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ABSTRACT 1 
A Personal Rapid Transit (PRT) system uses compact, computer-guided vehicles running on 2 
dedicated guideways to carry individuals or small groups directly between pairs of stations. PRT 3 
vehicles operate on demand, when a passenger requests service at his/her origin station. Because 4 
the number of trips requested from a station need not equal the number of trips ending there, 5 
some vehicles must move empty to balance the flows. The empty vehicle redistribution (EVR) 6 
problem is to decide which empty vehicles to move, either reactively, in response to known 7 
requests, or proactively, in anticipation of future requests. This paper develops a new algorithm 8 
for the EVR problem called Sampling and Voting (SV). SV chooses reactive movements using a 9 
simple nearest-neighbor rule, and it chooses proactive movements by generating an ensemble of 10 
possible sequences of future passenger requests, solving a deterministic optimization problem for 11 
each sequence individually, and then finding the empty vehicle movements that are common 12 
among the sequences. Moving vehicles proactively is essential for providing low passenger 13 
waiting times. The new SV algorithm is tested in simulation with several case study systems, and 14 
it produces significantly lower passenger waiting times than existing EVR algorithms. Variants 15 
of the SV method developed here for PRT are also applicable to conventional taxi systems and 16 
emergency response systems. 17 

18 
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1. INTRODUCTION 1 
Personal Rapid Transit (PRT) is an emerging urban transport mode. The world's first PRT 2 
system is currently undergoing final testing at Heathrow Airport in London, England (1). The 3 
basic idea of a PRT system is that it provides on-demand, non-stop travel with compact, 4 
computer-guided vehicles running on a dedicated network of unidirectional guideways. Each 5 
PRT vehicle carries either an individual or a small party traveling together by choice. The 6 
vehicle begins its trip on demand, when a passenger arrives at a PRT station and makes a request 7 
for service. Once the passenger is ready to depart, his vehicle takes the quickest path to the 8 
chosen destination station: it does not stop at intermediate stations to let other passengers on or 9 
off. Hence, a PRT system is similar to a taxi system, except that PRT vehicles are constrained to 10 
start and end their trips at stations. 11 

In general, the number of trips requested from a particular station need not equal (on 12 
average or instantaneously) the number of trips ending at that station, so that some PRT vehicles 13 
must move empty, that is, without passengers.  The question of which vehicles to move, and 14 
where to move them, is known as the empty vehicle redistribution (EVR) problem.  15 

In (2), we used a fluid limit to analyze the EVR problem in terms of the overall capacity 16 
of the PRT system – that is, the maximum demand for travel that can be met without diverging 17 
queues of waiting passengers. This fluid limit approach is useful for benchmarking proposed 18 
EVR algorithms in terms of capacity, but it has two important limitations: 19 

1. It yields only average flows of empty vehicles and does not suggest an operational 20 
algorithm for the movement of vehicles at an individual level. 21 

2. In practice, PRT systems that are presently planned will run far short of the 22 
capacity limit, and the main objective will be to minimize passenger waiting time, 23 
either at the mean or at some percentile; the fluid-limit cannot be used for this 24 
analysis. 25 

The focus of this paper is on operational EVR algorithms, which must move individual 26 
empty vehicles in response to passenger requests or in anticipation of future requests. It is 27 
assumed that the average request rate between each pair of stations is known from historical data 28 
in the form of an origin-destination demand matrix, but that the individual requests are revealed 29 
only while the system is operating. Historically, EVR algorithms have been based on decision 30 
rules (3, 4) to be executed when a new passenger arrives or a vehicle becomes empty. For 31 
example, if a station is short of empty vehicles, a vehicle is chosen according to the rules and 32 
sent there; this may simply be the nearest empty vehicle at a station that is not itself short of 33 
vehicles (5), or it may be determined by solving a transportation problem (6).  34 

This paper describes a new EVR algorithm, here called the Sampling and Voting (SV) 35 
algorithm. SV moves empty vehicles in anticipation of future passenger requests by analyzing 36 
artificial ensembles that represent possible sequences of future passenger requests over a given 37 
finite horizon. Each sequence defines a deterministic optimization problem whose (approximate) 38 
solution suggests a plan of empty vehicle movements. Features of these plans which are common 39 
across the ensemble are then extracted to determine which empty vehicles should actually be 40 
moved. Passenger waiting times with the proposed SV algorithm are significantly lower than 41 
those for existing methods, in simulation tests. 42 

The terminology and approach used here are based on the literature for vehicle routing 43 
problems (VRPs). A classical example (7) of a VRP is the distribution of goods from a 44 
warehouse to a set of stores; each day, stores request deliveries for the next day, routes are 45 
planned over night, and vehicles are dispatched on these routes in the morning. The planning 46 
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objective is typically to minimize the cost of delivering the goods. This problem is static, 1 
because all customer requests are known when the routes are being planned. A dynamic VRP (8, 2 
9) arises if `same-day' requests are to be served, because routes must be modified while the 3 
system is operating. When probabilistic information about same-day requests is known, the 4 
problem is said to be stochastic. 5 

The EVR problem is both dynamic (because requests arrive as the system is operating) 6 
and stochastic (because the mean rates are known from the demand matrix). The corresponding 7 
static problem, in which all passenger requests are known in advance, arises in the SV algorithm, 8 
because each sequence in the ensemble generated by SV defines an instance of the static EVR 9 
problem. The static problem also provides a means of benchmarking EVR algorithms in terms of 10 
passenger waiting time, because performance in the perfect information situation always matches 11 
or exceeds that where the information is uncertain. 12 

The sampling approach that we adopt has been successfully applied to several dynamic 13 
VRP variants related to the EVR problem (10–12). The use of the static problem to benchmark 14 
the performance of algorithms on the dynamic problem is known as competitive analysis, and 15 
this has also been done with dynamic VRPs (13, 14). The most relevant VRP variants are the 16 
multivehicle truckload pickup and delivery problems, where ‘truckload’ means that each vehicle 17 
can serve at most one request at a time (15), and ‘pickup and delivery’ means that each request 18 
has a particular origin and destination (14, 16). The objective in most VRPs is to minimize travel 19 
cost, but waiting times may also be considered (10); the objective of minimizing average 20 
passenger waiting time is known as a minimum latency objective (17, 18). Some dynamic 21 
problems with minimum latency objectives have also been studied (19, 20). However, none of 22 
the VRP variants described above is a perfect match for the EVR problem.  23 

The paper is laid out as follows. In section 2, we introduce the mathematical 24 
representation that we use as a simplified model of PRT operations, and we introduce two basic 25 
EVR algorithms (one for the dynamic case, one for the static case) that will be incorporated into 26 
the SV algorithm, which is described in detail in section 3. Then section 4 compares SV to other 27 
EVR algorithms in simulations with two test networks. Finally, section 5 presents conclusions 28 
and sets the scene for future work. 29 

 30 
2. PRT SYSTEM MODEL AND BASIC EVR ALGORITHMS 31 
We now develop a mathematical representation of PRT operations and use it to introduce two 32 
basic EVR algorithms: the Bell and Wong (21) Nearest-Neighbors algorithm (BWNN), which 33 
operates in a dynamic context, and the Static Nearest-Neighbors algorithm (SNN), which 34 
operates in a static context. There are two objectives. Firstly, the BWNN and SNN algorithms 35 
are components of the more complicated Sampling and Voting (SV) algorithm that we develop 36 
in section 3. Secondly, they are in themselves useful EVR algorithms which can be used to 37 
benchmark and evaluate other EVR algorithms. 38 

Since we are mainly concerned with modeling passenger waiting time and how it may be 39 
minimized with the use of EVR algorithms, we develop a mathematical model which simplifies 40 
and neglects some of the details of real-world PRT system operations. These simplifications have 41 
two flavors: 42 

1. Congestion on the guideway is ignored, so that travel times between stations are 43 
constant – thus vehicles may always depart upon the quickest path without any 44 
delay due to slot-booking processes (22, pp. 92–94) etc. 45 
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2. PRT system processes at stations are simplified. For example, we neglect 1 
spontaneous ride sharing (23), and we neglect passenger loading and unloading 2 
times. Finally, we assume that the maneuvering order of individual vehicles 3 
within stations is unconstrained. See (2) for a more detailed discussion of these 4 
points.  5 

These assumptions lead to a PRT system model that is essentially the urban taxi model of 6 
(21). Let S denote the set of stations and K denote the set of vehicles, indexed Kn,,2,1 K . Let Dij 7 
denote the demand in requests per unit time between stations Si ∈  and Sj ∈ , with Dij = 0 if i = 8 
j, and let T(i,j) be the travel time from station i to station j, with T(i,j) = 0 if i = j. 9 

Each vehicle in the system maintains a list of stations which it must visit in order. Each 10 
trip thus specified by consecutive elements of the list is either occupied (carrying passengers, 11 
thus satisfying a request) or empty (without passengers, thus specified by the EVR algorithm). 12 
Each vehicle's list evolves in time: as each trip is completed, the head of the list is deleted, and 13 
more stations are added to the tail of the list as new occupied or empty movements are assigned. 14 
If a vehicle completes all of the trips in its list, it becomes idle and remains at the last station of 15 
its final movement waiting for new trips. 16 

The key discrete events are passenger requests. These occur when a passenger (or a 17 
preformed group of passengers who intend to travel together in a single vehicle) arrive at station 18 
i and request a vehicle to take them to station j. If an empty vehicle is idle at station i, then 19 
clearly it should be assigned to the new request. Otherwise, the allocation of a vehicle is more 20 
complicated: it may so happen that there are already vehicles en route to station i, but if not, a 21 
new empty vehicle trip is required. However, the ideal situation is to move idle vehicles 22 
proactively, in anticipation of future requests, so that future passengers do not have to wait. 23 

In this model, the chief principle is that trips are completed in order, and vehicles are 24 
never rerouted from either empty or occupied movements that have previously been assigned to 25 
them. Particularly when the system is busy, rerouting might be beneficial, but it introduces 26 
further complications, such as the “indefinite deferment” of requests at outlying stations (9); as 27 
such, models that allow rerouting are the subject of ongoing research. Because the model used 28 
here does not allow rerouting, only the tail of each vehicle's list is important: specifically, we 29 
need to consider only the destination station Skd ∈][  of the last trip assigned to each vehicle 30 

Kk ∈  and the time a[k] at which this trip will be completed. When a vehicle becomes idle, we 31 
simply freeze these values so that a[k] denotes the (past) time at which the vehicle became idle 32 
and d[k] denotes the station at which it is idle. When a new trip is appended to a vehicle's list, 33 
d[k] is updated, and a[k] is recomputed according to when the new trip will be completed. 34 

 35 
Bell and Wong Nearest Neighbors (BWNN) Algorithm 36 
This algorithm is the simplest of several algorithms presented by (21).  It does not make 37 
proactive moves, but instead only moves empty vehicles in response to requests.  Specifically, 38 
when a request is received at time t with origin i and destination j, the vehicle  39 
 { }[ ])],[(][,0maxargmin ikdTtkak

k

* +−=  (1) 

is assigned.  In intuitive terms, this choice is locally optimal, because it minimizes the time that 40 
the new request waits before a vehicle is made available to serve it. Here the terms on the right-41 
hand side incorporate the time until vehicle k becomes idle and the empty vehicle trip time to 42 
reach the new request's origin station, i. This formulation includes the cases where there are 43 
vehicles that are either already idle or will become idle at station i. To complete the specification, 44 
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a tie-breaking rule is required for when the argmin in (1) is non-unique: for simplicity we choose 1 
the minimum such vehicle index k. 2 

Figure 1 illustrates the handling of vehicle request lists and the operation of the BWNN 3 
algorithm. It also shows that passenger waiting times could be reduced if future requests were 4 
known, as is the case with the SNN algorithm described below. 5 
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FIGURE 1  Illustration of the BWNN algorithm. There  are four off-line stations (labeled A 9 
– D) in a ring and two vehicles (labeled 1 and 2). Traffic flow is counter-clockwise. (a) 10 
Vehicle 1 is initially moving to station B, and vehicle 2 is idle at station A. (b) When a 11 
request for travel from C to D is received, vehicle 1 is assigned, because it gives a smaller 12 
waiting time than vehicle 2. The new request is appended to vehicle 1's request list; this 13 
requires an empty vehicle trip (dashed line) from B to C and an occupied trip (solid line) 14 
from C to D. Note that, while vehicle 1 stops at station B and station C (filled circles), it 15 
does not become idle at either station, because it has not finished with its request list. (c) 16 
However, vehicle 1 does become idle at D, in this case, because no further requests are 17 
assigned to it. (d) When another request is received from C to A, vehicle 2 is assigned, and 18 
it begins an empty trip to C. Vehicle 2 was idle at A, so it could have moved to C 19 
proactively, if the request from C had been anticipated; this would have reduced the 20 
passenger's waiting time. 21 

22 
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Static Nearest Neighbors (SNN) Algorithm 1 
We now modify BWNN to create an algorithm for the static EVR problem, in which all requests 2 
are known in advance. Let R be a set of requests, indexed Rn,,2,1 K , and for each request Rr ∈  3 
let ir and jr be the origin and destination respectively, and let tr be the time at which the request is 4 
received, with 

Rnttt <<< K21 . Like the BWNN algorithm, we step through the requests in 5 

ascending order in Rr ∈ , but in contrast to BWNN there is no notion of future or past because 6 
all of the requests are known simultaneously. For request r we assign the vehicle 7 
 { }rr

k

* tikdTkak −+= )],[(][,0maxargmin  (2) 

and update a[k*] and d[k*] accordingly. Like the BWNN rule (1), the SNN rule (2) chooses a 8 
vehicle k to minimize the request's waiting time, but with the difference that the empty trip for 9 
vehicle k can begin as early as a[k], even if the request is received much later. In other words, the 10 
SNN algorithm can move vehicles in advance of requests so that passengers are not kept waiting.  11 

Ties in (2) are common, because there are often several vehicles that could reach ir before 12 
the request at tr, and all such vehicles would give zero waiting time. To break ties, we first try to 13 
select the vehicle with the minimum empty travel time T(d[k], ir). However, if (for example) 14 
there is more than one vehicle inbound to station ir, they will all have zero empty time and so a 15 
further tie-breaking rule is required.  To this end, we select the vehicle with latest arrival time 16 
a[k]+T(d[k], ir) at ir. The idea is that this choice allows better moves as one progresses through 17 
the list of requests, because the vehicles that arrive earlier at ir have more flexibility to serve 18 
requests further down the list. Finally, if these measures are equal, we break ties by choosing the 19 
minimum such vehicle index k.  20 

With perfect information about future arrivals, SNN tends to yield average waiting times 21 
less than those for the dynamic case; quantitative comparison follows in section 4. However, 22 
because the routes produced by the SNN algorithm are not provably optimal, other algorithms 23 
may outperform SNN for generic patterns of passenger requests. In separate unpublished work, 24 
we have found that standard methods for proving the optimality of solutions to the static EVR 25 
problem have not been effective for usefully large instances. It has, however, been found (17, 18, 26 
20) that nearest neighbor heuristics often produce good solutions for other minimum latency 27 
routing problems. 28 

 29 
3. NEW EVR ALGORITHM: SAMPLING AND VOTING (SV) 30 
The main challenge addressed by the proposed SV algorithm is to move idle vehicles proactively 31 
in a dynamic context. The BWNN algorithm moves vehicles reactively in a dynamic context, and 32 
the SNN algorithm is effective at proactive movements in a static context, in which all future 33 
requests are known. The approach taken here aims to combine the best features of these two 34 
algorithms. 35 

When a new request is received at time t, SV assigns a vehicle using the BWNN 36 
algorithm. Immediately after a vehicle has been assigned to serve the request, SV may then move 37 
idle vehicles proactively. To decide which idle vehicles to move, an ensemble of nE possible 38 
sequences of nR future requests each is generated from the demand matrix. Each sequence in the 39 
ensemble, together with the current state of the system, defines an instance of the static EVR 40 
problem. Each of these instances is solved approximately using the SNN algorithm, and each 41 
resulting solution prescribes a sequence of empty vehicle trips, which constitutes `advice' on 42 
which idle vehicles the system should actually move. However, because each solution is 43 
computed for a (probably) different sequence of requests, they may offer conflicting advice. 44 
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To determine which action should actually be taken, a voting system is used. The system 1 
adopted here is that at most one idle vehicle at each station may be moved. So, each solution 2 
casts one vote on the best destination (as defined below) for an idle vehicle at each station i with 3 
idle vehicles; note that it may vote for i, which means that it votes not to move any idle vehicles 4 
from i at this decision point. If the destination with the most votes is not i, an idle vehicle at i is 5 
selected (breaking ties on minimum vehicle index) and moved. 6 

The destinations to vote for are determined as follows. The solution for each static EVR 7 
instance maps each input request to an empty vehicle trip, so each solution yields an ordered 8 
sequence of exactly nR empty trips. Empty trip { }Rnp ,,1K∈  is described by the tuple 9 

),,( ppp kji , where Kk p ∈  is the index of the vehicle used for trip p, and Sip ∈  and Sj p ∈  are 10 

the stations at which the empty trip begins and ends, respectively. Trips with pp ji =  are trivial, 11 

in that no actual empty vehicle movement is required. For each station i with idle vehicles, let 12 
{ }tkaikdKkK i ≤=∈= ][ and ][:  be the set of vehicles that are currently idle at i, and hence 13 

eligible to be moved at the current decision point. The following rules then determine the 14 
destination to vote for. 15 

i. vote for i if all vehicles in Ki were used for trips p with jp = i, or 16 
ii. vote for jp for the first trip p with ip Kk ∈  and ij p ≠ , if one exists, or 17 

iii.  vote for jp for the first trip p with iip =  and ij p ≠ , if one exists, or 18 

iv. vote for i. 19 
Rule (i) votes to leave all idle vehicles at i if they were all needed there. If an idle vehicle 20 

at i was moved to another station, rule (ii) votes to perform this trip. If none of the idle vehicles 21 
were moved, as is common when demand is light, rule (iii) looks at all trips for a hint at where it 22 
should send one of these idle vehicles. If there were no trips from station i, rule (iv) leaves them 23 
where they are. 24 

The concept of planning with an ensemble is very general, and many variants on the SV 25 
algorithm are possible, such as (a) using algorithms other than BWNN and SNN to assign 26 
vehicles to requests; (b) running the ensemble generation and voting system at different decision 27 
points; (c) using different voting systems; (d) using different rules to choose destinations from 28 
each sequence in the ensemble. The SV algorithm described here gave the lowest mean 29 
passenger waiting times among several such variants that we have tested in simulation. 30 

 31 
4. RESULTS 32 
In this section, the proposed algorithm is evaluated in simulations of two case study systems. The 33 
required input data are a network, an origin-destination demand matrix and a fleet size. The main 34 
outputs are passenger waiting times and empty vehicle use. The steady state distributions of 35 
these outputs are estimated by running long simulations with the demand matrix held constant 36 
for each run. Passenger requests from station i to station j are generated from a Poisson process 37 
with rate Dij. For convenience, passenger arrival and travel times are rounded to the nearest 38 
integer second. 39 

The observed waiting times strongly depend on how ‘heavy’ the demand is, relative to 40 
the network size and the available vehicle fleet. This is made precise using the intensity measure 41 
from (2). Given a network and a demand matrix, the method in (2) computes the minimum 42 
number of vehicles needed to serve the demand based on the required average flows of both 43 
occupied and empty vehicles. The intensity of the demand on the system is defined as the ratio of 44 
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the number of vehicles needed to the number of vehicles actually available (nK). When the 1 
intensity is larger than one, passenger requests are arriving faster than they can possibly be 2 
served, regardless of the EVR algorithm used, because there are not enough vehicles. The focus 3 
here is therefore on demands with intensity less than one. To measure the effects of intensity, an 4 
initial demand matrix is scaled up and down to produce a family of demand matrices with the 5 
same spatial distribution but different intensities between zero and one. 6 

The input data used here are the ‘Grid’ and ‘Corby’ networks and their corresponding 7 
demand matrices from (2) (for the Grid network, the demand matrix with dispersion parameter θ 8 
= 0.01 is used). The fleet size is set at nK = 200 vehicles. Intensity one corresponds to a total 9 
demand of 1414 requests/hour for the Corby system and 2035 requests/hour for the Grid system. 10 
Simulations have been conducted on nine systems in total, with between 15 and 60 stations, 11 
between 50 and 600 vehicles, and total demand at intensity one between 360 and 5050 12 
requests/hour, and the results and conclusions are consistent with those presented here. 13 

For comparison, another EVR algorithm, here called the Surplus / Deficit (SD) algorithm, 14 
is also evaluated. It is an algorithm for the dynamic EVR problem that moves vehicles 15 
proactively. The general approach in SD is similar to several other published EVR algorithms 16 
(4); it is most similar to that of (5). Each station i has an associated call time li, which is the 17 
cumulative average of all previous empty vehicle trip times to that station (simulations with 18 
exponential moving averages gave the same results). The surplus of vehicles at station i is the 19 
number of inbound vehicles (with d[k] = i) minus the expected number of requests over the call 20 
time, namely ∑ j iji Dl . When a new request is received, a vehicle is assigned using BWNN. 21 

Immediately afterward, SD may move idle vehicles proactively, as follows. For each station i 22 
with idle vehicles, in descending order by number of idle vehicles, if the surplus of vehicles at i 23 
is greater than or equal to one, an idle vehicle at i is sent to the nearest station with surplus less 24 
than zero (if any). Additionally, when a vehicle becomes idle at station i, the above actions are 25 
taken for station i only. 26 

 27 
Comparison of Algorithms 28 
Figure 2(a) compares the mean waiting times observed for the four algorithms on the Corby 29 
system. An important observation is that waiting times increase rapidly as intensity approaches 30 
one, regardless of which EVR algorithm is used, as is expected based on the definition of 31 
intensity. However, the SV algorithm produces the lowest mean waiting times at all intensities 32 
tested. In practice, we are most interested in the system's performance at around 70% to 90% 33 
intensity, because in this range the system is well-utilized, but acceptably low passenger waiting 34 
times may still be obtained. At intensity 0.8, for example, mean waiting times are 355s for 35 
BWNN, 41s for SD and 15s for SV, so SV reduces mean waiting times by 96% from BWNN and 36 
by 63% from SD. The relative reduction decreases as intensity increases, however, and in fact 37 
the SD and SV algorithms become increasingly similar to the BWNN algorithm at higher 38 
intensities, because there are fewer idle vehicles to redistribute, as shown in Figure 2(c). Figure 39 
2(c) also shows that the reduction in passenger waiting times comes from a modest increase in 40 
the average number of moving empty vehicles, or equivalently in empty vehicle travel time. The 41 
largest increase occurs at intensity 0.91, and this is from 47 concurrently moving empty vehicles 42 
with BWNN to 51 with SV (out of 200 vehicles). With perfect information about future arrivals, 43 
SNN finds routes with average waiting times less than those for the dynamic case, as expected; 44 
at intensity 0.8, the mean waiting time for SNN is 3s. Only mean waiting times are reported, but 45 
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the ranking of the four algorithms is the same at the 90th percentile of the waiting distribution; at 1 
intensity 0.8, 90% of passengers wait less than 51s with SV and less than 106s with SD. 2 

Results for the Grid network are qualitatively similar, as shown in Figure 2(b, d). 3 
However, it is notable that for all three algorithms the number of concurrently moving vehicles 4 
reaches its maximum (200 = nK) at around intensity 0.95, which is below the theoretical 5 
maximum (intensity 1). It thus appears that nearest neighbor algorithms of the type studied here 6 
do not deliver maximum possible throughput; it is not yet known whether there is any practical 7 
algorithm that does. 8 

Computation time for the SV algorithm is larger than that for the other algorithms, but 9 
SV is still fast enough for real time use with the case study networks. The mean computing time 10 
per passenger request for the SV results in Figure 2 is 0.04s (user plus system CPU time on an 11 
Intel Xeon E5405 at 2.0GHz with Red Hat g++ 4.1.2 and -O3). The largest system so far tested 12 
with SV has 60 stations and 600 vehicles. When nE = 50 sequences and nR = 750 generated 13 
requests / sequence, SV produces lower waiting times than the SD and BWNN methods on this 14 
system, and it uses 1.2s of computing time per passenger request. For this system, the demand at 15 
intensity one is 5050 requests/hour, or 0.7s per request, so the sequential SV algorithm used for 16 
testing is not fast enough for real time use at high intensity, in this case. However, SV is easy to 17 
parallelize, because each of the nE sequences can be generated and processed independently; for 18 
example, real elapsed time per request could in this case be reduced to near 0.6s if two 19 
processors were used. The main limit on the scalability of the SV algorithm is thus the time to 20 
process a single sequence. The SNN minimization (2) takes O(nK) time, so processing a single 21 
sequence takes O(nKnR) time. 22 

23 
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FIGURE 2  Mean passenger waiting times (a, b) and vehicle fleet utilization (c, d) for the 3 
Grid and Corby networks for the four algorithms. The proposed SV algorithm moves idle 4 
vehicles in anticipation of future requests, which reduces waiting times significantly below 5 
the BWNN baseline and the SD algorithm. The SNN algorithm operates with perfect 6 
information about future requests in order to estimate how much further waiting times 7 
might be reduced. Here there are nE = 50 sequences, each with nR = 300 requests for SV. 8 
Each point is averaged over 10 independent runs of 50,000 simulated passengers each. 9 

10 
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Effect of Number and Length of Ensemble Sequences on SV 1 
The SV algorithm has two free parameters. Figure 3 shows the effects of varying the number of 2 
sequences nE, and Figure 4 shows the effects of varying the number of requests, nR, in each 3 
sequence. 4 

Figures 3(a, b) show that waiting times are not very sensitive to the number of sequences 5 
used. On the Corby system, a single sequence is sufficient to reduce waiting times well below the 6 
BWNN baseline. However, Figures 3(c, d) show that using more sequences produces some 7 
further reductions in waiting time and also significant reductions in empty vehicle travel. For 8 
example, on the Grid system at intensity 0.4 with a single sequence, 65% of moving vehicles are 9 
empty on average, but this falls to 45% when 50 sequences are used. This is because a small 10 
ensemble is less likely to be representative of the actual demand, and also because the actions 11 
recommended by a small ensemble are more likely to change at each decision point. So, while a 12 
small ensemble will sometimes make good recommendations that reduce passenger waiting 13 
times, it is also likely to make bad recommendations that result in wasted empty vehicle trips. 14 

Figures 4(a, b) show that waiting times decrease for all intensities as nR increases. A 15 
sequence with more requests generates more occupied and empty vehicle trips, which makes it 16 
more likely that the sequence will vote on what to do with an idle vehicle, rather than just 17 
leaving it idle. This results in more empty vehicle movement, but also lower waiting times. For 18 
example, at intensity 0.8 on the Grid network, increasing nR from 100 to 200 increases the 19 
fraction of moving vehicles that are empty from 36% to 40%, and it decreases mean passenger 20 
waiting times from 46s to 18s. 21 
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FIGURE 3  Effect of the number of sequences (nE) on mean passenger waiting times (a, b) 3 
and the fraction of moving vehicles which are empty (c, d). Even a single sequence (nE = 1) 4 
is sufficient to significantly reduce waiting times below the BWNN baseline, but using more 5 
sequences reduces the amount of empty vehicle travel required. Here nR = 300 requests per 6 
sequence. Each point is averaged over 10 independent runs of 50,000 simulated passengers 7 
each. 8 
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FIGURE 4  Effect of sequence length (nR) on mean waiting times (a, b) and the fraction of 3 
moving vehicles which are empty (c, d). Longer sequences (with more requests) reduce 4 
passenger waiting times at the cost of modest increases in empty vehicle running. Here nE = 5 
50 sequences. Each point is averaged over 10 independent runs of 50,000 simulated 6 
passengers each. 7 

8 
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5. CONCLUSIONS 1 
The Sampling and Voting (SV) algorithm developed in this paper is a new algorithm for solving 2 
the dynamic Empty Vehicle Redistribution (EVR) problem for Personal Rapid Transit systems. 3 
Variants of SV might also be applied to manage fleets of conventional taxis or emergency 4 
response vehicles. Average passenger waiting times must diverge as the demand approaches 5 
capacity, regardless of the EVR algorithm used. However, the SV algorithm allows the system to 6 
maintain a good service level through a larger part of the intensity range than other algorithms in 7 
the literature, albeit with some additional computational cost. 8 

Simulation results show that moving idle vehicles proactively is key to providing low 9 
waiting times, because this is what the SV algorithm does that the baseline Bell and Wong 10 
Nearest Neighbors (BWNN) algorithm does not. This entails some risk of making wasted empty 11 
vehicle trips, but, in the case studies considered here, SV yields large relative reductions (up to 12 
96%) in waiting time with smaller relative increases in empty vehicle travel time, particularly at 13 
high intensities (around 22% at intensity 0.8 on the Grid network, for example). This increase in 14 
empty vehicle travel contributes to network congestion, which is not modeled here. In a system 15 
operating near its congested limit, other algorithms (or variants of SV that do model congestion) 16 
might perform better than SV as described here. 17 

The Static Nearest Neighbors (SNN) algorithm gives an approximate solution to the static 18 
EVR problem, in which there is perfect information of all future passenger requests.  We have 19 
thus used the SNN algorithm to give a rough estimate of the potential for further waiting time 20 
reductions for the dynamic EVR problem, in which only the mean request rates are known. For 21 
example, such reductions might be obtained by allowing empty vehicles to be rerouted, or by the 22 
use of empty vehicle sidings (or car barns (4)), which act as buffers for empty vehicles. SV (as 23 
currently defined) cannot deal with empty vehicle sidings, because they are effectively stations 24 
with no requests, which thus receive no vehicles. Finally, improvements may be possible in the 25 
details of the sampling algorithm, as outlined in section 3. 26 

 27 
28 
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