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Canard cycles in aircraft ground dynamics

James Rankin, Mathieu Desroches, Bernd Krauskopf, and Mark Lowenberg
Faculty of Engineering

University of Bristol

Bristol, UK, BS8 1TR

The loss of lateral stability of an aircraft turning on the ground is associated with a rapid tran-
sition from small-amplitude oscillations to large-amplitude relaxation oscillations over a very small
parameter range. This phenomenon is shown to correspond to a canard explosion, where the lon-
gitudinal velocity of the aircraft acts as a slow variable of the system. The associated family of
canard cycles is identified and the canard explosion is shown to be directly related to the successive
saturation of tyre forces at the two main landing gears. We present a canonical two-dimensional
slow-fast vector field model that captures the key features of this type of canard explosion.

A canard explosion is one of the most striking dynam-
ical features exhibited by systems with a separation of
timescales: it describes the transition, over a minute pa-
rameter range, from small oscillations born in a Hopf
bifurcation to large-scale oscillations of relaxation-type
that feature slow and fast segments. Relaxation oscilla-
tions and associated canard transitions have been found
in several applications, for example, in models of chemical
reactions [1], neuronal activity [2] and rotating machin-
ery [3], but the archetypal example is the Van der Pol
oscillator [4]. The original treatment of canard explosion
in Ref. [5] used techniques from non-standard analysis;
an analytical treatment of the phenomenon followed in
Ref. [6] and the first concrete example, in aircraft engine
vibrations, appeared in Ref. [3].

In the Van der Pol system, as in many other examples,
there is an explicit separation of timescales, meaning that
the system is in a standard form with a slow variable y
and a fast variable x, where the parameter ε represents
the separation of timescales. The system has a cubic crit-
ical manifold for ε = 0 (the fast nullcline) whose outside
branches are stable while its inner branch is unstable.
The classical relaxation oscillations for small ε > 0 have
two slow and two fast segments: the system slowly follows
a stable branch of the critical manifold until it reaches
fold point where the system jumps in the fast direction to
the other stable branch. The system slowly flows to the
other fold point, jumps again and the process repeats.
The oscillations are actually born in a Hopf bifurcation
and at the nearby transition to relaxation oscillations,
which occurs in an exponentially small parameter inter-
val, one finds a family of periodic orbits that follow a part
of the unstable inner branch for a considerable length of
time. Such orbits are referred to as canard orbits, hence
the name canard explosion; see Refs. [5, 6] for more back-
ground information.

In this paper we present a canard explosion in a quite
different context — the loss of lateral stability of a pas-
senger aircraft making a turn on the ground under con-
stant thrust of its engines. We consider a fully parameter-
ized mathematical model of a midsize passenger aircraft.
The aircraft has a tricycle configuration with two wing-
mounted main landing gears and a nose landing gear that

is used for steering. The airframe is represented with six
degrees of freedom, and important nonlinear effects are
captured in the component models for the tyres and the
aerodynamics. The longitudinal velocity Vx, the lateral
velocity Vy and the rotational velocity Wz about the ver-
tical axis already give a reasonable description of the dy-
namics. Three further degrees of freedom, the vertical
velocity Vz , roll velocity Wx and pitch velocity Wy need
to be included in order to accurately model assymetric
loading between the landing gears. This mathematical
model has been validated against an industry-standard
multibody dynamics model; see Ref. [7] for details. The
model used here was specifically developed to work with
continuation software and the results in this paper are
computed using AUTO [8]. Indeed, continuation meth-
ods and bifurcation analysis [9, 10] have proved effective
in the study of flight dynamics, road vehicle dynamics
and aircraft ground dynamics [11–13].

Constant-radius turning circle solutions are steady-
states of the model that can be tracked under variation
of parameters, of which the most important one is the
steering angle. We will also vary the thrust setting; all
other parameters are set to realistic values as in Ref. [7].
From the application point of view, the aim is to de-
fine the safe operating limits for an aircraft turning on
the ground, which corresponds to finding the parameter
region where the constant-radius turning solution is sta-
ble. Beyond this stability region one finds laterally un-
stable behaviour where the aircraft is not able to follow
the constant-radius turning solution any longer. More
specifically, the stability boundary corresponds to Hopf
bifurcations that give rise to stable periodic orbits, which
are non-constant radius solutions [14].

Figure 1(a) shows the result of a one-parameter bifur-
cation analysis in the steering angle δ, where the longi-
tudinal velocity of the aircraft Vx is used as a measure of
the solutions. The engine thrust is set to T = 14% of the
maximum available, a value for which laterally unstable
dynamics exist [7]. The grey curve in Fig. 1(a) is a branch
of steady-state solutions, which are stable along the solid
segments and unstable along the dashed segment. The
changes of stability occur at the Hopf bifurcations H1 for
δH1

≈ 2.94◦ and H2 for δH2
≈ 10.35◦. A branch of pe-
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FIG. 1. Panel (a) shows a single branch (grey) of steady-
state solutions represented by the longitudinal velocity Vx

[m/s] as a function of the steering angle δ [deg]; the associated
constant-radius turn is stable along solid grey segments and
unstable along the dashed grey segment. Changes in stability
occur at the Hopf points H1 and H2; maximal and minimal
values of Vx along a connecting branch of periodic solutions
are plotted in black. Panel (b) shows the (Vx, Vy)-phase plane
projection of the periodic orbit at δr = 6.5◦; panel (c) shows
the corresponding CG-trace in the (X, Y )-ground plane [m].

riodic solutions that connects the two Hopf bifurcations
is represented in Fig. 1(a) by two black curves showing
the maximal and minimal values of Vx along the branch;
note that the maximal curve closely follows the unstable
steady-state solutions. Near both H1 and H2 one notices
a rapid drop in the minimal value of Vx along the peri-
odic orbit, which then reaches a lower value that changes
only gradually with δ. Figure 3(b) shows an example of
a typical periodic orbit in projection onto the (Vx, Vy)-
plane, namely the one at δr = 6.5◦ with a period of about
81 s. The direction of the flow along the periodic orbit is
indicated by an arrow, and markers spaced at 1 s inter-
vals indicate the slow-fast nature of the dynamics. Much
more time is spent near Vy = 0, which indicates that Vx

is a slow variable in this part of phase space; this slow
part is followed by a quick transition back to small values
of Vx. Overall, we find a relaxation oscillation with one
slow and one fast segment, which corresponds to a lat-
erally unstable turn. This is illustrated in Fig. 1(c) with
a trace of the aircraft’s center of gravity (CG) position
over the (X, Y )-ground plane; markers (drawn to scale)
at equally-spaced time intervals show the attitude of the
aircraft relative to the CG-trace. The initial condition
on the periodic orbit is chosen where the longitudinal ve-
locity Vx is maximal. The aircraft attempts to follow a
constant-radius turning circle but then starts to oversteer

more and more, resulting in the loss of lateral stability
and a spin; this goes along with a dramatic decrease of
Vx. The aircraft then comes to a halt, after which it
speeds up under the constant thrust of the engines to
again attempt to follow a constant-radius turning circle
and the process repeats. Note that in Fig. 1(c) it is nec-
essary to translate and rotate a copy of the CG-trace,
then align and connect it to the final point to obtain the
next period’s motion.

We now concentrate on the exact nature of the sharp
drops in Vx near the two Hopf points. Close to H2 the
branch of periodic solutions initially grows with a square-
root type progression (as is to be expected near a Hopf
bifurcation); however, as δ is decreased there is a sharp
and sudden drop in the minimal value of Vx at δc2 ≈

9.83◦. Close to H1 we find an almost immediate and even
larger drop of Vx at δc1 ≈ 2.92◦. The sharp increase in the
amplitude difference over a small parameter range that
we find close to both Hopf bifurcations is characteristic
of a canard explosion. The points of canard explosion δc2

and δc1 are determined here as the points on the branch
of periodic orbits with steepest increase in amplitude.

We proceed to confirm that we are indeed dealing with
canard explosions near H1 and H2. Due to the complex-
ity of the equations of motion under consideration it is
not possible to identify the timescale separation explic-
itly in terms of system parameters. However, we found
clear evidence in Fig. 1(b) of slow-fast dynamics in the
relaxation-type periodic solutions at δr, where Vx acts as
a slow variable and Vy as a fast variable of the system.
The non-trivial Floquet multipliers of the periodic orbit
are all very strongly attracting (< 10−6), and the fast
variables Vz, Wx, Wy change very little. The spinning
motion is captured by both the lateral velocity Vy and the
rotational velocity Wz , and the former is chosen as the
representative of the system’s fast motion. We, therefore,
present the dynamics in the (Vx, Vy)-plane and progress
by computing critical manifolds — fast nullclines of the
system — near H1 and H2. More specifically, we add
the constraint V̇x = 0 to the system of equations, which
freezes the dynamics of the slow variable Vx. By treat-
ing Vx as a parameter and computing steady states of
the reduced system the critical manifolds associated the
canard explosions near H1 and H2 can be obtained. It
is important to note that, locally near the Hopf point
and throughout the respective canard explosion, there is
no observable dependence of the critical manifold on the
steering angle δ.

Figure 2 shows the critical manifolds at δc1 and δc2 in
panels (a) and (b), respectively; the corresponding fam-
ilies of periodic orbits continued from the nearby Hopf
points are also shown. Each critical manifold has an
upper attracting branch (solid grey curve) and a lower
repelling branch (dashed grey curve). Figure 2 exhibits
all the main features associated with canard cycles and
a canard explosion. First of all, very close to the Hopf
bifurcation H1 and H2 of the full system there are cor-
responding folds F1 and F2 of the critical manifold; the
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FIG. 2. Family of canard orbits in the (Vx, Vy)-plane of the
canard explosion at δc1 near the Hopf bifurcation H1 (a) and
at δc2 near the Hopf bifurcation H2 (b); the thick black curve
indicates the maximal canard. Also shown is the critical man-
ifold; its stable branch is solid grey and its unstable branch
dashed grey.

distance between the Hopf and fold points is of order ε,
where ε represents the timescale separation between the
slow and fast variables [5]. Secondly, the periodic or-
bits originating from H1 and H2, respectively, increase
rapidly in size as δ is varied away from the Hopf points.
What is more, they follow not only the stable part of
the critical manifold, but also a segment of its unstable
branch, which clearly identifies them as canard periodic
orbits. In both Fig. 2(a) and (b) we identify a maximal
canard (thick black curve), which follows the unstable
part of the critical manifold for the longest time. No-
tice further that periodic orbits that are smaller than
the maximal move up from the unstable branch straight
towards the stable branch of the critical manifold. By
contrast, periodic orbits that are larger than the maxi-
mal canard initially move down from the unstable branch
and return to the stable branch of the critical manifold
after an excursion towards negative values of Vy. In the
standard terminology, the smaller periodic orbits are re-
ferred to as “canards without heads” and the larger ones
as “canards with heads” [5]. The canard orbits shown in
Fig. 2 (a) and (b) exist over exponentially small ranges of
the parameter δ. Notice that the largest periodic orbit in
panel (b) is already a relaxation oscillation as it does not
follow the unstable part of the critical manifold; compare
with Fig. 1(b).

It is clear from Fig. 1(a) that there is a noticeable
distance between the Hopf bifurcation point H2 and the
canard explosion at δc2. Near H1, on the other hand, we
find that the canard explosion at δc1 occurs extremely
close to H1; moreover, the bifurcation H1 is actually
subcritical and is immediately followed by a fold of the
branch of periodic orbits (although this cannot be seen
on the scale of Fig. 1(a)). In order to understand this
difference, we present in Fig. 3(a) a two-paramter bifur-
cation diagram in the (δ, T )-plane. A (solid grey) curve
H of Hopf bifurcations terminates at a Bogdanov-Takens
point BT on a (dashed grey) curve L of limit point (or
saddle-node) bifurcations; note that the lowest point on L
is a cusp point. The physical relevance of passing a limit
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FIG. 3. Panel (a) shows a two-parameter bifurcation dia-
gram in the (δ, T )-plane, consisting of a curve H of Hopf bi-
furcations (grey) and a curve L of limit point bifurcations
(dashed grey) that meet at a Bogdanov-Takens bifurcation
point BT ; the black curve C is the locus of the canard ex-
plosion. The inset (b) shows the difference ∆T between the
curves C and H as a function of δ. Panels (c), (d) and (e)
show one-parameter bifurcation diagrams of Vx versus T at
fixed δ = 2.93◦, δ = 12◦ and δ = 36◦, respectively.

point bifurcation in the system and the significance of
the Bogdanov-Takens point are discussed in Refs. [7, 14];
we remark that the two limit points one encounters for
T = 14% lie outside the range shown in Fig. 1(a). Also
shown in Fig. 3(a) is the (black) curve C representing
the locus of canard explosion (again determined as the
point of steepest slope on the branch of periodic orbits).
The curve C follows the Hopf curve H very closely for
smaller values of the steering angle δ, but deviates more
and more from it as δ becomes larger. In fact, the curves
C and H intersect at the point c0 ≈ (3.53◦, 12.92%); this
can be seen clearly in the inset panel (b), which shows
the signed distance ∆T in T between the two curves.
We remark that the point c0 corresponds to a degener-
ate Hopf bifurcation, where the branch of periodic solu-
tions increases to full-size relaxation oscillations at the
bifurcation point. Since the distance between the Hopf
bifurcation H and the canard explosion C is known to
be of order ε [5], Fig. 3(b) gives an indication of how
ε depends on the steering angle δ (or, alternatively, on
the thrust setting T ). Moreover, for δ < c0 the Hopf
bifurcation is subcritical as is shown in Fig. 3(c), and for
δ > c0 the Hopf bifurcation is supercritical as is shown in
Fig. 3(d). Note that the longitudinal velocity Vx at the
Hopf point is larger in panel (c) compared with panel (d);
in general, we find that Vx ∝ 1/δ for solutions along H .
For large values of δ the branch of periodic solutions no
longer exhibits a canard explosion; rather, the transition
to relaxation oscillations is gradual, as shown in Fig. 3(e).

The discussion above is crucial from an operational
point of view, because it explains the type of stability
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loss the aircraft encounters when attempting a turn with
excessive speed. The subcritical case is characteristic of
manoeuvres performed at high velocity, where a small
steering input is sufficient for the aircraft to lose lateral
stability. In this case, the forces on both the inner and the
outer main landing gear tyres saturate in unison, which
means that they both start to skid simultaneously. Phys-
ically, this means that the aircraft enters a spin imme-
diately after the loss of stability of the constant-radius
turn; this behaviour is represented by the dynamics fol-
lowing large-amplitude relaxation oscillations. In con-
trast, the supercritical case is characteristic of manoeu-
vres performed at lower velocities where a large steering
input is required. In this case, when lateral stability is
lost the system will initially be in the region after the
Hopf point but before the canard explosion. Physically,
in this dynamical regime the tyres on the inner main
landing gear start to skid, but the tyres on the outer
gear are still able to compensate and provide some de-
gree of lateral stability. Hence, a complete loss of lateral
stability is avoided, as long as the steering angle does not
move beyond the canard explosion.

In order to capture the key qualitative features of the

canard explosion found here, which differs from examples
in the literature, such as the Van der Pol system, we now
present the planar model vector field

εẋ = y + (x − a) exp
(x

b

)

, (1)

ẏ = α − x, (2)

where ε is the explicit timescale separation parameter
and α is the bifurcation parameter that determines the
position of the system’s fixed point. The parameters a
and b determine the shape of the critical manifold, which
is given by setting the right-hand side of Eq. (1) equal to
zero. Note the critical manifold does not depend on α;
it has a fold at x = a − b and the line y = 0 is a vertical
asymptote where x tends to −∞. There is a Hopf point
at α = αH = a−b, which, as is the case in the Van der Pol
system, occurs exactly at the fold of the critical manifold.
Figure 4 illustrates the canard explosion of Eqs. (1)–(2)
for a = −3 and b = 10 and ε = 0.001. Panel (a) shows
the characteristic steep increase in the absolute value of
y after the supercritical Hopf bifurcation at αH = −13.
The corresponding canard periodic orbits are shown in
panel (b) together with the critical manifold, which has
a (solid grey) stable branch and a (dashed grey) unstable
branch.

Comparison of Figs. 1(a) and 2 with Fig. 4 shows that
the main features of the canard explosion in the aircraft
ground dynamics model have indeed been captured by
Eqs. (1)–(2). Hence, this planar vector field model can
be regarded as a normal form for this type of canard ex-
plosion, of which the only other example in the literature
is the more complicated two-dimensional system studied
in Ref. [15]. From the application’s point of view, the
canard cycles correspond to the rapid and total loss of
lateral stability of the aircraft due to the saturation of
the tyres at both main landing gears. Hence, the loca-
tion of the canard explosion emerges as the most critical
stability boundary from an operational and design per-
spective.
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