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Abstract

Hopf bifurcation in systems with multiple time scales takes several
forms, depending upon whether the bifurcation occurs in fast direc-
tions, slow directions or a mixture of these two. Hopf bifurcation in
fast directions is influenced by the singular limit of the fast time scale,
that is, when the ratio ε of the slowest and fastest time scales goes
to zero. The bifurcations of the full slow-fast system persist in the
fast subsystem obtained from this singular limit. However, the Hopf
bifurcation of the fast subsystem does not necessarily have the same
criticality as the corresponding Hopf bifurcation of the full slow-fast
system, even in the limit ε → 0 when the two bifurcations occur at the
same point. We investigate this situation by presenting a simple slow-
fast system that is amenable to a complete analysis of its bifurcation
diagram. In this model, the family of periodic orbits that emanates
from the Hopf bifurcation accumulates onto the corresponding family
of the fast subsystem in the limit as ε → 0; furthermore, the stability
of the orbits is dictated by that of the fast subsystem. We prove that
a torus bifurcation occurs O(ε) near the Hopf bifurcation of the full
system when the criticality of the two Hopf bifurcations is different.

1 Introduction

Dynamical systems with multiple time scales are common models for natural
phenomena such as chemical reactions, electrical circuits, lasers, and biologi-
cal processes; see [2] and references therein. These systems exhibit dynamical
behaviors that result from interactions of the different time scales. Numerical
methods for simulating single-time-scale models fail to capture some of these
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dynamics, so it is often easier to begin with an analysis of singular limits
in which the ratio of time scales becomes infinite. Along with much of the
current research in this area, this paper investigates slow-fast systems of the
form

{

εẋ = f(x, y),
ẏ = g(x, y),

(1)

where the small parameter ε explicitly represents the ratio between two time
scales and the time variable is on the slow time scale.

The singular limit ε = 0 of system (1) is a differential-algebraic system.
Trajectories are confined to the critical manifold f = 0. Existence of solu-
tions to this DAE may fail at fold points where the critical manifold has a
tangent in the subspace of fast variables. Rescaling time to the fast time
scale in system (1) produces

{

ẋ = f(x, y),
ẏ = ε g(x, y),

(2)

for which the singular limit ε = 0 is the layer equation. The variable y acts as
a parameter in the layer equation, which is also called the fast subsystem or
frozen system. The flow of system (1) approaches that of the layer equations
off the critical manifold. Thus, analysis of the singular limit of system (1)
utilizes both the DAE and the layer equations: stable equilibria of the layer
equations approximate attracting slow manifolds along which motion has a
singular limit described by the DAE.

The earliest example of periodic slow-fast dynamics is the relaxation os-
cillation, introduced by Van der Pol [15, 16]: a periodic orbit consists of seg-
ments that alternately flow along attracting slow manifolds to a fold where
they then jump along a trajectory of the layer equations to another attracting
slow manifold. Periodic orbits or more complicated attractors of the layer
equations of system (2) with ε = 0 may give rise to more complicated dynam-
ical behaviors like bursting and mixed-mode oscillations of the “full” system
with ε > 0. Bifurcations within the layer equations locate possible transi-
tions in which trajectories transition from one type of attractor to another
as the slow variables evolve. The analysis of these bifurcations, thus, serves
as a starting point for investigations of the dynamics of the full system. This
paper describes a curious phenomenon in which bifurcation analysis of the
layer equations gives information about the full system that initially appears
to be misleading.
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Equilibria of the slow-fast system (1) always occur on its critical mani-
fold. Away from folds, the Jacobian at an equilibrium has invariant subspaces
that lie close to the layer y = constant with eigenvalues of large magnitudes
O(ε−1) and close to the tangent space of the critical manifold with eigen-
values of magnitudes O(1). In a family of systems, Hopf bifurcations may
occur with a center manifold in either of these subspaces. Eigenvalues of
intermediate magnitudes arise when the center manifold involves both slow
and fast directions; this case is called singular Hopf bifurcation, and it only
occurs near folds of slow-fast systems [1]. The focus of this paper is Hopf
bifurcation where the center subspace lies close to a layer y = constant. Note
that this requires that the fast variable x of the system has dimension at least
two. We give a careful study of the singular limit of these Hopf bifurcations
as ε → 0.

In addition to Hopf bifurcation of the full system (1) or (2), the layer
equations (2) with ε = 0 can undergo dynamic Hopf bifurcation on its critical
manifold as y varies. These Hopf bifurcations will be associated with a
Hopf bifurcation of the full system only if g = 0 at the bifurcation point;
otherwise the full system does not have an equilibrium near the dynamic Hopf
bifurcation. Instead, there is a slow manifold in which trajectories flow on the
slow time scale while their transverse stability in the fast directions changes.
Due to the splitting of the Jacobian of the full system, Hopf bifurcations of
the full system with O(ε−1) eigenvalues always give rise to Hopf bifurcations
of the layer equations in the singular limit.

Hopf bifurcations have normal forms: on center manifolds these take the
form

{

ṙ = r (λ + a r2) + o(r3),

ϑ̇ = ω + b r2 + o(r2),
(3)

when written in cylindrical coordinates (r, ϑ) with parameter λ. The coef-
ficient a is the first Lyapunov coefficient whose magnitude scales with r2.
The bifurcation is subcritical and unstable periodic orbits emerge from the
equilibrium when a > 0, while the bifurcation is supercritical and stable peri-
odic orbits emerge from the equilibrium when a < 0; see [4] for more details.
The curious phenomenon studied here is that the sign of the first Lyapunov
coefficient can change discontinuously at the singular limit of system (2).
This behavior has been observed, for example, in [18, 19] and was studied
in more detail by Zhang et al. in the context of model-reduction techniques
that are common in physiological applications [11]. There are precursors to
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this phenomenon that appear in center manifold reduction: the formula for
the first Lyapunov coefficient includes terms from variables transverse to the
center manifold [12]. We complement these studies by drawing a connection
between the discrepancy in signs of the first Lyapunov coefficient and a torus
bifurcation: our main result is the following theorem.

Theorem 1.1. Assume that the slow-fast system (2) undergoes a Hopf bifur-

cation H with center subspace lying close to a layer y = constant. Let ℓ1(ε)
be the first Lyapunov coefficient of H and define ℓ1(0) = limε→0 ℓ1(ε). Now

consider the limit of H as ε → 0 as a Hopf bifurcation of the layer equations

of system (2), which we denote Hcrit, and let ℓ1(layer) be the corresponding

first Lyapunov coefficient in these layer equations. Then, if the signs of ℓ1(0)
and ℓ1(layer) are different, system (2) has a torus bifurcation that occurs for

parameters O(ε) away from H.

This paper is organized as follows. In the next section we investigate
the singular limit of Hopf bifurcations in the well-known Hindmarsh–Rose
model. This is followed by a simpler slow-fast system for which we give a
complete analysis of the singular limit of its Hopf bifurcations: in Section 3
we discuss the relationship between Hopf bifurcation of system (2) and its
singular limit in the context of this model. The connection with a torus bifur-
cation is explained in Section 3.3, where we also show that the invariant tori
in this model are neutrally stable, unlike those in a generic slow-fast family
undergoing Hopf bifurcation in its fast variables. The proof of Theorem 1.1
is discussed in Section 3.4. We end with conclusions in Section 4.

2 Motivating example

Neurons are typically modeled using Hodgkin–Huxley formalism and include
equations for the membrane potential, gating variables of ionic currents, and
sometimes an additional equation for calcium concentration that does not fea-
ture in the original Hodgkin–Huxley equations [7]. Hindmarsh and Rose [6]
introduced simplified polynomial equations that exhibit the same types of
bursting dynamics seen in models that follow the Hodgkin–Huxley formal-
ism; see [13] in this issue. Here, we investigate the Hindmarsh–Rose-type
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model from [14, 20] that is given by






ẋ = s a x3 − s x2 − y − b z,
ẏ = (x2 − y),
ż = ε (s a1 x + b1 − k z).

(4)

We use a = 0.5, b = 1, a1 = −0.1 and k = 0.2 throughout and study how
the time-scale separation ε influences a Hopf bifurcation H that arises when
varying the parameter b1 for two different choices of s, namely, s = −1.61 and
s = −2.6. The singular limit ε = 0 provides information about the dynamics
of system (4) for small enough ε > 0. Indeed, the bursting patterns of neurons
are effectively classified in terms of the bifurcation diagram generated from
the fast subsystem; see [8, 17] and also [13] in this issue.

The layer equations of (4) are defined on the (x, y)-plane, where z acts
as a parameter. The layer equations have a z-dependent S-shaped curve of
equilibria that forms the critical manifold Scrit. One of the two fold points
of Scrit gives rise to a bistable regime that ends in a Hopf bifurcation, which
we denote Hcrit. A family Γcrit of periodic orbits emanates from Hcrit. The
two cases s = −1.61 and s = −2.6 are representative for the situations where
Hcrit is supercritical, so Γcrit is attracting, and Hcrit is subcritical, so Γcrit

is repelling, respectively. We want to investigate how Hcrit influences the
behaviour of (4) as ε becomes positive and b1 is varied. Note that b1 only
appears in the z-equation of (4), which means that Scrit and Γcrit do not
depend on b1. Hence, in the limit as ε → 0, the Hopf bifurcation H of the
full system is equal to Hcrit.

For each choice of s, an (ε, b1)-dependent curve of Hopf bifurcations em-
anates from the fold point that starts the bistable regime in the singular limit.
This fold point for ε = 0 lies at the origin of (x, y, z, b1)-space, independent
of s, and it is the limit of singular Hopf bifurcation points [1] that occur
when ε > 0 is small. Figure 1(a) shows the locus of Hopf bifurcations in the
(ε, b1)-plane for the two choices of s; the corresponding Lyapunov coefficients
ℓ1 are shown in Figure 1(b). The two cases appear to be rather similar: the
curve of Hopf bifurcations is subcritical as it emanates from the origin in the
(ε, b1)-plane; note that the positive segment of the curve in the (ε, ℓ1)-plane
in Figure 1(b) is not shown in its entirety up to ε = 0. Soon after the singular
Hopf bifurcation, as b1 decreases and ε increases, the curve passes through a
degenerate Hopf bifurcation point and the criticality changes to supercritical,
that is, ℓ1 < 0. We are interested in what happens in the singular limit as ε
starts to decrease again and the curve of Hopf bifurcations reaches ε = 0 at a
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Figure 1: Loci of Hopf bifurcation for s = −1.61 and s = −2.6 in the
(ε, b1)-plane are shown in panel (a), along with the corresponding Lyapunov
coefficients ℓ1 versus ε in panel (b). For both cases the curve of Hopf bifur-
cations is subcritical as it emanates from the origin in the (ε, b1)-plane; as b1

decreases the curve passes through a degenerate Hopf bifurcation point and
becomes supercritical, that is, ℓ1 < 0.

value b1 ≪ 0 that corresponds to the point where the equilibrium lies exactly
at Hcrit on Scrit, which is at b1 ≈ −0.1449 for s = −1.61 and b1 ≈ −0.2450
for s = −2.6.

Let us first consider the case s = −1.61 where Hcrit is also supercritical.
Figure 2 illustrates the Hopf bifurcation of (4) as b1 is varied for ε = 0.1
in row (a) and ε = 0.01 in row (b). The first column shows the bifurcation
diagram projected onto the (b1, x)-plane, where both maxima and minima
are shown of the family Γ(b1) of periodic orbits that emanates from the Hopf
bifurcation point. Both Figures 2(a1) and (b1) show the classical bifurcation
diagram of a stable equilibrium losing stability in a supercritical Hopf bifur-
cation, denoted H; this bifurcation H occurs at b1 ≈ −0.1518 when ε = 0.1
and at b1 ≈ −0.1457 when ε = 0.01. The second column of Figure 2 shows
the familiy of equilibria and Γ(b1) projected onto (x, y, z)-space along with
the critical manifolds Scrit and Γcrit. For both choices of ε, the effect of vary-
ing b1 is that the equilibrium of (4) moves along Scrit and through Hcrit; it
lies at Hcrit when b1 ≈ −0.1449. Hence, as b1 increases, the actual Hopf
bifurcation H of (4) occurs slightly before the equilibrium reaches Hcrit, and
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Figure 2: System (4) with s = −1.61 and ε > 0 small enough undergoes a
supercritical Hopf bifurcation as b1 varies; the case ε = 0.1 is shown in row (a)
and ε = 0.01 in row (b). The first column shows the bifurcation diagram,
where we plot x versus b1; both maxima and minima in x of the emanating
family Γ(b1) of periodic orbits are shown. The second column shows these b1-
dependent families of equilibria and periodic orbits in (x, y, z)-space, where
z is plotted along a horizontal axis; overlayed are the critical manifold Scrit

and the family Γcrit of periodic orbits of the fast subsystem.

Figures 2(a2) and (b2) illustrate how the distance to Hcrit decreases with ε.
In fact, not only the Hopf bifurcation itself converges to Hcrit, but also the
family Γ(b1) accumulates onto Γcrit as ε → 0.

Let us now consider the case s = −2.6 where H is supercritical for ε > 0
small enough, while Hcrit is subcritical. Figure 3 shows the situation for
s = −2.6 in the same way as was done for s = −1.61 in Figure 2. Fig-
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Figure 3: System (4) with s = −2.6 and ε > 0 small enough undergoes
a supercritical Hopf bifurcation as b1 varies, which is quickly followed by a
torus bifurcation that renders the emanating family of periodic orbits un-
stable; the case ε = 0.1 is shown in row (a) and ε = 0.01 in row (b). The
first column shows the bifurcation diagram, where we plot x versus b1; both
maxima and minima in x of the emanating family Γ(b1) of periodic orbits are
shown. The second column shows these b1-dependent families of equilibria
and periodic orbits in (x, y, z)-space, where z is plotted along a horizontal
axis; overlaid are the critical manifold Scrit and the family Γcrit of periodic or-
bits of the fast subsystem, which has a subcritical rather than a supercritical
Hopf bifurcation.

ures 3(a1) and (b1) show the classical bifurcation diagram of a stable equi-
librium losing stability in a supercritical Hopf bifurcation, though now Γ(b1)
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becomes unstable soon after the Hopf bifurcation when a torus bifurcation,
labeled TR, occurs; to be precise, H and TR occur at b1 ≈ −0.2480 and
b1 ≈ −0.2405 for ε = 0.1, and at b1 ≈ −0.2453 and b1 ≈ −0.2446 for
ε = 0.01, respectively. Hence, TR lies closer to H for ε = 0.01, in panel (b1),
than for ε = 0.1, in panel (a1). The second column of Figure 3 illustrates that
H occurs slightly before but increasingly closer to the point where the equi-
librium on Scrit reaches Hcrit, which is when b1 ≈ −0.2450. Furthermore, just
as in Figure 2 the projection of Γ(b1) onto (x, y, z)-space accumulates onto
Γcrit, despite the fact that Γcrit is a family that emanates from a subcritical
rather than a supercritical Hopf bifurcation.

Figures 2 and 3 illustrate that Hcrit and Γcrit appear to be the limits of
H and Γ(b1) as ε → 0, even if the criticality of Hcrit does not match the
criticality of H. In fact, the Lyapunov coefficient ℓcrit associated with Hcrit

is typically not equal to the limit as ε → 0 of the Lyapunov coefficient ℓ1

associated with H. Due to the special form of (4), It is not hard to use [9]
and derive ℓcrit explicitly as

ℓcrit = ℓcrit(s) =
3 s2 (7 + 4 s)

s − 2
√

4 s2 + 6 s
. (5)

We compute ℓ1 in Figure 1(b) with MatCont [3], but scaled the computed
values by 1

2
. The reason for this is that the implementation in MatCont [3]

is based on the derivation by Kuznetsov in [12]; due to the difference in
normalization of the eigenvectors, the value computed by MatCont [3] is
twice that of the coefficient obtained using the derivation by Guckenheimer
and Holmes in [4], which is also used in [9]. We used the convention from [4]
throughout this paper. Equation (5) leads to ℓcrit ≈ −1.3223 for s = −1.61
and ℓcrit ≈ 7.3630 for s = −2.6, but as can be observed from Figure 1(b),
we have ℓ1 ≈ −0.2387 when (ε, b1) ≈ (0,−0.1449), and ℓ1 ≈ −0.3282 when
(ε, b1) ≈ (0,−0.2450), respectively. The discrepancy arises from the fact
that the equation for the (slow) variable z contains terms involving the (fast)
variable x that are linear or quadratic; we refer to [11] for more details.

If the system (4) is generic, then the torus bifurcation at b1 = bTR

1 will be
either supercritical or subcritical. In the supercritical (subcritical) case, the
tori will be stable (unstable) near the bifurcation, and the diameter of their

intersections with a cross-section will be proportional to
√

b1 − bTR

1 . We
used numerical integration with the algorithm dopri853 [5] to test these
predictions for system (4) with s = −2.6 and ε = 0.1. For this value of ε
the torus bifurcation occurs at bTR

1 = −0.2405336, to seven decimal places,
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Figure 4: The torus bifurcation of system (4) with s = −2.6 and ε = 0.1 and
b1 varying is supercritical. Shown are cross-sections with the plane x = 1.1
of the attractor for five values of b1, namely, b1 = −0.2405326, −0.2405246,
−0.2405086, −0.2404846, −0.2404526, respectively. The attractors are each
obtained as the limit set of a long trajectory segment computed until tran-
sients died away; then intersections with the cross-section were computed
for an additional 10, 000 time units. Each trajectory yielded over 1660 in-
tersections with the cross-section, which are plotted in blue. The values of
b1 increase quadratically from its value at the torus bifurcation, and the
cross-sectional diameters of the tori grow linearly.

which we determined both from continuation calculations of the family Γcrit

and numerical integrations. Figure 4 shows the cross-section with x = 1.1 of
five trajectories for the parameter values b1 = bTR

1 + δj , where δj = (0.00j)2

for j = 1, 3, 5, 7, and 9. For each of these values a long trajectory was
computed until it appeared to be close to its limit set; the final points in
these trajectories were selected as the initial point for the trajectories that are
displayed in the figure. The figure clearly indicates that the torus bifurcation
is supercritical with the predicted growth in the cross-sectional diameter of
the tori and that any phase locking on these tori is weak.
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3 Hopf bifurcation in a model with

rotational symmetry

Our goal is to investigate whether the observations for the Hindmarsh–Rose
model (4) are generic for slow-fast systems with a Hopf bifurcation in the fast
variables. Therefore, we introduce the following simpler model (in cylindrical
coordinates) that couples the low-order terms of the normal form (3) with a
slow variable z:







ṙ = r (λ + a r2 + z),

ϑ̇ = ω,
ż = ε (b + c r2 + d z).

(6)

System (6) consists of low-order terms in the Taylor expansion of a general
slow-fast system that is symmetric with respect to rotations around the z-
axis. Note that the equation for the slow variable z is an affine function that
also maintains the symmetry of rotation around the z-axis. The coupling of
the slow and fast variables in (6) is similar to that of the Hindmarsh–Rose
model (4); we could think of λ and a in (6) as playing the role of a and s in (4),
respectively, and the parameters b, c and d in (6) are effectively b1, a1 and k
in (4), respectively. Unfortunately, the Hindmarsh–Rose model (4) does not
have rotational symmetry, — note the replacement of the linear term s a1 x
in (4) with the quadratic term c r2 in (6) — but one would expect that an
appropriate coordinate transformation could bring (4) in the form of (6) with
additional higher-order terms that do not qualitatively alter its behavior. In
fact, not all of the dynamics that we analyze for system (6) persist with the
addition of higher-order terms; in particular, the stability of its invariant
tori can change and we explain this further in Section 3.3. Furthermore, it
is not possible to transform a system like the Hindmarsh–Rose model (4)
into system (6) with rotational symmetry such that the slow-fast structure
of the equations is preserved, unless the z-equation already possesses this
symmetry; we explain this further in Section 3.4.

With system (6) we can reproduce the phenomena observed for the Hind-
marsh–Rose model (4). Figure 5 shows bifurcation diagrams that are similar
to those shown in Figures 2 and 3. Here, the bifurcation parameter is b,
which plays the same role as b1 in (4) and we fixed λ = 1 and d = −1.
Row (a) of Figure 5 should be compared with Figure 2; the parameters
a = −1

2
and c = 1

4
are chosen such that the Hopf bifurcation H at b =

−1 is supercritical and the corresponding Hopf bifurcation Hcrit of the layer
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Figure 5: Supercritical Hopf bifurcation of system (6), where b is the bifur-
cation parameter. We fixed λ = 1, d = −1 and ε = 0.1; row (a) shows
the case with a = −1

2
and c = 1

4
and row (b) shows the case with a = 1

2

and c = −3
2
. In both cases the Hopf bifurcation occurs at b = −1 and the

case in row (b) also exhibits a torus bifurcation, which occurs at b = −0.9.
The first column shows the bifurcation diagram, where we plot r versus b;
for ease of comparison with Figures 2 and Figures 3, we plot both r and −r
indicating the amplitudes of the periodic orbits. The second column shows
the b-dependent families of equilibria and periodic orbits in (x, y, z)-space,
where x = r cos ϑ, y = r sin ϑ and z is plotted along a horizontal axis.

equations is supercritical as well. The bifurcation diagram is projected onto
the (b, r)-plane in Figure 5(a1), where we plot ±r to indicate the amplitude
of the family of periodic orbits, and into (x, y, z)-space in Figure 5(a2); in
this latter projection we defined x = r cos ϑ and y = r sin ϑ. Row (b) of
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Figure 5 should be compared with Figure 3; here, the parameters are a = 1
2

and c = −3
2
, such that H at b = −1 is supercritical, but the corresponding

Hopf bifurcation Hcrit of the layer equations is subcritical. As in Figure 3, a
torus bifurcation occurs, due to the difference in criticality of the two Hopf
bifurcations H and Hcrit; only the location of the torus bifurcation actually
depends on ε and we set ε = 0.1 in Figure 5, so that it lies at b = −0.9.
Note that the family of periodic orbits, when projected onto (x, y, z)-space in
Figure 5(b2) is oriented in the opposite direction compared to Figure 5(a2).

System (6) is amenable to a complete theoretical analysis of the phenom-
ena observed for the Hindmarsh–Rose model (4). In the next section we
consider the layer equations of (6), followed by a complete study of the Hopf
bifurcation in Section 3.2 and the nature of the torus bifurcations in Sec-
tion 3.3. We give details on the genericity of these phenomena in Section 3.4.

3.1 Hopf bifurcation in the layer equations

The layer equations of (6) have a line of equilibria defined by r = 0 that
comprise the critical manifold Scrit of the system. The fast subsystem (r, ϑ)
for a single layer, defined by fixing z, is the standard normal form for a Hopf
bifurcation; see, for example, [4] where the same notation for the parameters
is used. Hence, a is the Lyapunov coefficient that determines the criticality of
the Hopf bifurcation, denoted Hcrit. The effect of z is to translate Hcrit away
from λ = 0; the Hopf bifurcation occurs at λ = −z. Fixing λ and varying z,
the origin (r = 0) is a dynamic Hopf bifurcation of the layer equation which
occurs at z = −λ. With either interpretation, the Hopf bifurcation Hcrit is
supercritical if a < 0 and subcritical if a > 0. For a < 0, a family Γcrit of
stable periodic orbits exists for z > −λ, whereas for a > 0, the family Γcrit

contains unstable periodic orbits that exist for z < −λ; in both cases, Γcrit

is defined by r =
√

|λ + z|/|a|.
It is important to realize that the examples of the Hindmarsh–Rose

model (4) and system (6) have the property that the bifurcation parame-
ters, b1 for (4) and b for (6), appear only in the equation for the slow variable
z. As a consequence, the layer equations only depend on z, but not on b1 or
b, respectively. This means that there is an obvious choice for the Hopf bifur-
cation Hcrit of the layer equations that corresponds to the Hopf bifurcation H

in the full system. Since λ is the bifurcation parameter for the normal form
of the Hopf bifurcation, it seems logical to choose λ as the additional bifurca-
tion parameter also for the singularly perturbed system (6). Then both the

13



full system and the layer equations depend on the bifurcation parameter and
we obtain a curve of Hopf bifurcations Hcrit. Hence, the perceived accumu-
lation of the invariant objects for the Hindmarsh–Rose model (4) as ε → 0
onto the corresponding invariant objects of the layer equations is actually
less straightforward. We make this distinction between bifurcation param-
eters explicit by considering both b and λ as candidates for the bifurcation
parameter, that is, we consider the case where the layer equations depend on
the bifurcation parameter as well as the case where it does not.

3.2 Hopf bifurcation in the full three-dimensional

system

As soon as ε > 0, we must consider the full three-dimensional slow-fast
system (6). The system has a circular symmetry, so we can reduce its analysis
to the coordinates (r, z) where the reflection symmetry (r, z) → (−r, z) is a
vestige of the original circular symmetry. Equilibria of the reduced system
with r > 0 correspond to periodic orbits of the original system, and their
stability gives the stability of the periodic orbits. The Hopf bifurcation H of
system (6) occurs at the point (r, z) = (0,−b/d) when λ = b/d. The point
(r, z) = (0,−b/d) corresponds to an actual equilibrium of the full system and
we assume that this equilibrium is stable “before” the Hopf bifurcation, that
is, for λ < b/d if λ is the bifurcation parameter, or b < 0 if b plays this role.
This means that we must have d < 0.

We can establish the criticality of H via a center manifold reduction. To
this end, we consider the coordinate transformation w = z + b/d + e r2 and
calculate

ẇ = ε(b + c r2 + d z) + 2 e r2 (λ + a r2 + z)

= ε d w + (ε c − ε d e + 2 e (λ − b/d)) r2 + 2 e r2 w + 2 a e r4 − 2 e2 r4.

We now set e := c/d, which removes the quadratic term at the Hopf bifurca-
tion when λ = b/d. This means that the cubic term of the r-equation in the
new coordinates will again be given by the Lyapunov coefficient. We find

ṙ = r

(

λ − b

d
+

(

a − c

d

)

r2 + w

)

,

with Lyapunov coefficient a − c/d. Hence, the criticality of the Hopf bifur-
cation H at λ = b/d for the full three-dimensional slow-fast system (6) does
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not depend on ε. Recall that we assume d < 0, so that H can have opposite
criticality from that of the fast subsystem if a and c have opposite signs.
In particular, when a > 0, so that Hcrit is subcritical, and c is such that
c < ad < 0, then H is supercritical, as is the case for the Hindmarsh–Rose
model (4); see also Figure 5(b).

Figures 2 and 3 give the impression that the family Γ(b1) of periodic
orbits that emanates from the Hopf bifurcation H in the Hindmarsh–Rose
model (4) accumulates onto the family Γcrit of periodic orbits of the fast
subsystem, regardless of a possible change in criticality for Hcrit. We can
analyze this behavior more precisely using the simplified system (6). The
bifurcation H of (6) gives rise to a family of stable periodic orbits with

r =

√

−d λ + b

a d − c
and z =

−b − c r2

d
=

c λ − a b

a d − c
,

that surround the origin for λ > b/d if H is supercritical, that is, if a−c/d < 0,
or for λ < b/d if a − c/d > 0.

The family Γcrit defined by the layer equations of system (6) satisfies
λ + a r2 + z = 0, that is, we have a λ-dependent family of periodic orbits

r =

√

λ + z

−a

that is parameterized by z. If λ is fixed and b acts as the bifurcation pa-
rameter, then Γcrit is the same family for all b. The family Γ(b) lies on this
surface of curves Γcrit, as illustrated in Figure 6(a) for λ = 0. If we fix b, on
the other hand, then Γcrit changes with λ and it is the location of the fam-
ily Γ(λ) on this surface that is determined by b; this situation is illustrated
for b = 0 in Figure 6(b). Both panels in Figure 6 show Γcrit as a (green)
surface and Γ(b) or Γ(λ) as a thick (blue) curve for system (6) with a = 1

2
,

c = −3
2

and d = −1. The value of ε > 0 is arbitrary, because the respective
families do not depend on ε. The thick (red) curve in the (z, r)-plane where
the bifurcation parameter, b or λ, is zero illustrates that the projection onto
(r, z)-space, or more precisely, (r, ϑ, z)-space, is the same for both families.
Indeed, from

z =
c λ − a b

a d − c
⇔ b

a d − c
=

c λ

a (a d − c)
− z

a
,

we find

r =

√

−d λ + b

a d − c
=

√

−λ − z

a
.
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Figure 6: System (6) with a = 1
2
, c = −3

2
, d = −1 and ε > 0 arbitrary, has a

one-parameter family Γ(b) of periodic orbits, shown for λ = 0 in panel (a),
and a one-parameter family Γ(λ) of periodic orbits, shown for b = 0 in
panel (b), that lie on the two-parameter surface Γcrit parameterized by the
slow variable z and the bifurcation parameter. In panel (a), the surface Γcrit

does not depend on b, but the value of λ determines its location in (b, z, r)-
space. In panel (b), the surface Γcrit depends on both λ and z, and the value
of b determines the location of Γ(λ) on this surface.

Hence, despite the fact that the family of periodic orbits emanating from H

under variation of a parameter is not the same as the family Γcrit, which is
strictly speaking a higher-dimensional manifold, the respective projections
onto the phase space of the full system (6) are identical.

3.3 The torus bifurcation

We can show that a difference in criticality between the Hopf bifurcations H

of the full system and Hcrit of the fast subsystem must give rise to a torus
bifurcation TR as illustrated in Figure 3. To simplify the algebra, we translate
the Hopf bifurcation point (r, z, λ) 7→ (r, z+b/d, λ−b/d) of system (6) to the
origin and rescale time by the factor −d. This leads to the reduced system

{

ṙ = r
(

−λ
d

+ b
d2 − a

d
r2 + z

)

,

ż = ε
(

c
d2 r2 − z

)

,
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which has the same form as system (6) with b = 0, d = −1, and λ, a and c
replaced by −λ/d + b/d2, −a/d and c/d2, respectively. Hence, we revert to
system (6) and assume b = 0 and d = −1.

Let us now consider the particular case where system (6) undergoes a
supercritical Hopf bifurcation H, which occurs at λ = 0, but a > 0 so that
Hcrit is subcritical, independent of λ. This means that c < −a < 0 such that
a+c < 0. The stability of the family of periodic orbits that bifurcates from H

is determined by the Jacobian matrix of the reduced system at such points,
which is given by

Jac(r, z) =

(

λ + 3 a r2 + z r
2 ε c r ε d

)∣

∣

∣

∣

(r, z)=
“q

−λ

a+c
, −λ c

a+c

”

=





−2 a λ
a+c

√

−λ
a+c

2 ε c
√

−λ
a+c

−ε



 .

Note that the determinant of this matrix is 2 ε λ, which is positive for λ > 0.
Its trace is negative for sufficiently small λ > 0, so the periodic orbits are
stable, but the family becomes unstable in a torus bifurcation TR as soon as
this trace changes sign, that is, when

−2 a λ

a + c
− ε = 0 ⇔ λ =

−(a + c)

2 a
ε > 0.

We observe that the torus bifurcation TR occurs for λ = O(ε), approaching
the Hopf bifurcation H as ε → 0. Hence, when the parameters are such that
the criticality of Hcrit and H are opposite, a torus bifurcation TR at distance
O(ε) away from H changes the stability of the family of periodic orbits ‘back’
to what is predicted from Hcrit in the singular limit.

Unfortunately, system (6) does not provide further insight into the be-
havior near a singularly perturbed Hopf bifurcation. The torus bifurcation
of system (6) is totally degenerate: at the torus bifurcation, the system is
integrable and a (vertical) one-parameter family of invariant tori exists only
for this particular parameter value. We have the following result:

Theorem 3.1. The torus bifurcation of system (6) at λ = −(a+c)
2 a

ε, a > 0,
b = 0, c < −a < 0 and d = −1 is totally degenerate: there is a one-

parameter family of tori that surrounds the neutrally stable periodic orbit of

this system. This family is bounded by the parabolic cylinder z +a r2 = 0 and

the line r = 0.

To demonstrate this fact, we fix the value of λ at its torus bifurcation
value, introduce new coordinates for system (6) by setting r = ρβ with β =
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Figure 7: Phase portrait of system (6) projected onto the (r, z)-plane. The
parameters are λ = 0.1, a = 1

2
, b = 0, c = −3

2
, d = −1 and ε = 0.1 where a

torus bifurcation takes place. The figure illustrates that there is a family of
invariant tori (blue closed curves) bounded by the surface z = −1

2
r2 (thick

cyan curve) and the z-axis.

λ/ε = −a+c
2a

and rescale the system by a factor exp(γ z) with γ = 1/λ =
− 2a

ε (a+c)
to produce the system

{

ρ̇ = ρ exp(γ z) (−ε + 2 a2

a+c
ρ−

a+c

a + 2 a
a+c

z),

ż = ε exp(γ z) (z − c ρ−
a+c

a ),
(7)

where we have suppressed the equation for ϑ. System (7) is divergence free
and has first integral

h(ρ, z) = ε ρ exp(γ z)
(

a ρ2 β + z
)

= ε ρ exp

(

− 2 a z

ε (a + c)

)

(

a ρ−
a+c

a + z
)

.

Figure 7 displays a phase portrait of the integrable system. We fixed a = 1
2
,
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b = 0, c = −3
2
, d = −1 and ε = 0.1 in system (6), so that the torus bifurcation

occurs at λ = ε = 0.1. Both the parabolic cylinder z + a r2 = 0 (thick cyan
curve) and the line r = 0 are zero-level sets of h(ρ, z), since ρ = r1/β . We
verified numerically that the level sets form bounded closed curves (colored
blue) only for (r, z) inside this region, where h(ρ, z) < 0.

3.4 Genericity of the bifurcation phenomena

System (6) is the paradigm model for the phenomena observed for the Hind-
marsh–Rose model (4) and it plays an essential role in the proof of The-
orem 1.1 stated in the Introduction. Indeed, we believe that system (6)
correctly identifies the criteria for the existence of a torus bifurcation, even
though its torus bifurcations are degenerate.

There is an ε-dependent scaling that eliminates ε from the dynamics of
system (6): namely, set r = ε1/2R, z = εZ, λ = εΛ, b = εB and T = εt in
system (6) to yield

{

R′ = R (Λ + a R2 + Z),
Z ′ = B + c R2 + d Z.

Since this last system is independent of ε, the scaling shows exactly how the
dynamics of the original system (6) depend upon ε. Moreover, higher-order
terms in a Taylor expansion of system (6) will tend to zero with this scaling,
suggesting that the dynamics displayed by (6) are universal — apart from
the degeneracy of the family of tori. In particular, when the first Lyapunov
coefficients ℓ1(0) and ℓ1(layer) have opposite signs, there will be a torus
bifurcation. Furthermore, the difference between the parameters at which
the torus and Hopf bifurcations occur has magnitude βε with β determined
by the Taylor coefficients of the system.

In dynamical systems with a single time scale, normal forms have been
central to the analysis of bifurcations. The theory of normal forms seeks
model systems that have the following two properties:

• Every family undergoing bifurcation can be transformed to a normal
form, up to higher-order terms of a Taylor expansion.

• The normal form family is structurally stable — perturbations of the
family produce topologically equivalent families.
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The model system (6) that is the focus of our analysis satisfies neither of
these properties. It clearly does not have the second property because of the
neutral stability of its invariant tori, but this can be remedied by the addition
of appropriate higher-order terms in either the fast or slow equations. Normal
forms for codimension-two zero-Hopf bifurcations [4] are a closely related
example in which this phenomenon has been analyzed.

With regard to the first property, normal forms for slow-fast systems
should respect the slow-fast structure. This means that coordinate changes
(u, v) = h(x, y) used to transform system (1) to a normal form should have
the property that v depends only on the slow variable y. If one restricts
coordinate changes to ones that have this property, then perturbations of
the model system (6) in which ż fails to have rotational symmetry cannot be
transformed to ones that do. On the other hand, symmetric normal forms
can be achieved by coordinate changes that alter the slow-fast structure by
O(ε). Transformations in which v is a function of (εx, y) still yield a slow-fast
system and are sufficiently general to complete the reduction to normal form.
The transformed fast equations are ε-dependent, but a tedious calculation
shows that the change in its first Lyapunov coefficient is O(ε).

Here are a few details of these normal form calculations. Consider a
system of the form

ẋ = −ω y + x (λ + a (x2 + y2) + z),
ẏ = ω x + y (λ + a (x2 + y2) + z),
ż = ε (b + s x + c (x2 + y2) + d z),

that adds an asymmetric linear term to the equation for ż in system (6). As
above, we reduce to the case b = 0 that places the equilibrium at the origin
and set λ = 0 where the Hopf bifurcation occurs. We want to compute the
contribution of the term s x in the equation for ż to the first Lyapunov coef-
ficient. The Jacobian is no longer in Jordan form: its right eigenvectors are
(ε d± ω i, ω ∓ ε d i, ε s)T and (0, 0, 1)T . To order ε, a linear change of coor-
dinates to (u, v, w) that restores Jordan form produces terms proportional to
ε s u w and ε s v w in the equation for ẇ. When performing a center manifold
reduction, these terms do not affect the first Lyapunov coefficient. There are
also new quadratic terms proportional to s in the equations for u̇ and v̇, but
these are O(ε) and do not produce an O(1) change in the first Lyapunov co-
efficient. In contrast, the quadratic terms ε c (x2 + y2) of ż do produce O(1)
changes in the first Lyapunov coefficient as we saw in the argument above.
These calculations confirm that the system (6) represents a normal form for
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Hopf bifurcation with fast eigenvalues of a slow-fast system, provided that
coordinate transformations are allowed that alter the slow-fast structure by
O(ε). We conclude that systems with Hopf bifurcations in their fast variables
also have nearby torus bifurcations when the first Lyapunov coefficients ℓ1(0)
and ℓ1(layer) have opposite signs. While the original slow-fast structure may
be lost, the time-scale separation of oscillation frequencies on the invariant
tori remains intact.

4 Conclusions

We have analyzed Hopf bifurcations that occur in slow-fast systems where
the eigenvectors of the purely imaginary eigenvalues are oriented in fast di-
rections. As a motivating example, we used a model of Hindmarsh–Rose type
that is used as a paradigm model for bursting patterns in neurons [14, 20].
We introduced a simpler model in cylindrical polar coordinates for which all
computations can be done explicitly. The Hopf bifurcation H has a singu-
lar limit that corresponds to a Hopf bifurcation Hcrit in the layer equations.
Similarly, we found that the first Lyapunov coefficient of H has a singular
limit, but this limit does not agree with the first Lyapunov coefficient of the
corresponding Hcrit; in fact, they can even have opposite signs. When the
signs of these Lyapunov coefficients differ, oscillations that couple slow and
fast variables appear near periodic orbits of small amplitude and give rise
to torus bifurcations. The stability of the invariant tori emerging from this
bifurcation depends upon higher-order terms in a Taylor series expansion,
analogous to the invariant tori appearing in the unfolding of a codimension-
two fold-Hopf bifurcation of an equilibrium with a zero eigenvalue and a pair
of purely imaginary eigenvalues [4]. In examples, parameter ranges with at-
tracting invariant tori are likely to be small, but not “exponentially” small,
if the Taylor expansions contain generic higher-order terms.

The role of parameters in the singular limit of a slow-fast system remains a
confusing aspect of our investigations. The slow variables of a system become
parameters of the layer equations whose equilibrium points constitute the
entire critical manifold of the system. Equilibrium points of the full system
typically have a well-defined limit determined by the slow equations, but the
distinction between different points of the critical manifold is largely lost in
the layer equations themselves. While varying a single parameter µ of the
full system, an isolated Hopf bifurcation H is replaced in the family of layer
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equations by a codimension-one manifold of Hopf bifurcations Hcrit, that is,
the family Hcrit has the same dimension as the critical manifold. Thus it can
be awkward to identify “the” Hopf bifurcation Hcrit of the layer equation,
and there are different cases that depend upon how µ enters the system.

If µ appears in each fast subsystem and the appropriate eigenvalues cross
the imaginary axis transversally as µ varies, then each fast subsystem in a
region of slow-variable parameters will have a Hopf bifurcation. This is the
case when µ = λ in the system (6). By selecting the slow variables at the
limit of H as ε → 0, we identify a fast subsystem and a Hopf bifurcation point
on the family Hcrit that is naturally compared with the Hopf bifurcation H

of the full system.
On the other hand, we have highlighted circumstances where µ appears

only in the slow equations, for example when µ = b in the system (6). In
these circumstances, the layer equations do not depend on µ at all. In this
situation, the typical behavior will be that there is a codimension-one set of
slow variables that have equilibrium points with purely imaginary eigenval-
ues. Varying a slow variable transverse to this submanifold is necessary for
the real parts of the eigenvalues to change in the layer equations. The whole
manifold of Hopf bifurcations Hcrit still has the same dimension as the critical
manifold, but it is fibered by lines parallel to the µ-axis. While we can still
identify a Hopf bifurcation point on the family Hcrit that corresponds to the
Hopf bifurcation point H in the full system, varying µ in the fast subsystem
through this point does not produce a Hopf bifurcation: one of the slow
variables must be used as a parameter to obtain the bifurcation. Setting the
value of this parameter at the bifurcation, we can find the value of µ that
gives the limit of the desired equilibria of the full system as ε → 0. These
issues of parameter dependence are one more way in which the singular limit
of a slow-fast system is truly singular. Despite these differences, we have
found that the families of periodic orbits emanating from the Hopf bifurca-
tion of the full system approach those of a suitably chosen one parameter
family undergoing Hopf bifurcation in the layer system.
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