
 Shterenlikht, A., & Alexander, N. A. (2012). Levenberg-Marquardt vs
Powell's dogleg method for Gurson-Tvergaard-Needleman plasticity model.
Computer Methods in Applied Mechanics and Engineering, 237–240, 1-9.
DOI: 10.1016/j.cma.2012.04.018

Peer reviewed version

License (if available):
Unspecified

Link to published version (if available):
10.1016/j.cma.2012.04.018

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at doi:10.1016/j.cma.2012.04.018. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73980932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cma.2012.04.018
http://research-information.bristol.ac.uk/en/publications/levenbergmarquardt-vs-powells-dogleg-method-for-gursontvergaardneedleman-plasticity-model(7ce7cc46-9448-47bb-9375-49c361ca86ec).html
http://research-information.bristol.ac.uk/en/publications/levenbergmarquardt-vs-powells-dogleg-method-for-gursontvergaardneedleman-plasticity-model(7ce7cc46-9448-47bb-9375-49c361ca86ec).html

Levenberg-Marquardt vs Powell’s dogleg method for Gurson-Tvergaard-Needleman
plasticity model

A Shterenlikht∗, NA Alexander

Faculty of Engineering, University of Bristol, Bristol BS8 1TR, UK

Abstract

The GTN continuous damage model is very popular in academia and industry for structural integrity assessment and

ductile fracture simulation. Following Aravas’ influential 1987 paper, Newton’s method has been used widely to solve

the GTN equations. However, if the starting point is far from the solution, then Newton’s method can fail to converge.

Hybrid methods are preferred in such cases. In this work we translate the GTN equations into a non-linear minimization

problem and then apply the Levenberg-Marquardt and Powell’s ‘dogleg’ hybrid methods to solve it. The methods are

tested for accuracy and robustness on two simple single finite element models and two 3D models with

complex deformation paths. In total nearly 137,000 different GTN problems were solved. We show that

the Levenberg-Marquardt method is more robust than Powell’s method. Our results are verified against the Abaqus’

own solver. The superior accuracy of the Levenberg-Marquardt method allows for larger time increments in implicit

time integration schemes.

Keywords:

GTN model, Levenberg-Marquardt method, Powell dogleg method, Slatec

1. Introduction

Gurson-Tvergaard-Needleman (GTN) [1] is a popular

pressure dependent (or porous metal) plasticity model.

The GTN model is widely used in academia and indus-

try. Typical applications include structural integrity as-

sessments of nuclear reactor pressure vessels [2] and welded

joints [3]; optimization of impact resistance of marine steels

[4]; forming of Aluminium alloys in automotive industry [5]

and steel forming [6], etc.

The GTN flow potential depends on the first and the

second stress invariants, p and q, and a set of state vari-

ables. Mathematically the GTN model results in a system

of non-linear PDEs, or in finite differences - a set of non-

linear algebraic equations.

∗Corresponding author

Email address: mexas@bris.ac.uk (A Shterenlikht)

Aravas [7] successfully used the Newton’s method for

the solution of the GTN equations. Newton’s method is

still used successfully for this problem, see e.g. [8, 9] for

recent examples.

However, Newton’s method may not converge at all, or

converge to a local minimum, if the starting point is far

from the solution. This is a well known weakness of the

Newton’s method [10, 11, 12, 13]. Hence, great care should

be taken when selecting a starting point for the Newton’s

method. In practice, if the deformation path is complex,

there might be no good guess for a starting point, so the

Newton’s method would fail.

To overcome this problem Beardsmore et al [14] suc-

cessfully applied Powell’s ‘dogleg’ (DL) method [15] to

solving the GTN equations for an implicit time integration

case. The DL method is a combination of the Newton’s

Preprint submitted to Computer Methods in Applied Mechanics and Engineering October 3, 2014

and the steepest descent (SD) methods. When the ap-

proximated solution is far from the global minimum, the

SD step is taken. The Newton’s step is taken when the

approximated solution appears to be close enough to the

global minimum. Simple single finite element problems

and an axisymmetric tensile problem were analysed in [14]

with the results validated against the Abaqus [16].

However, in this work we show an example of a rod

under tension and shear, in which the DL method fails to

solve the GTN equations.

The main purpose of this paper is to find a solution

method that is accurate and robust enough so that it can

be used to solve large numbers of GTN problems, with no

modification of the parameters of the solution method,

such as e.g. the starting point, or the scaling.

We therefore suggest looking at the solution of the

GTN equations as a non-linear optimization problem. We

apply the Levenberg-Marquardt (LM) minimization algo-

rithm [17], which is recommended for general non-linear

least squares problems in optimization literature, see e.g.

[18, p.228,233], and demonstrate that it outperforms the

DL method in all cases under analysis.

The plan for the paper is as follows. Section 2 gives a

summary of the GTN equations and discusses factors com-

plicating their numerical minimization. Section 3 gives

a summary of the LM and the DL computational rou-

tines used. Scaling is discussed in section 4. Section 5

shows convergence results for the LM and the DL meth-

ods on four test problems and compares them with the

Abaqus implementation. We show that for simple defor-

mation paths, the LM method converges quicker than the

DL. We then test the robustness of the DL and

the LM methods on problems where different ma-

terial points undergo vastly different deformation

histories. For the rod under tension and shear model the

LM method can be used for the whole of the deformation

path, while the DL method fails half way. For a 3D ten-

sile model, the LM method seems to be more robust than

the Abaqus’ own GTN solver. This means that substan-

tially larger time steps can be taken with implicit time

integration scheme when using the LM method, compared

to when using the Abaqus’ GTN solver. Finally, in sec-

tion 6 we discuss potential pitfalls of the DL method when

solving the GTN equations.

2. The GTN equations

2.1. The GTN model

The mechanical justification of the GTN model is given

in detail elsewhere [1, 7, 19, 8]. Here we are only concerned

with the numerical implementation, hence we only present

the resulting set of GTN equations.

The GTN model is an extension of the classical von

Mises plasticity. The von Mises flow potential depends

only on the second stress invariant, equivalent stress, q,

whereas the GTN potential adds dependence on pressure,

p, as well. The GTN model has two state variables: f -

the void volume fraction and εmq - the equivalent plastic

strain in the fully dense matrix. The GTN potential can

be written as:

(
q

σ0

)2

+ 2q1f cosh

(
3q2p

2σ0

)
− (1 + q3f

2) = 0 (1)

where q1, q2, q3 are fitted model parameters introduced to

help the model agree better with experiments. Following

[7] we use q1 = 1.5, q2 = 1.0, q3 = q21 .

σ0 = σ0(εmq) (2)

is the flow stress in the fully dense matrix. Typically, this

is either a piece-wise linear function based on raw exper-

imental data, see Fig. 1, or some fitted smooth function,

e.g. Ramberg-Osgood or a power law.

p and q are calculated using the classical radial return

algorithm [7]:

p = pe +K∆εp (3)

2

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 0.2 0.4 0.6 0.8 1 1.2

σ 0
, M

Pa

εq
m

Figure 1: A piece-wise linear function σ0(εmq) used in this work.

q = qe − 3G∆εq (4)

where pe and qe are the elastic predictors, calculated on the

assumption that the whole of strain increment is elastic,

∆εp is the volumetric plastic strain increment, ∆εq is the

equivalent plastic strain increment and K and G are the

bulk and the shear moduli respectively. In this work we

use the Young’s modulus of 200 GPa and the Poisson’s

ratio of 0.3.

Following [20] the GTN model includes the void nucle-

ation mechanism following a normal distribution, which is

active only for p ≤ 0:

A =


fN

sN
√
2π

exp

[
− 1

2

(
εmq −εN
sN

)2]
p ≤ 0

0 p > 0

(5)

where fN , sN , εN are parameters of the normal distribu-

tion. Following [7] we use fN = 0.04, sN = 0.1, εN = 0.3.

The GTN model is completed by the condition for the

associated plastic flow (function g1 below) and by two rules

for updating the state variables, εmq and f (functions g3

and g4 below).

Thus the GTN model is a set of 4 PDEs, which can be

written in the finite differences as:

g1 = ∆εp
2q

σ0
+ 3q1q2f∆εq sinh

(
3q2p

2σ0

)
= 0 (6)

g2 =

(
q

σ0

)2

+ 2q1f cosh

(
3q2p

2σ0

)
− (1 + q3f

2) = 0 (7)

g3 = ∆εmq (1− f)σ0 + p∆εp − q∆εq = 0 (8)

g4 = ∆f − (1− f)∆εp −A∆εmq = 0 (9)

At the start of deformation εmq (t = 0) = 0 and f(t =

0) = 0.01 - the initial void volume fraction.

Eqns. (3) and (4) clearly show the key role of the time

step for the success of the Newton’s method. If the time

increment is small, the elastic predictors, pe, qe are very

close to the new flow surface, and the required plastic cor-

rections, ∆εp,∆εq are very small. In such cases a starting

point of (0,0) for ∆εp,∆εq is close enough to the solution

and Newton’s method works well. This typically is the

case in explicit time integration scheme [16, 21, 22].

On the other hand, an implicit time integration schemes

usually use a significantly larger time increment [16]. This

results in the elastic predictor, pe, qe, going significantly

beyond the new flow surface, requiring large plastic cor-

rection. In such cases ∆εp,∆εq could be so far from (0,0),

that the Newton’s method might fail to converge [10, 12,

13]. In such cases a hybrid solution method, such as the

DL or the LM seems to be most suitable.

If a finite element model and the deformation path are

sufficiently simple, then it might be possible to choose a

better starting search point for (∆εp,∆εq,∆ε
m
q ,∆f) than

(0,0,0,0). For example if the time increment is fixed and

the deformation is monotonic, then solution from the pre-

vious time increment might be a better choice for a start-

ing point. However, in general this is not possible. If

the time increment changes significantly from one incre-

ment to another, or if the deformation changes rapidly

from e.g. tension to compression, then the solutions of the

GTN problem for two consecutive time increments might

be very different. In such cases using a solution from the

3

previous time increment as the starting point for the cur-

rent time increment is counter productive. Indeed, for the

problems analysed in this paper we obtain better conver-

gence results when using (0,0,0,0) as the starting point.

2.2. The least squares GTN problem

Matrix notation is helpful here: x ≡ (x1, x2, x3, x4)T ≡

(∆εp,∆εq,∆ε
m
q ,∆f)T , g ≡ (g1, g2, g3, g4)T , J ≡ Jij ≡

∂gi/∂xj , ||.|| is L2 norm. If we introduce the objective

function

F (x) = ||g|| (10)

then the problem of solving the system (6)-(9) can be

rewritten in the minimization framework as

min
x
F (x) (11)

and if the system (6)-(9) has a solution at all, then the only

acceptable solution of (11), x∗, is such that F (x∗) = 0

(within machine tolerance, more on this later).

Eqns. (2)-(9) possess several features, which present

at least six potential problems for most numerical solution

algorithms.

F has very narrow valleys, Fig. 2. This means F is a

lot more sensitive to some variables than to others, which

presents problems for all gradient based methods, like SD,

the DL and the LM.

The final drop to the the global minimum is extremely

steep and very localized, Fig. 3. The iterative process

must be robust enough in the initial stages, to descend

towards this very localized region.

g2 � g1, g3, g4 for large time increments. This fact

complicates choosing a good iteration step. There is a

strong suggestion in optimization literature to scale the

functions in such cases [12, 11, 23]. However, the com-

plexity of the GTN functions does not allow to choose a

reasonably simple scaling strategy.

σ0 is discontinuous at 0, which might create problems

during the initial stages of the deformation, where ∆εmq <

0 will result in εmq < 0, for which σ0 is undefined. In

addition, if a piece-wise form of σ0 is chosen, its derivative

will be discontinuous in multiple points.

Finally, function A is discontinuous, Eqn. (5). Ac-

cordingly A′ ≡ dA/dεmq is discontinuous too. However,

such discontinuity only occurs if p oscillates about 0 in a

single time increment, which is rare in practice. Together

this and the previous point result in discontinuity of the

Jacobian, specifically components Ji3, i = 1, . . . , 4.

The non-linear minimization framework naturally helps

overcoming another complication of the Aravas’ original

approach [7]. He treated x1, x2 as the two primary un-

knowns and solved (6)-(7) as a system of 2 equations,

where x3, x4 were fixed parameters [7]. Following that he

separately solved (8)-(9), again as a system of 2 equations,

to update x1, x2. This two stage process was repeated

until convergence. As shown in [14], this approach has

several drawbacks. Up to 400 iterations of sub-problem

(8)-(9) might be required, until convergence of (6)-(7) is

achieved. The Jacobian for sub-problem (6)-(7) is compli-

cated, involving a matrix inverse on each iteration, because

all implicit dependencies from (8)-(9) must be taken into

account. Finally, for some trial x1, x2, sub-problem (8)-(9)

might not have a solution.

In [14] Eqns. (6)-(9) were solved as four simultaneous

equations, which significantly improved the robustness of

the solution algorithm. In this work we solve the GTN

equations as a non-linear minimization problem, as defined

by (11).

3. Implementation

The Abaqus’ [16] own solver and it’s implemen-

tation of the GTN model were taken as a reference,

against which we validated our work. Numerical

integration of the structural equilibrium equations

(the outer loop) in the Abaqus was done with the

Newton’s method [16]. As far as we can tell from

the Abaqus Theory manual, integration of material

4

-0.04 0 0.04
-0.04

 0

 0.04

x1

x2

-0.04 0 0.04
-0.04

 0

 0.04

x2

x3

-0.04 0 0.04
-0.04

 0

 0.04

x2

x4

Figure 2: Typical contour plots of F around x = 0. The contour lines are spaced by a factor of 10.

min

solutionx2

solution x4

10-1310-1210-1110-1010-910-810-710-610-5

F

Figure 3: A typical 3D section of F around a solution. The bounds are x∗ ± 10−7. Note the extremely steep descent to the minimum.

equations (the inner loop) by Abaqus’ own solver

is also done using Newton’s method [16]. How-

ever, there is no indication in the manuals as to

the choice of the staring point.

In all cases we used automatic time incrementa-

tion scheme for the outer loop, based on the max-

imum force residuals [16].

We chose freely available Fortran routines of the Slatec

library (http://netlib.org/slatec): DNLS1 routine for the

Levenberg-Marquardt method [17, 24] and DNSQ routine

for the Powell’s dogleg method [15, 25]. There are two

reasons for this choice: (a) Fortran routines were required

because our GTN code is written as a user material sub-

routine for the Abaqus code [16]; (b) we needed to have

access to the source code to examine the exact implemen-

tation of the algorithms.

Both the LM and the DL routines use the same con-

vergence criterion:

∆ ≤ εx||Dx|| (12)

where ∆ is the step bound (trust region size), D is the di-

agonal matrix of scaling factors and εx is the user specified

maximum relative error in x at the solution.

Initially, ∆ = k||Dx(0)|| if ||Dx(0)|| 6= 0 and otherwise

∆ = k, where k is a user specified factor, and x(0) is the

5

initial guess. As we mentioned before, for lack of a better

guess, x(0) = 0 was used in this work. Therefore ∆ = k.

As we show below, the DL algorithm is very sensitive to

k.

On the following iterations, ∆ is updated based on the

success of the previous iteration, as measured by the gain

function [17, 15].

Unless specified otherwise, we used εx =
√
ε, where ε

is the machine epsilon, the largest relative spacing. We

use double precision (IEEE 64 bit), so ε ≈ 2.22 × 10−16,
√
ε ≈ 1.49× 10−8.

We note briefly that both the LM and the DL routines

use one extra convergence criteria each. In the LM rou-

tine it is the criterion based on the predicted and actual

reduction in F being smaller than a prescribed tolerance.

In the DL routine it is the criterion that the exact zero is

found, F = 0. However, in none of our numerical exper-

iments were either of these two extra criteria satisfied, so

we don’t discuss them further.

4. Scaling

It is well known that good scaling of x is vital for the

success of an iterative solver [12, 11, 23, 17, 15, 10].

4.1. Auto (internal) scaling

Both the LM and the DL Slatec routines implement

adaptive auto scaling [17], based on the norms of the columns

of the Jacobian. Initial Jacobian is used on the first iter-

ation. On the following iterations, either the current Ja-

cobian is used or the previous scaling factor, whichever is

greater:

D
(0)
j = ||J (0)

ij || (13)

D
(k)
j = max

(
D

(k−1)
j , ||J (k)

ij ||
)

(14)

However, our results (section 5 below) show that such

auto scaling doesn’t work well for the GTN problem in

many cases, because of the fast changing Jacobian.

4.2. Manual scaling

Preliminary results showed, see Fig. 4, that x1, x4 are

in the order of 10−4 to 10−2, and x2, x3 are in the order

of 10−2 to 10−1. The scaling was chosen so that the

scaled variables, Dx, are of the same order. This

simple strategy works well for many practical prob-

lems [26]. Hence we used D = diag(104, 102, 102, 104) as

a default scaling matrix.

5. Results

5.1. Two single finite element models

The behaviours of the LM and the DL routines were

first validated on simple single finite element models, one

loaded under uniaxial tension, and another loaded under

tension+shear, which are. shown schematically in Fig. 5.

The elements are cubes initially, with side length,

L = 1mm. In the uniaxial tension case the applied

displacement is u = 2L. In the tension+shear case

the applied displacement is u = L. Note that in the

tension+shear model the two right bottom nodes

are constrained only in direction 3 and are free to

move in directions 1 and 2. The prescribed mo-

tion of the top nodes in direction 2 induces motion

of the bottom right nodes to the right too, which

creates tensile stress along direction 2. Reduced inte-

gration element was used in both cases (single integration

point, C3D8R [16]).

The models were analysed with both the DL and the

LM routines with these parameters: k = 100, D = diag(104, 102, 102, 104),

εx = 10−5 ×
√
ε. Note the very small εx value. For these

simple models, i.e. the numerical routines must deal with

only a single deformation path, it was possible to find the

solution of the GTN model with very high accuracy.

The LM, the DL and the Abaqus reference implemen-

tation agree perfectly in both cases, as shown in Figs.

6,7. However, in both cases the DL routine progressed

in smaller time increments than the LM, see Tab. 1.

6

10-5

10-4

10-3

10-2

10-1

 0 10 20 30 40 50 60 70 80 90 100

|x
i|

iteration

DL single FE under tension

x1
x2
x3
x4

10-5

10-4

10-3

10-2

10-1

 0 10 20 30 40 50 60 70 80

|x
i|

iteration

LM single FE under tension

x1
x2
x3
x4

10-5

10-4

10-3

10-2

10-1

100

 0 10 20 30 40 50 60 70 80

|x
i|

iteration

DL single FE under tension+shear

x1
x2
x3
x4

10-4

10-3

10-2

10-1

 0 5 10 15 20 25 30 35 40 45

|x
i|

iteration

LM single FE under tension+shear

x1
x2
x3
x4

Figure 4: Magnitudes of solution values, |xi|, for two single finite element problems (Fig. 5) with the DL and the LM routines. The abscissa

is the finite element time increment number. Note that |x2|, |x3| ≈ 10−1 to 10−2, while |x1|, |x4| ≈ 10−2 to 10−4.

7

u1

3

u

u

u

2

3
u

uu

u

2

1

tension tension+shear

Figure 5: Schematic of the two single finite element models, the first is loaded only in tension, and the second is loaded in tension and shear.

Numbers in brackets show constrained degrees of freedom at the nodes. u is prescribed displacement.

-p
/ σ

Y

volumetric strain, εp

Abaqus

-p
/ σ

Y

volumetric strain, εp

Abaqus LM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.02 0.04 0.06 0.08 0.1

-p
/ σ

Y

volumetric strain, εp

Abaqus
LM
DL

f
volumetric strain, εp

Abaqusf
volumetric strain, εp

Abaqus LM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.02 0.04 0.06 0.08 0.1

f

volumetric strain, εp

Abaqus
LM
DL

Figure 6: Pressure, p, and void volume fraction, f , plotted against the volumetric strain εp for a single FE under uniaxial tension. Note that

the Abaqus’ reference implementation and the LM routine took 24 increments, while the DL routine took 29 increments.

-p
/ σ

Y

volumetric strain, εp

Abaqus

-p
/ σ

Y

volumetric strain, εp

Abaqus LM

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 0.004 0.008 0.012 0.016

-p
/ σ

Y

volumetric strain, εp

Abaqus
LM
DL

f

volumetric strain, εp

Abaqusf

volumetric strain, εp

Abaqus LM

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.004 0.008 0.012 0.016

f

volumetric strain, εp

Abaqus
LM
DL

Figure 7: Pressure, p, and void volume fraction, f , plotted against the volumetric strain εp for a single FE under tension+shear. Note that

the Abaqus’ reference implementation and the LM routine took 20 increments, while the DL routine took 30 increments.

8

F
iteration

LM

 1e-16
 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001
 0.01

 1
 100

 10000

 0 5 10 15 20 25 30 35

F

iteration

 1FE loaded in tension

LM
DL

F

iteration

 1FE loaded in tension

LM

 1e-16
 1e-14
 1e-12
 1e-10
 1e-08
 1e-06

 0.0001
 0.01

 1
 100

 10000

 0 5 10 15 20 25 30 35 40 45

F

iteration

 1FE loaded in tension + shear

LM
DL

Figure 8: Reduction of the objective function in increment 1 for the single FE models. The LM routine show much better convergence than

the DL.

time steps rel. avg time inc.

LM DL LM DL

tension 25 28 0.040 0.036

tension+shear 20 22 0.050 0.045

Table 1: Total number of time steps and relative average time incre-

ment (average time increment divided over the total time) for single

FE models.

In addition, for each time increment, the DL routine

took many more iterations to converge than the LM rou-

tine. Two typical examples are shown in Fig. 8.

We could not find a combination of k and D (or in-

ternal auto scaling) which would lead to the DL algo-

rithm converging at least as fast as the LM algorithm.

In our experience, the GTN problem always con-

verges faster with the LM than with the DL, no

matter the scaling. Therefore, on the basis of these

two simple examples, we conclude that the DL algorithm

[15], or at least its implementation in Slatec [25], are less

robust than the LM method for the solution of the GTN

equations.

5.2. Rod in tension+shear

The example of a cylindrical rod loaded in tension and

shear was chosen because very different deformation paths

are obtained in different parts within the same FE model.

The model and the boundary conditions are shown in Fig.

9. The rod is 100 mm long and 20 mm in diameter,

i.e. the length to diameter ratio is 5. The top end of

the rod is fully constrained. The bottom end is constrained

in the axial direction, z, and a prescribed displacement of

50 mm is applied to all bottom nodes along x. The mesh

consists of 1944 8-node first order reduced integra-

tion elements C3D8R [16]. The deformed shape and

the contour plot of the von Mises equivalent stress, q, are

also shown in Fig. 9.

Figs. 10 and 11 compare the evolution of pressure, p,

and void volume fraction, f , with volumetric strain, εp, be-

tween the reference Abaqus implementation and the LM

for points A and B respectively. There is a perfect agree-

ment between the Abaqus’ own implementation and the

LM method. Note that the DL routine could not com-

plete the full deformation path.

The complex deformation paths in both point A and

B illustrate our earlier point that using the previous time

9

z

A B

u

x

Figure 9: Cylindrical rod under tension and shear showing the boundary conditions and the contour plot of equivalent stress, q, at the end

of deformation.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0
 0.006

 0.0065

 0.007

 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

-p
/ σ

Y

f

volumetric strain, εp

Abaqus, p
LM, p

Abaqus, f
LM, f

Figure 10: Pressure, p, and void volume fraction, f , evolution for

point A of the rod under shear+tension model, see Fig. 9. Note a

complex deformation path.

increment solution, x(t), as the starting point for the cur-

rent time increment solution of the GTN equations is a

poor choice.

There are 1944 finite elements in the whole model. The

deformation proceeds in 36 steps with the LM and the

Abaqus automatic implicit time incrementation scheme,

based on mid-point force residuals [16]. Thus the GTN

system will have to be solved 69984 times, with different

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-p
/ σ

Y

f

volumetric strain, εp

Abaqus, p
LM, p

Abaqus, f
LM, f

Figure 11: Pressure, p, and void volume fraction, f , evolution for

point B of the rod under shear+tension model, see Fig. 9. Note a

complex deformation path.

10

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

 0 10 20 30 40 50

F

iteration

LM
DL, k=100
DL, k=10
DL, k=1

DL, auto scaling

Figure 12: DL problem case 1. 4% of the deformation path. Con-

vergence of the DL an the LM methods for a GTN problem with

pe = −1.263043927832757 × 103, qe = 5.392240455236696 × 103,

εmq (t) = 6.765219019610775 × 10−3, f(t) = 9.855657798939831 ×

10−3.

set of parameters pe, qe, εmq (t), f(t). It is very awkward and

time consuming to change the parameters of the solution

algorithm, i.e. k,D, εx, during the deformation. There-

fore, a solution routine is required which is robust enough

to solve tens of thousands GTN systems with no manual

intervention.

The LM routine can do this with x(0) = 0, k = 100,

D = diag(104, 102, 102, 104), εx = 10−2
√
ε. In other words

the LM method solves the GTN equations with accuracy

that is two orders of magnitude better than the generally

accepted value,
√
ε [24, 23]. Indeed the LM solution is so

accurate that Eqns. (5)-(9) are satisfied to 10−16 or even

to 10−17, whereas Kojic et al [19] claim that using Aravas’

original method [7] these equations cannot be satisfied to

below 10−8. The fact that the LM method can solve very

large sample of GTN problems very accurately, with no

change in either k,D, εx, shows its robustness.

The DL routine with the same parameters works for

only 4% of the deformation path. After that it fails to

converge. Attempts to find a solution at this point, i.e.

a particular set of pe, qe, εmq (t), f(t) GTN parameters, are

shown in Fig. 12. By reducing the initial trust region size

from 100 down to 1, the DL method converges, although

10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100
102
104

 0 10 20 30 40 50 60

F

iteration

LM
DL, auto scaling

DL, D=diag(104,102,102,104)

Figure 13: DL problem case 2. 2% of the deformation path.

Convergence of DL an LM with p = −4.338322236568409 × 102,

q = 2.159184632950240× 103, εmq (t) = 0, f(t) = 0.01.

exhibiting very undesirable oscillatory behaviour, i.e. the

objective function, F , increases in many iterations. On

the contrary, the LM method delivers a steady reduction

of F with each iteration. A little more trial and error work

shows that for this particular problem auto scaling option

delivers the fastest convergence of the DL routine, yet still

slower than that of the LM method.

However, switching to auto scaling for all 70,000 cases

makes the matters worse, and the DL method fails to con-

verge only after 2% of the deformation path, as shown

in Fig. 13. In this case switching back to D = diag(104,

102, 102, 104) leads to a fast convergence of the DL method,

yet not as fast as that of the LM method.

Fig. 12 indicated that using a smaller initial trust re-

gion step, k, is beneficial for the success of the DL method.

However, our experiments showed that auto scaling was

not successful for a complete deformation path, no matter

how small k was.

After extensive trial and error work we found that the

most robust combination of parameters for the DL method

was D = diag(103, 102, 102, 103), k = 0.01, allowing solu-

tion of the GTN problems for up to 67% of the full de-

formation path, Fig. 14. At that point the DL method

could not converge and a change of the parameters of the

11

10-20

10-15

10-10

10-5

100

105

 0 10 20 30 40 50 60

F

iteration

LM
DL, k=0.01, D=diag(103,102,102,103)

DL, k=100, auto scaling
DL, k=100, D=diag(104,102,102,104)

Figure 14: DL problem case 3. 67% of the deformation path. p =

−2.383678148938705 × 103, q = 7.044527220580412 × 103, εmq (t) =

9.441005826620887× 10−2, f(t) = 1.201198152892517× 10−2.

method was required. Fig. 14 shows that switching back

to either auto scaling or D = diag(104, 102, 102, 104) was

sufficient.

We could not find a set of the DL parameters that

would work for the whole of the deformation path. Thus

the conclusion we make is that the DL method is less ro-

bust than the LM method for the GTN problem.

5.3. 3D tensile model

In this example the extra accuracy of the LM method

allows the use of larger time increments in the implicit time

integration scheme, compared to the Abaqus’ own solver.

The model is a 3D circular cylinder of length L and

radius R, see Fig. 15. Following Aravas [7] we use L/R=4.

Prescribed vertical displacement is applied to the top sur-

face, while vertical motion of all bottom nodes is con-

strained. To promote necking at the top of the model,

the section A has a smaller radius of 0.995R. The mesh

consists of 2478 8-node first order reduced integration ele-

ments C3D8R [16]. Also shown in Fig. 15 is the axial cross

section showing the deformed shape and the contour plots

of pressure, p, at the end of the deformation. The pressure

reaches maximum at point C and minimum at point B.

Points B and C undergo very different deformation

paths, as shown in Figs. 16 and 17. As in the rod un-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-p
/ σ

Y

f

volumetric strain, εp

Abaqus, p
LM, p

Abaqus, f
LM, f

Figure 16: Pressure, p, and void volume fraction, f , evolution in

point B of the 3D tensile model, the point with the minimum final

p value, see Fig. 15.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.0015 0.003 0.0045
 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

-p
/ σ

Y

f

volumetric strain, εp

Abaqus, p
LM, p

Abaqus, f
LM, f

Figure 17: Pressure, p, and void volume fraction, f , evolution in

point C of the 3D tensile model, the point with the maximum final

p value, see Fig. 15.

12

L
R

u

A

Figure 15: 3D tensile model showing the basic dimensions and the boundary conditions on the left and the contour plot of pressure, p, drawn

on the axial cross section. R is radius. Note that at section A, the radius is reduced to 0.995R, to promote necking.

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

 0.0032 0.0034 0.0036 0.0038 0.004

-p
/ σ

Y

volumetric strain, εp

Abaqus, p
LM, p

Figure 18: Pressure, p, evolution in point B. Note that the Abaqus

solver progresses in much smaller time increments compared to using

the LM method. In this part of the deformation path the

minimum relative time increments (time increment divided

by the total time) were 1.25× 10−2 for the LM method and

1.76× 10−3 for the DL method.

der shear+tension example, there is a perfect agreement

between the Abaqus’ own implementation and the LM

method.

As in example 5.2, no combination of the DL model

parameters could be found for this model to complete the

whole of the deformation path.

For the LM routine we used the same values of the

parameters here as in section 5.2: x(0) = 0, k = 100,

D = diag(104, 102, 102, 104), εx = 10−2
√
ε.

Very low tolerance, ≈ 10−10, leads to very accurate

evaluations of the GTN functions, g, and of the Jacobian,

J . This leads to lower maximum force residuals in the im-

plicit method, hence allowing for larger time increments.

As a result the whole of the deformation path is com-

pleted within 34 time increments with the Abaqus’ own

solver, while with the LM method only 27 time increments

are required. The larger time increments used by the LM

method are clearly seen in Fig. 18, which is a fragment

from Fig. 16. Here the minimum relative time incre-

ments (time increment divided by the total time)

were 1.25× 10−2 for the LM method and 1.76× 10−3

for the DL method.

Hence, the conclusion for this example is that not only

13

is the LM method more robust than the DL approach,

but also that the LM method is significantly more accu-

rate than the Abaqus’ own solver, allowing for substan-

tially larger time increments in the implicit time integra-

tion scheme.

6. Discussion

The DL method is designed to enforce decrease in F

with each increment [15, 27]. Hence, the oscillatory be-

haviour of the objective function, F , in the DL method,

i.e. its increase and decrease on the following iteration,

Figs. 8, 12-14, is surprising. We put forward a possible

explanation of the observed behaviour.

In most cases the oscillatory behaviour occurs while

the current iterate is still far from the global minimum, see

Figs. 12-14, where the DL steps are likely to be scaled SD

steps. The oscillatory behaviour of the SD method when F

is a narrow steep valley is well understood [23, 12, 11, 13].

As shown in section 2.2, Figs. 2 and 3, the GTN objec-

tive function indeed contains regions with very dissimilar

components of Jacobian, i.e. very narrow valleys.

This problem might become worse if the trust region

size, ∆, also oscillates from one increment to another, i.e.

if poor and good steps alternate. A good step leads to an

increase of ∆, which leads to a bigger next step, which, if

F is locally in the shape of a narrow valley, might be too

big, and leads to a point where F is greater than in the

previous step.

Importantly, both arguments rest on the fact that the

objective function for the GTN problem possesses narrow

valleys, where the optimal behaviour of the DL method is

very sensitive to the method’s parameters, primarily the

initial trust region size, k, and the diagonal scaling matrix

D.

Finally, we note that Powell himself remarks that his

method ‘is less elegant than the one used by Marquardt’

and is only preferred ‘because it economizes on the number

of computer evaluations, when J is approximated numeri-

cally’ [15]. In this work the exact Jacobian is used, so even

this advantage of the DL method is lost.

However, it is still not clear why the LM method

performs so much better in narrow valleys. One

possible explanation is that in the DL method the

switch from SD to Newton’s (or dogleg) steps is

an abrupt, ‘if-then’ algorithm. In contrast, in the

LM method all steps are somewhere between the

SD and Newton’s steps, controlled by the damping

parameter [17]. Importantly, the dumping param-

eter controls both the size and the direction of the

step. So, we speculate that in the LM method,

even when the objective function is a deep valley,

the step is leading away from SD direction, due to

the damping factor. This helps the LM method

converge in such cases. However, more work is

needed to clarify this point conclusively.

7. Concluding remarks

Using the freely available Fortran library, we have demon-

strated that the Levenberg-Marquardt (LM) method is

more robust for the GTN problem than the Powell’s dog-

leg (DL) method. For simple single finite element models,

the LM converges faster than the DL. Furthermore, for

a 3D problem of a rod under combined tensile and shear

loading, no set of the DL parameters could be found that

would complete the whole of the deformation path. In ad-

dition, for a 3D uniaxial tension problem using the

LM method allows for the use of larger time incre-

ments, compared to the Abaqus’ Newton’s solver,

in implicit time integration with automatic time

incrementation scheme based on maximum force

residuals. This means that using the LM method

in the inner loop (GTN equations) leads to lower

force residuals in the outer loop (equilibrium equa-

tions), which means that the LM method can solve

the inner loop more accurately then the Newton’s

14

method. This leads us to conclude that using the

LM method for the inner loop via the Abaqus user

material subroutine is more accurate then using

Abaqus’ own implementation of Newton’s method.

Directions for further investigation are clear.

It would be interesting to check whether the conclu-

sions of this work hold as well for other pressure dependent

models, e.g. Rousselier’s [28].

Finally, the physical meaning of some of the GTN pa-

rameters puts limits on their range. q and σ0 cannot de-

crease during a plastic loading step, hence ∆εq ≡ x2 ≥

0,∆εmq ≡ x3 ≥ 0. Hence, formally the GTN problem

should be treated as a non-linear minimization with in-

equality constrains. It would be interesting to explore

whether adding these constraints, e.g. using a penalty

function [12, 11, 23, 13], would lead to a more robust al-

gorithm or to a faster convergence.

8. Acknowledgments

A Shterenlikht acknowledges financial support from the

UK Engineering and Physical Sciences Research Council

(EPSRC), grant number EP/H010947/1.

References

[1] V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture

in a round tensile bar, Acta Metallurgica 32 (1984) 157–169.

[2] B. K. Dutta, S. Guin, M. K. Sahu, M. K. Samal, A phenomeno-

logical form of the q(2) parameter in the Gurson model, In-

ternational Journal of Pressure Vessels and Piping 85 (2008)

199–210.

[3] M. K. Samal, M. Seidenfuss, E. Roos, K. Balani, Investigation

of failure behavior of ferritic-austenitic type of dissimilar steel

welded joints, Engineering Failure Analysis 18 (2011) 999–1008.

[4] J. Choung, S.-R. Cho, K. S. Kim, Impact test simulations

of stiffened plates using the micromechanical porous plasticity

model, Ocean Engineering 37 (2010) 749–756.

[5] N. Le Maout, S. Thuillier, P. Y. Manach, Aluminum alloy dam-

age evolution for different strain paths - Application to hemming

process, Engineering Fracture Mechanics 76 (2009) 1202–1214.

[6] P. D. Wu, J. D. Embury, D. J. Lloyd, Y. Huang, K. W. Neale,

Effects of superimposed hydrostatic pressure on sheet metal

formability, International Journal of Plasticity 25 (2009) 1711–

1725.

[7] N. Aravas, On the numerical integration of a class of pressure-

dependent plasticity models, International journal for numerical

methods in engineering 24 (1987) 1395–1416.

[8] M. Ben Bettaieb, X. Lemoine, L. Duchene, A. M. Habraken,

On the numerical integration of an advanced Gurson model,

International journal for numerical methods in engineering 85

(2011) 1049–1072.

[9] Z. L. Zhang, On the accuracies of numerical-integration algo-

rithms for Gurson-based pressure-dependent elastoplastic con-

stitutive models, Computer methods in applied mechanics and

engineering 121 (1995) 15–28.

[10] P. Rabinowitz (Ed.), Numerical Methods for Non-Linear Alge-

braic Equations, Gordon and Breach, 1970.

[11] L. E. Scales, Introduction to Non-Linear Optimization, Macmil-

lan, 1985.

[12] J. Nocedal, S. J. Wright, Numerical Optimization, Springer, 2

edition, 2006.

[13] D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming,

Springer, 3 edition, 2008.

[14] D. W. Beardsmore, M. A. Wilkes, A. Shterenlikht, An

implementation of the Gurson-Tvergaard-Needleman plastic-

ity model for Abaqus Standard using a trust region method,

in: Proceedings of ASME Pressure Vessels and Piping

Conference/ICPVT-11, 23-27 July 2006, Vancouver, BC,

Canada, American Society of Mechanical Engineers, pp. 615–

624. ISBN: 0-79184-757-8.

[15] M. J. D. Powell, A hybrid method for non-linear equations,

in: P. Rabinowitz (Ed.), Numerical Methods for Non-Linear

Algebraic Equations, Gordon and Breach, 1970, pp. 87–114.

[16] Abaqus, User’s manual, Version 6.10, Dassault Systèmes, 2010.

[17] J. J. Moré, The Levenberg-Marquardt algorithm: implemen-

tation and theory, in: G. A. Watson (Ed.), Lecture Notes in

Mathematics, No. 630, - Numerical Analysis, Springer-Verlag,

1978, pp. 105–116.

[18] J. E. Dennis, R. B. Schnabel, Numerical methods for uncon-

strained optimization and nonlinear equations, SIAM, 1996.

[19] M. Kojic, I. Vlastelica, M. Zivkovic, Implicit stress integration

procedure for small and large strains of the Gurson material

model, International journal for numerical methods in engi-

neering 53 (2002) 2701–2720.

[20] C. C. Chu, A. Needleman, Void nucleation effects in biaxially

stretched sheets, Journal of engineering materials and technol-

ogy 102 (1980) 249–256.

[21] T. Belytschko, W. K. Liu, B. Moran, Nonlinear Finite Elements

for Continua and Structures, John Wiley & Sons, 2000.

[22] J. C. Simo, T. J. R. Hughes, Computational Inelasticity,

15

Springer, 2000.

[23] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization,

Academic Press, 1981.

[24] K. L. Hiebert, DNLS1, FORTRAN subroutine, 1980. Minimize

the sum of the squares of M nonlinear functions in N vari-

ables by a modification of the Levenberg-Marquardt algorithm,

netlib.org/slatec/src/dnls1.f.

[25] K. L. Hiebert, DNSQ, FORTRAN subroutine, 1980. Find

a zero of a system of a N nonlinear functions in N

variables by a modification of the Powell hybrid method,

netlib.org/slatec/src/dnsq.f.

[26] M. H. Wright, Discussion on “The Current State of Software”,

in: M. J. D. Powell (Ed.), Nonlinear Optimisation 1981, Aca-

demic Press, London, 1982, pp. 409–410. Proceedings of the

NATO Advanced Research Institute held at Cambridge in July

1981.

[27] M. J. D. Powell, A fortran subroutine for solving systems of

nonlinear algebraic equations, in: P. Rabinowitz (Ed.), Numer-

ical Methods for Non-Linear Algebraic Equations, Gordon and

Breach, 1970, pp. 115–161.

[28] G. Rousselier, J.-C. Devaux, G. Mottel, G. Devesa, A method-

ology of ductile fracture analysis based on damage mechanics:

an illustration of a local approach of fracture, in: J. D. Landes,

A. Saxena, J. G. Merkle (Eds.), Nonlinear fracture mechanics:

Volume II - Elastic-Plastic Fracture, ASTM STP 995, 1989, pp.

332–354.

16

