÿj =
1

ρAj

(

−(
6αEIj
δζ4

+ γjwj)Ẏj −
6EIj
δζ4

Yj

−
EIj
δζ4

(Yj−2 + αẎj−2 + Yj+2 + αẎj+2)

+
4EIj
δζ4

(Yj−1 + αẎj−1 + Yj+1 + αẎj+1)

)

. (20)

Denote the state variables as follows

x1 = Y3, x2 = Ẏ3 −
3EI3
ρA3δζ4

αu,

x3 = Y4, x4 = Ẏ4 +
EI4

ρA4δζ4
αu,

x2n−11 = Yn−3, x2n−10 = Ẏn−3 +
In−3

ρAn−3δζIn
αf,

x2n−9 = Yn−2, x2n−8 = Ẏn−2 −
2In−2

ρAn−2δζIn
αf,

and x2j−5 = Yj , x2j−4 = Ẏj for j = 5, ..., n− 4. Then, by

construction the LTI system

ẋp = Apxp +Bpu+Dpf (21)

y = Cpxp (22)

where Ap ∈ R2(n−4)×2(n−4), Bp ∈ R2(n−4)×1 and Dp ∈
R2(n−4)×1 is a good approximation of the PDE assuming

δζ is small enough. In the above, the output y is taken as

Yn−2 and hence the (2n − 9)th entry of Cp ∈ R1×2(n−4)

is 1, whilst the remaining entries of Cp are zeros. Since

Yn ≈ Yn−2 for large enough n, the shear force from (6) can

be approximated by

f(t) ≈ −ν
∂Yn−2

∂t
− κYn−2

= −ν(x2n−8 +
2In−2

ρAn−2δζIn
αf)− κx2n−9 (23)

or

f(t) ≈ −

(

1

1 + να 2In−2

ρAn−2δζIn

)

(νx2n−8 + κx2n−9)

Note that the κ and ν are unknown and vary with

tip/specimen distance.

B. Sliding mode observer

With a large number of nodes, the model in (21) is a

‘close’ approximation to the real PDE – at the cost of

significant computation. Since a high order system is not

convenient for computation, particularly for on-line imple-

mentation (which is the ultimate goal of the project), a model
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reduction technique will be employed to extract a lower order

model. There is significant literature on this topic, and a

broad range of model reduction methods are available in

the literature. In this paper, we will use a standard balanced

truncation method by Moore [30], which is available in

Matlab. Hence, for observer design, a model of the form

ẋ(t) = Ax(t) +Bu(t) +Df(t) (24)

y(t) = Cx(t) (25)

will be used where x ∈ Rnr is the state vector of the reduced

model, nr is the order of the model, and A,B,C,D are

fixed matrices of appropriate dimension obtained from the

balanced truncation method.

With the above model, we can use a number of slid-

ing mode observers to estimate the shear force f(t) from

knowledge of only y(t) and u(t). In the literature, numerous

methods for designing sliding mode observers have appeared:

see for example [22] and the references therein. In this paper,

the design will be based on the observer proposed in [19] for

square systems. The sliding mode observer employed here

is given as follows:

˙̂x(t) = Ax̂(t) +Bu(t)−Gey(t) +Dv (26)

ŷ(t) = Cx̂(t) (27)

where the output estimation error ey(t) = ŷ(t) − y(t) is

driven to zero in finite time [31]. In (26) the gain G is chosen

so that there exists a symmetric positive definite matrix P
such that

P (A−GC) + (A−GC)TP < 0 (28)

and

PD = (FC)T (29)

for some F ∈ R. This is essentially the observer initially

proposed by Walcott & Zak [32]. The nonlinear injection

signal in (26) is given by

v =

{

−σ
Fey

‖Fey‖
if ey 6= 0,

0 otherwise
(30)

and the scalar σ must be chosen so that ‖f(t)‖ ≤ σ. In order

to design a feasible observer, of the structure in (26)-(30),

the following must be satisfied [31], [33]:

• rank(CD) = 1 or in this case CD 6= 0
• invariant zeros of (A,D,C) must lie in C−

Here because the system is square, an analytic solution to

the design problem can be employed. In this paper the

approach proposed in [19] will be employed to synthesize

the gain G. For the cantilever problem, despite the model

reduction employed to create (A,D,C), the resulting state

space is still relatively large, and more importantly badly

numerically conditioned. The approach in [19] does not em-

ploy significant transformations of the state-space (compared

to [31] for example) and this is advantageous here. The

only transformation required is an orthogonal one to obtain

‘regular form’ for the pair (A,D) [31]. Thus there exists a

linear orthogonal change of coordinates x 7→ Tx such that

in the new coordinate system

ẋ1(t) = A1x1(t) +A2x2(t) +B1u(t) (31)

ẋ2(t) = A3x1(t) +A4x2(t) +B2u(t) +D2f(t) (32)

y(t) = C1x1(t) + C2x2(t) (33)

where the partitions x1 ∈ Rnr−1, x2 ∈ R and the matrix

sub-blocks A1, . . . , A4 have no special structure. In (32),

D2 6= 0. As argued in [19], in the regular form coordinates,

a suitable choice for the observer gain is

G =

[

A2C
−1
2

A4C
−1
2 − C−1

2 As
4

]

(34)

where As
4 is a negative design scalar. For details see [19].

Note that C2 6= 0 since CD = C2D2 and CD 6= 0 by

assumption. The scalar F from (30) satisfies

F = P2C2D2 (35)

for some positive scalar P2 (in this case).

The state estimation error col(e1, e2) = x− x̂ satisfies

ė1(t) = (A1 −A2C
−1
2 C1)e1(t) (36)

ė2(t) = Ã3e1(t) + C−1
2 As

4C2e2(t) +D2(f(t)− v) (37)

where Ã3 = A3 −A4C
−1
2 C1 −C2A

s
4C1. During the sliding

motion, ey = 0 and ėy = 0 [31] and therefore e2 = ė2 = 0
and from (37) it follows that

veq = f +D−1
2 Ã3e1(t) (38)

where veq is the so-called ‘equivalent injection’ necessary

to maintain a sliding motion [31]. Since the eigenvalues of

(A1 − A2C
−1
2 C1) are the invariant zeros of (A,D,C), the

subsystem (36) is by assumption a stable autonomous system

and e1(t) → 0 as t → ∞ and therefore

veq → f(t) (39)

In practice the equivalent injection veq (and hence the shear

force f(t)), can be extracted from (30) by using a low-pass

filter. In our case, a first order low pass filter is used to obtain

the force estimate the equivalent injection

˙̃v = −kṽ + kv, k > 0, f̃(0) = 0. (40)

and so for a large value of k, it follows that ṽ ≈ veq → f(t).
Consequently using the sliding mode observer, changes in

the shear force f(t) can be estimated in real time as the

tip descends towards the sample through the ordered water

layers. However a more succinct indication of these changes

can observed from the changes in the shear force model

parameters κ and ν from (6). Here it is proposed that in

addition to estimating f(t) in real time, this information will

be used to estimate κ(t) and ν(t) from the model given in (6)

via least squares [34]. In (6), the left hand side is available

from the equivalent injection signal which is extracted from

the nonlinear injection term in (30) via a low-pass filter

(40). Consequently to obviate the effect of any phase lag
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associated with the filter, all time dependent terms on the

right hand side of (6) will also be subject to the same filter:

˙̃Y = −kỸ + kY (L), Ỹ (0) = 0. (41)

Then it follows from (6) that

f̃(t) = −ν
∂Ỹ

∂t
− κỸ (42)

Furthermore, the filter in (41) enables us to reconstruct ∂Ỹ
∂t

as the right hand of (41), i.e. as −kỸ + kY , and hence

no measured knowledge of ∂Ỹ
∂t

is required (see for example

[34]). Standard recursive least squares procedures can then

be used to estimate κ and ν.

Remark 2.1: Note the amalgamation of sliding mode ob-

servers and least squares methods has appeared in the sliding

mode literature: see for example [35]. Here the formulation

is quite bespoke for the cantilever problem at hand and

the observer state reconstructions do not provide sufficient

information to deduce directly κ and ν. Consequently the

use of the low-pass filters and the ideas of [34] facilitate the

estimation of the shear force model parameters based only

on the estimates of f(t) and measurements of Y (L).

III. SIMULATION RESULTS

The cantilever is made of Silicon Nitride (Si3N4) and

the parameters are given as follows: Young’s modulus E =
290Gpa, density ρ = 3185kg/m3, length L = 26µm, width

W = 2µm, thickness tc = 200nm [15]. Hence, As = Wtc
and I = 1/12Wt3c. The loss factor due to internal friction

in the probe is α = 1.36655 × 10−8 and the loss factor

due to the water drag γ = 100. The elastic interaction

and dissipative interaction constants are κ = 1.02124, ν =
5.38214× 10−6, and κ = 0.070114, ν = 3.962516× 10−7

corresponding to the tip-sample distances of 0.5nm and

1nm respectively. We have chosen a sinusoidal signal with

amplitude d0 = 0.828nm and frequency ω = 28813rad/s.

Here, we use the same input signal and the same liquid

environment as in [28].

For the simulations, we have chosen n = 50. Because of

the high frequency of the excitation input signal, we need to

observe the simulations at a small time scale. Therefore, for

convenient simulation, the matrices A,B have been divided

by 1000 which effectively implies a change in the time scale

by a factor of 1000. Similarly, the input signal is scaled by

multiplying by 1 × 109 so that it can be observed at the

nanoscale level. The order of the reduced system is nr = 9.

The matrix As
4 is chosen so that the user defined pole of the

observer is −1× 106. In this example, we have chosen σ =
100. The nonlinear injection signal v and the measured tip

position Y (L) are fed through identical low-pass filters (40)-

(41) with k = 2000 to extract the equivalent injection veq
and the filtered Ỹ (L) for the least squares calculations. The

sliding mode observer designed from the previous section

is connected to the ‘real plant’ of order 92. Both the full-

order and reduced systems satisfy the conditions for sliding

mode observer design discussed earlier. The initial condition

of the state variables for the full-order model is zero and for

the observer [0, 0, 0, 0, 0, 0, 0, 0, 8 × 10−3nm]. Simulations

have been conducted in which the output Y (L) is assumed

to be measured perfectly, and also in the situation where it is

corrupted by additive Gaussian noise. Practically this could

be caused not only by sensor measurement noise, but also by

Brownian/Thermal noise, which has significant effects on the

real TDFM system. Two scenarios have been considered: one

where the tip is assumed to be away from the specimen (κ =
0.07 and ν = 0.004), and one where it is near to the specimen

sample (κ = 1.02 and ν = 0.0004). Figure 2 and Figure

5 show that the observer reconstructs the shear force with

reasonable accuracy for the two different cantilever distances.

The parameters κ and ν are estimated with good accuracy

(Figs. 3, 4)).
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Fig. 2. The shear force and reconstruction signal for a tip-sample distance
of 0.5nm.
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Fig. 3. Estimates of the shear force model parameter κ distance of 0.5nm.
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Fig. 4. Estimates of the shear force model parameter ν distance of 0.5nm.

IV. CONCLUSION

It has been shown that it is possible to obtain a real time

estimate of the shear forces affecting the VOC of a TDFM.
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Fig. 5. The shear force and reconstruction signal for a tip-sample distance
of 1nm.

This has been complemented by a parametric representa-

tion of the shear force, in terms of elastic and dissipative

constants, which gives a scaled measure of the cantilever-

specimen distance. To estimate the shear force, it has been

shown that it is sufficient to use a reduced order model

(via balanced truncation), derived from an approximate ODE

model of the cantilever dynamics. Simulations show that the

sliding mode observer based on this reduced model, can

reconstruct the unknown shear force with good accuracy even

for measurement signals subject to noise. Future experiments

will be carried out to validate our method on the TDFM rig

at the Centre for NSQI at Bristol.
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