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Abstract
After-depolarisation is a hallmark of excitability in hippocampal pyramidal cells of CA1

and CA3 regions, because it constitutes the subthreshold relation between inward and out-
ward ionic currents. This relationship determines the nominal response to stimuli and pro-
vides the necessary conditions for firing a spike or a burst of action potentials. Nervertheless,
after-depolarisation is an inherently transient phenomenon that is not very well understood.
We study after-depolarisation using a single-compartment pyramidal-cell model based on
recent voltage-clamp and current-clamp experimental data. We systematically investigate
CA1 and CA3 behaviour and show that changes to maximal conductance of T-type Ca2+-
current, muscarinic-sensitive and delayed rectifier K+-currents are sufficient to switch the
behaviour of the model from a CA3 to a CA1 neuron. We use model analysis to define
after-depolarisation and bursting threshold. We also explain the influence of particular ionic
currents on this phenomenon. This study ends with a sensitivity analysis that demonstrates
the influence of specific currents on excitability. Counter-intuitively, we find that a decrease
of Na+-current could cause an increase in excitability. Our analysis predicts that a change
of high-voltage activated Ca2+-current can have a similar effect.

Keywords: Excitability; Mathematical Model; Transient Dynamics; After-depolarisation
(ADP); Nullcline; Sensitivity Analysis

1 Introduction
In this paper we study the mechanisms underlying the excitability of the hippocampal pyramidal
neurons that are the principal excitatory neurons of the hippocampus. Excitability in neurons is
known as the ability to integrate and amplify perturbations received in the form of stimuli, and
to produce a spike response (Hodgkin and Huxley, 1952; Izhikevich, 2006). The hippocampus
is critical for the formation of new memories and is one of the first brain areas to show damage
in Alzheimer’s disease. It is also a common focus site in epilepsy that can be damaged through
chronic seizures (Andersen et al., 2007). Hence, changes in excitability of neurons in this brain
region may have a profound impact on the overall performance of the brain (Brown and Randall,
2009; Harvey et al., 2009; Kile et al., 2008; Misra et al., 2008).
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Figure 1: Electrophysiological differences between CA1- and CA3-area neurons; in a long-
stimulus experiment 100 pA current is injected into a cell for 500 ms; in a short-stimulus experi-
ment 2 nA current is injected into a cell for 2 ms; panels (a) and (b) show the typical responses of
a CA3-area neuron to long and short stimuli, respectively; similarly, panels (c) and (d) show the
typical responses of a CA1-area neuron to these two stimuli, respectively; panels (e) and (f) show
the time traces of the injected current for the long- and a short-stimulus experiments, respectively.

From an electrophysiological point of view, pyramidal neurons in CA1 and CA3 exhibit
noticeably different behaviours; Fig. 1 illustrates examples of the responses for two in-vitro
current-clamp experiments. The left column of Fig. 1 presents a long-current injection experi-
ment, where current of magnitude 100 pA (e) is injected into a CA3 (a) and CA1 (c) neuron for
the duration of 500 ms. The right column of Fig. 1 presents a short-current injection experiment,
where 2 nA current (f) is injected into a CA3 (b) and CA1 (d) neuron for the duration of 2 ms.
Pyramidal neurons from the CA3 region are characterised by more versatile behaviour during
the long positive-current injection compared with pyramidal neurons from the CA1 region (An-
dersen et al., 2007; Wong and Prince, 1981; Traub et al., 1991; Scharfman, 1993; Migliore et al.,
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1995; Safiulina et al., 2008; Brown and Randall, 2009). Figure 1(a) depicts a common feature of
neurons from the CA3 area, that is, a high-frequency burst followed by a depolarised plateau with
or without several low-frequency spikes (Andersen et al., 2007; Wong and Prince, 1981; Traub
et al., 1991; Scharfman, 1993; Migliore et al., 1995; Safiulina et al., 2008; Brown and Randall,
2009). The frequency of the spikes increases with the amplitude of injected current, which also
typically causes the appearance of low-frequency spikes. As shown in Fig. 1(c), the response of
CA1 neurons to a long positive-current injection exhibits rather regular spiking patterns with a
slightly higher frequency of the spikes at the beginning of the stimulus (Andersen et al., 2007;
Yue and Yaari, 2004; Yue et al., 2005; Yue and Yaari, 2006; Golomb et al., 2006; Yaari et al.,
2007). In certain conditions, pyramidal cells produce series of bursts instead of tonic spiking;
this behaviour is much more common for the CA3 pyramidal cells than the CA1 cells (Wong
and Prince, 1981; Traub et al., 1991; Scharfman, 1993; Migliore et al., 1995; Safiulina et al.,
2008; Brown and Randall, 2009). In CA1 neurons such bursting is usually related to abnormal
conditions such as absence of Ca2+ in the bath solution (Yue and Yaari, 2004; Yue et al., 2005;
Yue and Yaari, 2006; Golomb et al., 2006; Yaari et al., 2007).

A characteristic feature of the CA1 and CA3 area neurons that becomes evident during ex-
periments is the so-called after-depolarisation (ADP), also known as depolarising afterpotential
(DAP) (Wong and Prince, 1981; Izhikevich, 2006; Brown and Randall, 2009). It is a positive de-
flection of the membrane potential, which creates the characteristic ’hump’ shown in Figs. 1 (b)
and (d). The amplitude of the ADP is usually larger for the CA3 neurons (Wong and Prince,
1981; Andersen et al., 2007). Furthermore, ADP with sufficiently high amplitude produces a
burst of several spikes in both CA1 and CA3 neurons (Wong and Prince, 1981; Yue and Yaari,
2004; Yue et al., 2005; Brown and Randall, 2009; Yaari et al., 2007). Due to its importance
for neural excitability ADP has been the focus of many recent experimental studies (Yue and
Yaari, 2004; Yue et al., 2005; Yue and Yaari, 2006; Golomb et al., 2006; Yaari et al., 2007; Chen
and Yaari, 2008; Safiulina et al., 2008; Brown and Randall, 2009). It has been shown that this
phenomenon is regulated by muscarinic-sensitive (M-type) K+-channels (Yue and Yaari, 2004,
2006). More recent results also indicate that persistent Na+-channels (Yue et al., 2005; Golomb
et al., 2006) and transient Ca2+-channels (Chen and Yaari, 2008) play an important role for ADP
regulation. Furthermore, these studies suggest that ADP is an intrinsic feature of the pyramidal
cells (Yue et al., 2005; Golomb et al., 2006; Yaari et al., 2007; Chen and Yaari, 2008; Safiulina
et al., 2008; Brown and Randall, 2009). In this paper we present a modelling study of CA1/3
pyramidal cells focussing on how the intrinsic properties of the cell body (soma) shape the ADP.
Accordingly, we use Hodgkin-Huxley formalism (Hodgkin and Huxley, 1952) and consider only
a somatic compartment in our model.

The model is parametrised according to our recent published (Brown and Randall, 2009)
and unpublished experimental data; a few values are also based on other published experimental
measurements (Liu et al., 2003; Yue and Yaari, 2004, 2006; Yaari et al., 2007; Yue et al., 2005;
Golomb et al., 2006; Blackmer et al., 2009; Destexhe and Bal, 2009). Despite the fact that our
study focusses mainly on the transient behaviour of a pyramidal neuron, the responses of CA1
and CA3 pyramidal cells to both long and short stimuli are also reproduced well by our model.
To demonstrate this, we validate our model against such experimental data. Moreover, we show
that the transition between the two types of pyramidal cells in the model can be obtained by
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changing only three maximal conductances.
Although ADP has been studied experimentally quite extensively, the mechanisms underly-

ing this phenomenon have received little theoretical attention. In particular, to date, there have
been no attempts to formalise ADP mathematically. Having constructed a model validated by
recent experimental data, we use it to dissect the ADP. We analyse ADP from a mathematical
point of view and investigate what the underlying mechanisms are. In addition, we investigate
the bursting-threshold for a burst of action potentials riding on top of the ADP, which is funda-
mentally different from the spiking-threshold of a single action potential. This transient bursting
behaviour is not only important during physiological responses of a pyramidal cell, but is also
related to pathological conditions characterised by hyperexcitability in the hippocampus, such
as epilepsy (Kile et al., 2008; Misra et al., 2008). Furthermore, recent in-vivo experiments indi-
cate that bursting takes place in hippocampal place cells during spatial navigation (Harvey et al.,
2009) and, thus, could be important for memory and learning.

We end this study with a sensitivity analysis of the model. We investigate the effect of chang-
ing the maximal values of current conductances, because they are most likely to vary among
cells. This analysis allows us to make predictions about the role of isolated currents for the be-
haviour of the model. We show that a decrease of high-voltage-activated inward currents can
increase excitability and that low-voltage-activated currents have a profound influence on ADP.

All numerical computations were done with XPP (Ermentrout, 2002). We used the package
XPPy (Nowacki, 2010) to perform the XPP simulations in Python (Oliphant, 2007) and visualise
the results in Python using Matplotlib (Hunter, 2007).

2 General single-compartment model for CA pyramidal neu-
ron cells

In our model we only take into account fast-activating ionic currents that are known to contribute
to ADP and affect the model behaviour over relatively short periods of time (up to 500 ms). The
model consists of the following ionic currents: two Na+-currents, one transient (INaT

) and one
persistent (INaP

); two Ca2+-currents, one T type (ICaT
) and one high voltage activated (ICaH

);
and three K+-currents, delayed rectifier (IKDR

), M type (IKM
), and leak (IL). We use Hodgkin-

Huxley formalism (Hodgkin and Huxley, 1952) to represent the rate of change of the membrane
potential:

C
dV

dt
= −INaT

− INaP
− ICaT

− ICaH
− IKDR

− IKM
− IL + Iapp, (1)
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where C is the membrane capacitance. The ionic currents are modelled as:

INaT
= gNaT

m3

NaT
hNaT

(V − ENa),

INaP
= gNaP

mNaP
(V − ENa),

ICaT
= gCaT

m2

CaT
hCaT

(V − ECa),

ICaH
= gCaH

m2

CaH
hCaH

(V − ECa),

IKDR
= gKDR

mKDR
hKDR

(V − EK),

IKM
= gKM

mKM
(V − EK),

IL = gL(V − EL).

and the gating variables are of the form

dx

dt
=

x∞ − x

τx
, (2)

with x ∈ {mNaT
, hNaT

,mNaP
,mCaT

, hCaT
,mCaH

, hCaH
,mKDR

, hKDR
,mKM

}.

The activation and inactivation steady-state functions x∞ of the respective currents are given in
Boltzmann form:

x∞ =
1

1 + exp(−(V − Vx)/kx)
,

and the time scales τx are all constant, except for the transient Na+-channel, namely,

τhNaT
(V ) = 0.2 + 0.007 exp(exp(−(V − 40.6)/51.4)), (3)

is modeled as voltage dependent in order to obtain a better fit for our data.
The parameters of the pyramidal neuron model are given in Table 1. In the following section

we validate our model against CA1 and CA3 current-clamp experiments by varying the maximal
conductances (gx). Therefore, these values are not included in Table 1, but given in Section 3.
Most of the model parameters in Table 1 are determined by voltage-clamp experimental measure-
ments (Liu et al., 2003; Yue and Yaari, 2004, 2006; Yaari et al., 2007; Yue et al., 2005; Golomb
et al., 2006; Blackmer et al., 2009; Destexhe and Bal, 2009); an example is shown in Fig. 2(a) for
the Na+-current. Figures 2(a), (b) and (c) show the steady-state activation and inactivation func-
tions mNaT∞

, hNaT∞
and mNaP∞

of the Na+-channel currents, mCaT∞
, hCaT∞

, mCaH∞
and hCaH∞

of the Ca2+-channel currents, and mKDR∞
, hkDR∞

and mKM∞
of the K+-channel currents, respec-

tively. The curve in Fig. 2(d) illustrates the behaviour of the time constant τhNaT
of the transient

Na+-channel.

3 Model validation
We validate the pyramidal neuron model by simulating experimental responses of a typical neu-
ron cell from the CA1 and CA3 areas (see Fig. 1). The goal is to identify a set of maximal
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Table 1: Parameter values of the pyramidal neuron model.
Parameter Value Unit Parameter Value Unit

Cm 1 µF/cm2 τhCaT
32 ms

ENa 60 mV VmCaH
-15 mV

EK -85 mV kmCaH
5 mV

ECa 90 mV τmCaH
0.08 ms

EL -65 mV VhCaH
-60 mV

VmNaT
-37 mV khCaH

-7 mV
kmNaT

5 mV τhCaH
300 ms

VhNaT
-75 mV VmKDR

-5.8 mV
khNaT

-7 mV kmKDR
11.4 mV

VmNaP
-47 mV τmKDR

1 ms
kmNaP

3 mV VhKDR
-68 mV

VmCaT
-54 mV khKDR

-9.7 mV
kmCaT

5 mV τhKDR
1400 ms

τmCaT
2 ms VmKM

-30 mV
VhCaT

-65 mV kmKM
10 mV

khCaT
-8.5 mV τmKM

75 ms

conductances that reproduce an example of ’avarage’ CA1 and CA3 pyramidal neurons. We
compare model simulations to two major types of current-clamp experiments: short- and long-
current stimuli. The long-stimulus experiment is the application of a current injection with a
prespecified amplitude that lasts 500 ms. The amplitude is typically 100, 200 or 300 pA. The
injection amplitudes in the model are then 1, 2, 3 µA/cm2, respectively, because the model takes
into account current densities and we simulate a whole-cell current-clamp experiment of a pyra-
midal neuron with a typical somatic capacitance between 90–120 pF (unpublished observations).
In the short-stimulus experiment the current injection is applied for 2 ms and the amplitude is
much larger, namely, 2 nA. In the model we set the amplitude of the applied current accordingly
to 20 µA/cm2. In some experiments the cell is made genotype independent by fixing its resting
potential to a specific value that is slightly different from the physiological value (Brown and
Randall, 2009). To achieve this, the cells are pre-stimulated with a steady-state current injection
of an appropriate amplitude. In the model we set the resting potential to the required level by
using a nonzero base value of the injected current.

In order to validate the model against the experimental results, we also compare a number
of model-derived quantities that correspond to measured electrophysiological properties (Brown
and Randall, 2009). These are the action-potential threshold, the membrane resting potential and
the action-potential peak. As in (Brown and Randall, 2009) the evaluation of these quantities is
done for a current injection of 300 pA, i.e., 3 µA/cm2 in our model. For both CA1 and CA3
neurons the membrane resistance is the same and given by Rm = 50, 000 Ω/cm2. Therefore,
with a membrane capacitance of 1 µF/cm2, the membrane time constant is τm = 50 ms. Note
that this value is typically found experimentally for pyramidal cells (Brown and Randall, 2009).
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Figure 2: Channel kinetics used in the pyramidal neuron model; panels (a), (b) and (c) show
(in)activation functions of Na+-, Ca2+- and K+-channel currents, respectively; experimental
measurements used to determine Na+-current (in)activation parameters are depicted as blue dots
in panel (a) with standard deviations marked by the error bars; panel (d) shows the time rate of
the transient Na+-channel.

Table 2: Maximal conductance values of the model of the CA3 area neuron.
Parameter Value Unit Parameter Value Unit

gNaT
65 mS/cm2 gKDR

10 mS/cm2

gNaP
0.1 mS/cm2 gKM

1.65 mS/cm2

gCaT
0.74 mS/cm2 gL 0.02 mS/cm2

gCaH
2.6 mS/cm2

3.1 Long-stimulus experiment
The model simulations for the CA3 neuron were performed with the values of the ionic-current
kinetics given in Table 1 and the maximal conductances presented in Table 2. In Fig. 3 we
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Figure 3: Responses of a CA3 pyramidal neuron and our model to a 500 ms current injection;
panel (a) shows experimental responses of a pyramidal cell, where the injected current has am-
plitudes 100, 200 and 300 pA; panel (b) shows the corresponding responses of the model to 1, 2
and 3 µA/cm2 of injected current.

illustrate experimental and simulation responses to 500 ms depolarising current injections. The
time trace of the experimental membrane potential of a pyramidal neuron to injections of 100,
200 and 300 pA depolarising currents is shown in Fig. 3(a). The corresponding responses of the
model to current injections of magnitudes 1, 2 and 3 µA/cm2 are shown in Fig. 3(b). The resting
potential for the model with the CA3 parameter set is −76.6 mV for all of the traces in Fig. 3(b).
The action-potential peak for 3 µA/cm2 current injection is 46.6 mV. The spike-threshold for the
experimental and model responses due to highest current injection is approximately −58 mV
as shown in Fig. 3(a) and (b). These values are within the interval of physiological responses
(Andersen et al., 2007; Brown and Randall, 2009).

As depicted in Fig. 3 the overall responses of the model to the injected currents agrees
with the experimental measurements, and is also in accordance with previously published re-
sults in (Andersen et al., 2007; Brown and Randall, 2009). For the lowest current injection of
1 µA/cm2 only the initial high-frequency burst is produced, which is not followed by other addi-
tional spikes, as in Fig. 1(a). Higher-current injections produce a series of low-frequency action
potentials. Also, the frequency and number of spikes increase with the amplitude of the injected
current.
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Next, we discuss the contribution and significance of each of the currents that are included
in the model for reproducing the experimentally-observed CA3-pyramidal-cell behaviour. Tran-
sient Na+-current is known to be responsible for the generation of action potentials (Hodgkin
and Huxley, 1952). We chose the parameters for this current based on experimental studies per-
formed at close-to-physiological temperatures of 33◦C (Brown and Randall, 2009), with mNaT∞

and hNaT∞ as shown in Fig. 2(a). The activation of this channel is known to be sufficiently fast
(Hodgkin and Huxley, 1952) (faster than the inactivation that is characterised by a minimal value
of 0.2 ms; see Fig. 2(d)). Therefore, we neglect its dynamics and assume that it is instanta-
neous, i.e., mNaT

= mNaT∞ . For values of the membrane potential that correspond to excitable
behaviour, τhNaT

is below 1 ms, with a minimal value of 0.2 ms. Hence, inactivation is a rela-
tively fast process that corresponds to the small region in Fig. 2(a) where mNaT∞ and hNaT∞ are
both positive and only results in contributions from INaT

during the rising phase of the action
potential. Because INaT

is so selective, we need to take into account an additional transient de-
polarising current, which is active in the low-voltage interval so that it influences the behaviour
between the action potentials.

The persistent Na+-current also plays an important role in the generation of action potentials
(Yue et al., 2005; Golomb et al., 2006). The kinetics of this channel have been adopted from
earlier modelling studies (Golomb et al., 2006). We note that they are also in accordance with
recent dynamic-clamp experiments (Destexhe and Bal, 2009). Similar to the transient Na+-
channel, persistent Na+-channel activation is known to be very fast (Golomb et al., 2006); hence,
we again neglect its dynamics, i.e, mNaP

= mNaP∞ . In addition, due to the steeper slope of mNaP∞

(see Fig. 2(a)), a small increase of the membrane potential is sufficient to activate INaP
fully.

Note also that this current does not inactivate, which makes it an important determinant of the
long-term behaviour of the membrane potential. The combination of low-voltage activation and
persistence allows this current to contribute actively to the generation of action potentials for the
duration of a simulation.

In addition to Na+-channels, recent research shows that Ca2+-channels are also actively in-
volved in neural responses to stimuli (Yaari et al., 2007). Moreover, Ca2+-channels are found to
be present in both CA1 and CA3 pyramidal cells (Jaffe et al., 1994; Yaari et al., 2007). In our
model we use two classes of Ca2+-channels, low-voltage-activated T-type Ca2+-channels and a
general class of high-voltage-activated Ca2+-channels. The kinetic parameters of a T-type Ca2+-
channel in our model are based on (Blackmer et al., 2009) and our data. To model this current,
we use values similar to those published in (Jaffe et al., 1994; Migliore et al., 1995; Lazarewicz
et al., 2002; Xu and Clancy, 2008). As shown in Fig. 2(b), the T-type Ca2+-channel operates
in the low-voltage interval and hence is an important building block of the neuron’s ADP (Yaari
et al., 2007). The steady-state inactivation function hCaT∞ is quite close to mCaT∞ and has a flat
slope. As a result there is a large intersection area under the curves, that allows ICaT

to work for
a larger range of low values of the membrane potential. In addition, the inactivation of ICaT

is a
relatively slow process (see τhCaT

in Table 1) that contributes to the transient excitability in the
beginning of the current-injection stimulus. The main role of ICaT

in the model is to bring the
membrane potential up, near the action-potential threshold, so that the other currents produce a
spike. The high-voltage-activated Ca2+-channel current plays a role in shaping the action poten-
tials in our model. In particular, it determines their amplitudes. The gating parameters for this
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channel are based on values in (Liu et al., 2003; Blackmer et al., 2009) and our data; their values
are similar to those used in (Jaffe et al., 1994; Migliore et al., 1995; Lazarewicz et al., 2002; Xu
and Clancy, 2008). Also note that the value of the time constant of mCaH

is low and it is one
of the fastest currents in the model (see τmCaH

in Table 1). To capture the effect of amplitude
modulation observed in pyramidal cells, we allow ICaH

to inactivate. Note that this inactivation
is a slow process (see τhCaH

in Table 1), so that the inactivation of ICaH
is only significant for long

spike-trains with a higher mean frequency.
The main outward current in our model is K+ delayed rectifier, representing a number of

fast K+-currents. In our model K+ delayed rectifier is a transient current, with a very slow
inactivation. This slow inactivation is often neglected in models, because it hardly affects spiking.
However, it plays an important role in setting the resting potential of the cell that corresponds to
the initial conditions in the model.

It has been shown experimentally that the muscarinic-sensitive K+-channel is important for
the ADP of pyramidal cells (Yue and Yaari, 2004, 2006; Yaari et al., 2007). The parameters
used in our model are based on (Oldfield et al., 2009). The muscarinic-sensitive K+-current IKM

does not inactivate (Yue and Yaari, 2004, 2006). Hence, it is active for a wide range of values of
the membrane potential. Because IKM

activates slowly, its contribution to the spike inhibition is
lower at the beginning of the current injection. Hence, the lower initial inhibition allows for the
forming of the characteristic transient burst in CA3 response (see Fig. 3).

Next, we demonstrate that our pyramidal-neuron model is capable of simulating CA1-area
neural responses by changing three maximal conductance values, namely, gCaT

= 0.6 mS/cm2,
gKDR

= 9.5 mS/cm2 and gKM
= 0.8 mS/cm2. The other values are as given in Tables 1 and 2. Such

changes may reflect a difference in the number of ion channels among CA1 and CA3 neurons.
The time trace of the experimental membrane-potential response of a pyramidal neuron to the
injection of 100, 200 and 300 pA depolarising current is shown in Fig. 4(a). The corresponding
responses of the model to the injection of 1, 2 and 3 µA/cm2 depolarising current is shown in
Fig. 4(b). The membrane resting potential for the model with the CA1 parameter set is −75.5 mV
for all of the traces in Fig. 4(a). Hence, the value is within the physiological range for this class
of neurons (Golomb et al., 2006; Andersen et al., 2007; Yaari et al., 2007). The action-potential
peak and threshold for 3 µA/cm2 current injection are approximately 44.9 mV and −60 mV,
respectively. This agrees with our experimental results and published data in (Golomb et al.,
2006; Yaari et al., 2007).

As illustrated in Fig. 4, the overall response of the model to injected current agrees very well
with the experimental data (Fig. 4(a)), and is also in accordance with previously published results
(Golomb et al., 2006; Andersen et al., 2007; Yaari et al., 2007). The response is characterised
by relatively regular long-term spike frequencies, with a slight increase just after the start of the
current injection. Also, the frequency and number of spikes increase with the amplitude of the
injected current. Note that, compared with the CA3 neural response (Fig. 3(a)), the number as
well as the mean frequency of the action potentials is higher. Moreover, due to inactivation of
ICaH

the characteristic modulation of the peaks of the action potential is captured in the response
of the model. The gradual increase of the baseline is also reproduced well by the model. This
phenomenon is caused by the inactivation of IKDR

.
Thus, our results suggest that the CA1 neuron may have slightly fewer transient Ca2+-
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Figure 4: Responses of a CA1 pyramidal neuron and our model to a 500 ms current injection;
panel (a) shows experimental responses of a pyramidal cell, where the injected current has am-
plitudes 100, 200 and 300 pA; panel (b) shows the corresponding responses of the model to 1, 2
and 3 µA/cm2 of injected current.

channels and delayed rectifier K+-channels, and far fewer M-type K+-channels. This also em-
phasises the importance of M-type K+-current for the long-term spiking behaviour and overall
excitability as has been demonstrated experimentally in (Yue and Yaari, 2004, 2006; Yaari et al.,
2007). Interestingly, model simulations (not shown) indicate that only decreasing the value of
gKM

for the CA3 neuron parameter set already rapidly increases the number and frequency of
action potentials, which is a key feature of CA1-like behaviour.

3.2 Short-stimulus experiment
We now focus on the model response to a short current injection. In Fig. 5 we illustrate model
simulations of 2 ms current injections of 20 µA/cm2 with different (pre-stimulus) base currents
that impose a pre-defined resting potential of the cell. The time traces of the membrane potential
of the model with the CA3 parameter set and an injected current with base current values of 0,
0.4 and 0.8 µA/cm2 are shown in Fig. 5(a). Similarly, the time traces of the membrane potential
of the model with the CA1 parameter set and an injected current with base current values of 0,
0.2 and 0.4 µA/cm2 are shown in Fig. 5(b). The simulated traces are overlaid to show how the
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Figure 5: Responses of the pyramidal model neuron to the 2 ms current injection of 20 µA/cm2;
panel (a) shows overlaid responses of the model with the CA3 parameter set to a stimulus with
different (pre-stimulating) base currents, namely, 0 µA/cm2 (blue), 0.4 µA/cm2 (green) and
0.8 µA/cm2 (red); similarly, panel (b) shows overlaid responses of the model with the CA1
parameter set to a stimulus with different base currents, namely, 0 µA/cm2 (blue), 0.2 µA/cm2

(green) and 0.4 µA/cm2 (red);

after-depolarisation grows with the changes in the membrane resting potential.
Figure 5 illustrates that the model is capable of simulating the experimental results shown in

Figs. 1(b) and (d) and in (Brown and Randall, 2009; Golomb et al., 2006; Andersen et al., 2007;
Yaari et al., 2007), including the characteristic shape of the after-depolarisation ’hump’. More-
over, as reported in (Golomb et al., 2006; Brown and Randall, 2009), as soon as the membrane
resting potential exceeds approximately −70 mV, a burst of action potentials is produced, which
is clearly illustrated by the last (highest) trace in Figs. 5(a) and (b). Although the shape of the
after-depolarisation is reproduced quite well, the duration of the simulated after-depolarisation
is slightly shorter than for the experimental measurements. The main reason for this difference
is the fact that we use constant values for the time constants of most of the currents; in real cells
these are most likely voltage dependent. Compared to the simulations of the model with the CA3
parameter set in Fig. 5(a), the amplitude of ADP for the CA1 model is noticeably smaller, which
agrees well with experimental observations (Golomb et al., 2006; Andersen et al., 2007; Yaari
et al., 2007). The reduction in amplitude of ADP is due to the smaller value of gCaT

in the CA1
parameter set. This causes less inward current to be present in the low-voltage region, and, thus,
the model ADP has a smaller amplitude, despite lower inhibition. This observation also supports
the importance of ICaT

in ADP modulation.
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4 Identification of after-depolarisation and the initial burst
In the previous section we validated the pyramidal neuron model against a wide range of excitable
behaviours, including ADP, for a typical average neuron from regions CA1 and CA3. In this
section we investigate the mechanisms that shape the ADP and the transient burst. As a starting
point we formulate a mathematical definition of ADP in order to identify the roles of the ionic
currents for ADP generation and modulation in the model. Finally, we discuss the connection
between the ADP and transient bursts in the long-stimulus experiment.

4.1 Mathematical formulation of after-depolarisation
Although the phenomenon of ADP has been investigated experimentally for a number of years
and its significance for neural excitability has been recognised, there have not been any attempts
to formalise this behaviour. Generally ADP is defined as a positive deflection of the membrane
potential immediately after an action potential (Izhikevich, 2006).

The ADP is a relatively slow transient process, that takes place below the spiking threshold
of the pyramidal neuron as shown in the previous sections. Hence, the absolute value of the
derivative dV/dt of the membrane potential should be below threshold. According to (Naundorf
et al., 2006) an action potential occurs when dV/dt exceeds 20V/s. Hence, during ADP we
require:

dV

dt
< 20 [V/s]. (4)

The positive deflection of the membrane potential, as observed in the time trace in Figs. 3(a)
and 4(a), is characterised by a local minimum B at a time t = tB > 0 and a local maximum P
for some t = tP > tB of V , which define the beginning and the peak of the ADP, respectively.
Hence, B and P satisfy:

dV

dt
(tB) = 0 and

d2V

dt2
(tB) > 0, (5)

dV

dt
(tP) = 0 and

d2V

dt2
(tP) < 0, (6)

such that dV/dt ≥ 0 in the time interval (tB, tP). We use (4) to distinguish ADP from a genuine
action potential by imposing the following constraint:

dV

dt
(t) < 20, for all tB ≤ t ≤ tP.

Figure 6 depicts analysis of ADP for a model simulation and an example of experimental
measurements. In the model simulation the holding current was set to 0.4 µA/cm2 to pre-define
a resting potential of approximately −72 mV, as was done in the experiments. The time traces
shown in Figs. 6(a) and (b) represent the model simulation and experimental data, respectively.
We use finite-difference approximation to estimate dV/dt numerically. For better comparison,
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Figure 6: ADP in a CA3 pyramidal neuron for the model (first column) and the experiment
(second column); panel (a) shows the time series of V for the model with a holding current of
0.4 µA/cm2; panel (b) shows the time series of V for an experimental sweep; panels (c) and (d)
show the membrane potential V versus dV/dt; the dashed line marks dV/dt = 0; panels (e)
and (f) show an enlargement of the ADP region, with the beginning B and peak P of the ADP
marked for the model in panel (e).
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we used the same approximation method for both data sets, because we did not observe a signif-
icant difference when deriving the values of dV/dt directly from the model equations. We used
three-point simple moving average (mean) to smooth the experimental data. Further, more so-
phisticated processing of experimental measurements could be beneficial when the ADP is small.
Figures 6 (c) and (d) show V versus dV/dt for the simulation and experiment, respectively. The
vertical dashed line denotes the nullcline dV/dt = 0. The large excursions in Figs. 6(c) and (d)
correspond to the action potentials generated by the current injection in the model and experi-
ment, respectively. Although the shape of the derivative plot from our model simulation agrees
with the experimental data, the maximum derivative is much higher compared to the experimen-
tal data. This is due to the assumption that the kinetics of Na+ currents are instantaneous, which
imposes an almost instantaneous growth of the action potential that results in an arbitrarily large
derivative. The ADP itself is a much slower process, which takes place in the enlarged region
shown in Figs. 6(e) and (f); the beginning point B and the peak value P of ADP for the model
are marked on panel (e), but the ADP loop is also clearly visible in panel (f), despite the presence
of noise for the experimental data. After the trajectory crosses the V -nullcline at B, which marks
the beginning of ADP, the voltage V grows until the trajectory crosses the V -nullcline for a sec-
ond time at P , which marks the peak of ADP. Note that dV/dt remains well below its threshold
value of 20 V/s. The maximal value of dV/dt satisfies d2V/dt2 = 0 and corresponds to the point
where ADP turns back toward the V -nullcline, while dV/dt remains positive.

The ADP takes place as soon as there are two local subthreshold extrema of the membrane
potential. Therefore, the onset of ADP is the degenerate case where the trajectory develops a
cubic tangency. Effectively, B and P coincide so that there exist a time tBP after the action
potential such that

dV

dt
(tBP ) = 0 and

d2V

dt2
(tBP ) = 0, (7)

that is, in the projection of V versus dV/dt, the trajectory is tangent to the V -nullcline (we
assume that d3V/dt3(tBP ) ̸= 0). The onset of ADP can be very hard to determine using just
time series, whereas the derivative plot does this unmistakeably both for the simulations and the
experimental measurements. Moreover, we can identify ADP-like behaviour, where dV/dt in
the peak of the deflection is very close to V -nullcline, but dV/dt is negative. Such ADP-like
behaviour can be deceiving when observing the time-trace plot, but it is readily distinguishable
from ADP when determined by the derivative analysis.

Using the above approach we can also identify the underlying causes for generation of a
burst riding on top of ADP, as presented in Fig. 5. Following condition (4), the action potential is
generated when dV/dt > 20 at a time after the trajectory crosses the V -nullcline. Hence, dV/dt
has to exceed the threshold value before reaching the turning point with d2V/dt2 = 0. Figure 7
illustrates this by plotting two trajectories, one with a single (blue) and one with an additional
(green) action potential. Panel (a) shows the trajectory segments in the ADP region projected
in (d2V/dt2, dV/dt, V )-space. The points where the segments intersect the planes dV/dt = 0
(cyan) and d2V/dt2 = 0 (red), that is, the V - and dV/dt-nullclines, are marked by dots and stars,
respectively. Panel (b) provides a top view of panel (a); the trajectory segments are shown in
projection onto the (dV/dt, d2V/dt2)-plane and the dashed lines correspond to the projections of
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Figure 7: Bursting-threshold of the pyramidal neuron model; panel (a) shows trajectory seg-
ments of ADP without (blue) and with (green) a secondary spike in (d2V/dt2, dV/dt, V )-space;
the intersections of the trajectory segments with the planes dV/dt = 0 (cyan) and d2V/dt2 = 0
(red) are marked by dots and stars, respectively; panel (b) presents a top view, namely, the projec-
tion onto the (dV/dt, d2V/dt2)-plane, with the projections of dV/dt = 0 (cyan) and d2V/dt2 = 0
(red) represented by dashed lines; panel (c) shows the time traces of the two trajectories.

the V - and dV/dt-nullclines. Note that d2V/dt2-axis in Fig. 7(b) is inverted to match Fig. 7(a).
The time series of the trajectories for the two cases are shown in panel (c). The first (blue)
trajectory in Fig. 7(a) is the same as the one in Fig. 6(e). After crossing the dV/dt-nullcline
(red plane), the trajectory turns back to the V -nullcline (cyan plane), which marks the peak
of ADP and results in a decrease of V . The burst trajectory (green) consists of two segments in
Fig. 7(a); the s-shaped segment corresponds to the action-potential generation on top of the ADP,
and the additional loop is the small ’hump’ after the second spike (see Fig. 7(c)). The s-shaped
trajectory also crosses the dV/dt-nullcline, i.e., d2V/dt2 = 0, and turns back toward the V -
nullcline. However, before reaching the V -nullcline, it crosses the dV/dt-nullcline again. Thus,
after the second crossing, dV/dt remains positive and an action potential is generated. Note that
the burst trajectory is placed higher in V than the ADP trajectory. Moreover, the value of dV/dt
before an action potential is fired in the burst case is larger than before the following ’hump’.
Hence, the dV/dt-nullcline plays the role of a bursting-threshold in our model. Our study shows
that as soon as a trajectory crosses the V -nullcline for the second time, no additional spikes will
be generated.

4.2 The role of different ionic currents in shaping the after-depolarisation
In the previous section we defined the ADP phenomenon using the first and second derivatives of
the membrane potential. We can use this information to determine the contribution of particular
currents to the ADP. Both T-type Ca2+-channel currents and persistent Na+-channel currents are
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known to facilitate ADP (Yue et al., 2005; Golomb et al., 2006; Chen and Yaari, 2008). The
M-type K+-channel current also mediates this phenomenon and is known to work for low values
of the membrane potential (Yue and Yaari, 2004, 2006). Since the ADP is a low-voltage phe-
nomenon, the main currents that play a role in its generation are low-voltage activated. Moreover,
the ADP process is relatively slow in comparison to the spike-generation process; see Fig. 6 and
also the time traces in Fig. 5. Hence, the currents that mediate ADP should be slower than the
currents taking part in the process of spike generation.

In our model there are only four currents satisfying this condition, namely, INaP
, ICaT

, IKDR

and IKM
. Note that only these four currents are active in the low-voltage region; the remaining

currents are deactivated and effectively equal to zero. In addition, in our model INaP
in this

region is small compared to the other participating currents. As illustrated in Fig. 6, dV/dt < 0
for most of the time after the action potential, because the membrane potential tries to return
to its equilibrium (i.e. the resting potential). In order to create a time interval (tB, tP) during
which dV/dt > 0, the total inward current must be larger than the total outward current. For
low voltages in our model the total inward current is given by the sum of INaP

and ICaT
, and the

total outward current is the sum of IKDR
and IKM

. Therefore, ADP is possible only if an interval
(tB, tP) exists such that

INaP
(t) + ICaT

(t) > IKDR
(t) + IKM

(t), tB ≤ t ≤ tP. (8)

Condition (8) can be satisfied when there is a difference in the time scales of the currents par-
ticipating in the ADP. The gating variable mKDR

deactivates rapidly, which causes a reduction of
the total outward current just after the action potential. Since ICaT

is the largest inward current,
it mainly regulates the amount of the total inward current in the low-voltage area. The activa-
tion variable mCaT

of ICaT
has a slightly larger time constant than mKDR

(see Table 1). Thus,
its deactivation evolves slower than the deactivation of IKDR

, which allows the inward current to
grow larger than the total outward current. Hence, there exists a period of time where the rate of
change of the membrane potential is dominated by ICaT

. This results in a positive sign of dV/dt
and the membrane potential increases during this period. The slowest current involved in the
ADP, namely, IKM

mainly controls the duration of this phenomenon.
As shown in Fig. 5, a sufficiently high base-current injection can result in a burst on top of

ADP. In general, ADP is generated by a perturbation in the membrane potential caused by a
current injection. Therefore, after the first spike, the cell gradually returns to its resting state.
Moreover, all currents evolve on their characteristic time scales, which causes the change in
the sign of dV/dt. Nevertheless, not all currents activate during ADP. Only when the differences
between the currents are sufficiently large and the membrane potential reaches larger values of V ,
can the Na+-currents be activated. The second turn in Fig. 7 is caused by this gradual activation
of Na+-currents, which takes place around −60 mV (see Fig. 2(a)). The activation of additional
inward currents cause dV/dt to increase and eventually generate an additional action potential
on top of ADP, as shown in Figs. 5 and 7.
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4.3 The after-depolarisation as a hallmark of CA1/3 neural excitability
Recent experimental studies (Golomb et al., 2006; Yaari et al., 2007; Brown and Randall, 2009)
suggest that there is a direct relationship between ADP and excitability of pyramidal neurons. In
this section we discuss why ADP is a hallmark of the excitability based on our modelling and
experimental results. Since the behaviour of dV/dt, is determined by the dynamic interactions
between the ionic currents in the system, we are able to define ADP in terms of the subthreshold
difference of the ionic currents in the neuron. Figure 5(a) shows that a prominent ADP for
the CA3 neuron causes the firing of a high-frequency transient burst. In contrast, CA1 neural
response is characterised by a lower ADP, as illustrated in Fig. 5(b), and the transient burst has
a lower frequency. We can explain this in terms of the amount of inward current that is active in
the low-voltage region. Thus, more prominent ADP increases the probability of firing an action
potential. It also marks a smaller initial inhibition by the outward currents, which allows the
trajectory to reach the threshold faster and, hence, to produce a higher-frequency burst.

In our model the currents INaP
, ICaT

, IKDR
and IKM

that mediate ADP are also important for
the generation of the action potentials. Since they work in the low-voltage region close to the
spiking-threshold, they mainly regulate the probability of firing an action potential. Therefore,
any change to those currents directly influences both ADP and overall excitability. Moreover, if
the difference between the inward and outward currents is sufficiently large to bring the mem-
brane potential to a value where Na+-currents are engaged (around −60 mV in our model) addi-
tional spikes riding on top of the ADP are fired.

It is important to note that we investigate excitable behaviour in the model as part of the
initial transient burst. Indeed, the initial response seems to be very important, because the stimuli
during physiological conditions are more likely to be short, such as synaptic inputs. The above
results indicate a direct connection between ADP and excitability, and suggest that CA3 neurons
are more excitable than CA1 neurons as far as the transient burst is concerned. However, after
the transient burst the CA1 neural response has much higher frequency and a larger number of
spikes than the CA3 response. This behaviour in the model is caused by the different values of
the IKM

conductance gKM
. Finally, we observe a quite significant effect on the resting potential

of the model neuron due to changes in gKDR
. This also influences the excitability through hKDR

,
that limits the amount of active IKDR

during the spike-train. Therefore, during the short-term
stimulation there is effectively less IKDR

, so that the inward currents are less inhibited and action
potentials will more likely be fired.

5 Parameter sensitivity analysis of the pyramidal neuron model
Parameter sensitivity analysis is a necessary step towards a better understanding of the model.
It allows the investigation of the influence that particular parameter variations have on the be-
haviour of the system. Parameter sensitivity analysis also provides predictions that can be tested
in further experimental studies of pyramidal neurons. In Section 3 we validated the model against
a typical response of CA1 and CA3 neurons, whereas experiments show that the responses of the
pyramidal neurons are much more versatile. We present a sensitivity analysis of our pyramidal
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neuron based on what we call the excitability measure. In the subsequent sections we inves-
tigate the influence of all maximal conductances for the Na+-, Ca2+- and K+-currents on the
excitability behaviour of the model.

5.1 Methods
One of the most widely used measures for neural excitability is the so called mean instantaneous
frequency for the number of first spike pairs. A characteristic feature of the pyramidal neuron
response to long-current injection is a higher frequency of the first spike pairs. In order to capture
this feature we define the excitability measure:

Me =
n∑

i=1

1

i2(ISI)i
,

as a form of mean instantaneous frequency where the frequency of the initial spike pairs have
larger weight. Here, n is the total number of spike pairs in an (n+1)-spike response and (ISI)i is
the inter-spike interval of the pair i. The pair number is squared to increase the importance of the
initial spike-pairs, because the frequency equilibrates rather fast. Note that the total number of
spikes changes the (minimal) excitability measure. Hence, for a better comparison, we calculate
this value for a constant number of spikes in a spike-train.

It is important to note that the parameters of the gating variables in our model are based
on voltage-clamp experimental data and are measured with a high level of confidence. On the
other hand voltage clamp allows to measure conductances that are present only on a patch of
the neuron’s membrane. Since we simulate whole-cell current-clamp recordings, the values of
maximal conductances for such simulations are not very well defined. Therefore, we perform
a sensitivity analysis with respect to the maximal conductances. They are also most likely to
vary between the cells. In our analysis we vary only one conductance and keep the others at their
reference values given in Tables 1 and 2. We use a 1 µA/cm2 current injection of duration 500 ms,
which corresponds to the 100 pA injection in the experiment. This value was chosen because the
pyramidal cells are reported to express more variability in behaviour under low-current injection
(unpublished observations). We found that the outcome of the analysis is similar for both types
of model CA1 and CA3 neurons, and chose to present the results for CA1 neurons only.

5.2 The Na+-channel currents
Firstly, we investigate the influence of Na+-currents on the excitability of our pyramidal neuron
model. Figure 8 shows the excitability measure computed as functions of gNaT

and gNaP
, shown

in panels (a) and (c), respectively. The number of spikes corresponding to the values of gNaT
and

of gNaP
are depicted in Figs. 8(b) and (d), respectively.

Counter-intuitively, the increase of gNaT
results in a decrease of both the excitability measure

and the number of spikes (Fig. 8(a) and (b)). This could be explained by the fact that INaT
mainly

influences the amplitude of the action potentials and, hence, activates more outward currents.
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Figure 8: Parameter sensitivity analysis of the maximal conductances of the Na+-currents; pan-
els (a) and (c) show the excitability measure for ranges of gNaT

and gNaP
, respectively; panels (b)

and (d) show the numbers of spikes in a spike train for gNaT
and gNaP

, respectively; the original
values of the maximal conductances are marked by a (magenta) star.

Therefore, in contrast to what one would expect, excitability is indirectly inhibited by an increase
of gNaT

. On the other hand, a decrease of gNaT
causes an increase in the excitability, as a result

of the lower inhibition of outward currents. Since gNaT
is the same for CA1 and CA3 neurons in

our model, the changes in this parameter have the same effect for both classes.
The influence of gNaP

on the excitability of the model is more in line with intuition. As shown
in Fig. 8(c) the increase in INaP

produces higher-frequency action potentials. Note that the value
of the frequency measure is much larger than for gNaT

. On the other hand, gNaP
has little influence

on the number of spikes, as illustrated in Fig. 8(d), which reflects the low-voltage activation of
this current. As shown above, it contributes to ADP and shapes the subthreshold behaviour of

20



100 150 200 250 300

Percentage of gNa [%]

75

80

85

90

95

100

105

110

E
x
ci

ta
b
il

it
y
 m

e
a
su

re
 [

H
z
]

(a)

100 150 200 250 300

Percentage of gNa [%]

7.5

8.0

8.5

9.0

9.5

N
u

m
b
e
r 

o
f 

sp
ik

e
s

(b)

Figure 9: Parameter sensitivity analysis of the maximal conductance of the combined Na+-
currents; panel (a) shows the excitability measure ranging over the given percentages of gNa; the
original value of the maximal conductance is marked by a (magenta) star.

the derivative of the membrane potential, which is crucial for the action-potential generation.
Note also that very small changes of gNaP

, compared to gNaT
, increase the value of the excitability

measure quite dramatically. Despite the fact that the value of gNaP
in our model is the same

for both the CA1 and CA3 parameter sets, the high sensitivity to changes in this parameter can
induce the variability of the neurons’ responses reported in the experimental studies of mainly
CA3 pyramidal cells (Wong and Prince, 1981; Traub et al., 1991; Scharfman, 1993; Migliore
et al., 1995; Safiulina et al., 2008; Brown and Randall, 2009).

Due to a lack of pharmacological tools to influence INaP
selectively it is very hard to sepa-

rate this current experimentally from the total Na+-current recordings (Destexhe and Bal, 2009).
Therefore, in order to compare with experimental data, we investigate the influence of both
currents on the excitability. For this purpose we use a common parameter that modifies the per-
centages of gNaT

and gNaP
that are active in a given simulation run by the same factor. Here,

the values from the CA1 set are used as the reference values. As before, the excitability mea-
sure and the number of spikes are plotted versus the percentage of total INa in Figs. 9(a) and
(b), respectively. The effect of simulated change in both Na+-currents produces a parabola-like
characteristic curve in Fig. 9(a). It clearly illustrates that either an increase or decrease of INa

can result in an increase of our neural excitability measure. In the studied interval, the increase
of INa changes the number of spikes from eleven to ten, as shown in Fig. 9(b). Thus, our result
suggests that there exists a minimum INa for which any perturbation of the Na+-current could
cause an increase in excitability. The analysis also shows how two different parameters that
produce opposite excitability effects can cross-influence the response of a neuron. Moreover, it
demonstrates how the total ionic current of a particular type can alter a pyramidal cell behaviour.

We observe this effect for CA3 parameter set as well. The minimum of excitability is reached,
however, for greater percentage value of the total gNa. This may be caused by the fact that the
CA3 neuron model has a larger value of gKM

, which, in general, would cause more inhibition.
Hence, more INaP

would be needed to compensate the increase in inhibition.
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Figure 10: Parameter sensitivity analysis of the maximal conductances of the Ca2+-currents;
panels (a) and (c) show the excitability measure for ranges of gCaT

and gCaH
, respectively; panels

(b) and (d) show the numbers of spikes in a spike train for gCaT
and gCaH

, respectively; the original
values of the maximal conductances are marked by a (magenta) star.

5.3 The Ca2+-channel currents
Let us now present the parameter sensitivity analysis for the inward Ca2+-channel currents. The
influence of the maximal conductances of these currents on the neural excitability in the model
is shown in Fig. 10. The excitability measures as functions of gCaT

and of gCaH
are shown in

Figs. 10(a) and (c), respectively. Figures 10(b) and (d) illustrate the changes in the numbers of
spikes as the maximal conductances vary. Because of the low-voltage activation, similar to INaP

,
the change of gCaT

also has a large effect on the excitability properties of the model. The ex-
citability measure has a steep slope and reaches quite high values within a small interval of gCaT
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(Fig. 10(a)). Moreover, Fig. 10(b) illustrates that the changes in the numbers of spikes are signif-
icant for this parameter. We were able to perform the analysis only for a relatively small interval
of gCaT

; this is due to the fact that for values below 0.4 mS/cm2 the inhibition is too large and no
action potentials are generated. On the other hand for gCaT

> 0.65 mS/cm2 the model exhibits
bursting behaviour. Note that for the CA3 neuron model gCaT

= 0.74 mS/cm2, which is above
the bursting boundary for the CA1 parameter set. The reason why CA3 neurons may tolerate
more ICaT

is the higher inhibition from the outward currents. Moreover, CA3 neural responses
are more excitable as far as the transient burst is concerned. These results establish the relatively
high sensitivity of the model to changes in ICaT

. Moreover, it suggests that concentrations of
Ca2+ can indirectly affect the pyramidal-cell behaviour, because it can change the amount of
active ICaT

through the Nerst potential of Ca2+. In addition, analysis of both INaP
and ICaT

shows
that low-voltage activated currents, which are important elements of neural excitability, can also
cause bursting of the pyramidal neuron.

The parameter sensitivity analysis of gCaH
produces counterintuitive results similar to those

for gNaT
. Since it affects mostly the amplitudes of the action potentials, the increase of gCaH

results in a decrease of the excitability measure, as shown in Fig. 10(c). Note that the values
of the excitability measure are not as high as for gCaT

, which means that the frequency is less
affected. This increase eventually causes a depolarised state instead of action potentials for
gCaH

> 3.3 mS/cm2. Figure 10(d) shows that gCaH
has only little influence on the number of

spikes.
For both CA1 and CA3 parameter sets we find equivalent effects on excitability due to

changes in gCaH
. Importantly these effects are also similar to the influence of changes in total

Na+-current in the model. Therefore, a decrease in gCaH
may be the cause for hyperexcitability

as well.

5.4 The K+-channel currents
Finally, we perform parameter sensitivity analysis of the outward currents in our model. Fig-
ure. 11 shows the influence of these maximal conductances on the behaviour of our model. Fig-
ures 11(a) and (c) depict the excitability measures as function of gKDR

and gKM
, respectively. The

changes in the number of spikes are show in Fig. 11(b) and (d).
Both outward currents have a significant inhibitory influence on the model excitability, as is

reflected by the negative slopes of the excitability measures shown in Fig. 11(a) and (c). Note that
gKM

varies on a much smaller scale than gKDR
(Fig. 11(c)). The excitability measure in Fig. 11(a)

and (c) appear to have similar slopes, but small changes of gKM
have a greater influence on the

overall excitability. Evidently, small changes of gKM
cause profound changes of both frequency

and number of spikes. Moreover, the maximal values of the excitability measure are quite large
compared to the previous cases, which indicates that changes of this current have a substantial
effect on the spike frequency.

Figure 11(b) and (d) illustrate that both of the studied parameters have a significant impact
on the number of spikes. Figure 11(d) also confirms our previous finding that a decrease of gKM

,
as for the CA3 neuron model, produces a CA1-like regular spiking behaviour. Since for the
CA1 parameter set the value of gKM

is lower than for CA3, the long-lasting inhibition caused by
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Figure 11: Parameter sensitivity analysis of the maximal conductances of the K+-currents; pan-
els (a) and (c) show the excitability measure for ranges of gKDR

and gKM
, respectively; panels (b)

and (d) show the number of spikes in a spike train for gKDR
and gKM

, respectively; the original
values of the maximal conductances are marked by a (magenta) star.

this current is smaller. Therefore, the amount of inward current in low-voltage region is larger,
which allows the membrane potential to cross the spiking-threshold much more often. Hence,
more action potentials can be generated. Moreover, because IKM

is a slow current, it deactivates
slowly as well. Hence, lower gKM

causes less active IKM
in the low-voltage region, which directly

influences the inward currents.
We started the parameter sensitivity analysis from gKDR

= 8 mS/cm2, because below that
value our model exhibits bursting. On the other hand, further decreases of gKM

toward zero
produces tonic-spiking behaviour without any bursts in the model. This could be explained by
the fact that IKM

is slow and has a long-lasting effect on the spiking behaviour of the model.
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6 Discussion
Recent experimental studies demonstrate, that after-depolarisation is an intrinsic feature of the
CA1/3 nuronal soma (Yue et al., 2005; Golomb et al., 2006; Yaari et al., 2007; Chen and Yaari,
2008; Safiulina et al., 2008; Brown and Randall, 2009). Indeed, the soma is the centre where
all synaptic inputs are integrated to produce a response that could be propagated in the neural
network; ADP results from this integration of the input signals. Hence, an understanding of this
phenomenon is important not only from a single-cell point of view, but also from the point of
view of macroscopic behaviour of neural circuits.

In this paper we presented a unified model of CA1/3 pyramidal cells that was calibrated to
and validated with recent experimental data obtained at close-to-physiological temperatures. We
used this model to unravel the mechanisms that govern ADP and transient bursting behaviour
in these cell types. Our analysis of the model suggests a possible explanation for a number of
puzzling experimental observations related to hyperexcitability in pathological conditions.

Previous theoretical studies of hippocampal pyramidal cells often used complex multi-compartmental
models (Traub et al., 1991; Migliore et al., 1995; Lazarewicz et al., 2002). The first attempt of
constructing a simpler pyramidal neuron model was published in (Pinsky and Rinzel, 1994), fol-
lowed later by one of the most recent single-compartment models of pyramidal cell presented in
(Golomb et al., 2006; Xu and Clancy, 2008). Our modelling study confirms that the responses
of pyramidal neurons to short and long stimuli can be reproduced using a single-compartment
model. The parameters values in our model are based on recent voltage-clamp data measured
in close-to-physiological temperatures (above 30◦C). Indeed, recent studies (Liu et al., 2003;
Blackmer et al., 2009; Brown and Randall, 2009) show that the time constants of the channels
increase dramatically with an increase in temperature, although the parameters of (in)activation
curves are similar for lower temperatures. As a result, in contrast to the previous theoretical
studies of ADP (Golomb et al., 2006), our model reproduces the characteristic shape of the ADP
’hump’. Furthermore, our study shows the importance of taking into account the slow inactiva-
tions of ICaH

and IKDR
. Since ICaH

is a high-voltage activated current that mainly influences the
amplitude of the action potential, its inactivation is responsible for the spike-amplitude modula-
tion in the model. Interestingly, inactivation of IKDR

plays a major role in the transient behaviour
of the model by setting the initial value of IKDR

according to the resting potential. This allows
the model to reproduce the growth of the ADP as the resting potential increases. Moreover, after
the resting potential exceeds −70 mV, bursts of additional spikes are fired on top of the ADP.

Our study focused on the short-term behaviour of pyramidal cell, in particular, ADP and
transient bursts. Therefore, we used a minimal set of outward currents and only considered those
that are important for ADP. As a consequence, our model does not reproduce the spike adaptation
very well. A recent study shows that the incorporation of several additional K+-currents found in
pyramidal cells leeds to much better reproduction of the spike adaptation (Hemond et al., 2008).
This study also suggests that slow inactivation of K+-currents can reproduce the late-spiking
behaviour. Hence, we expect that long-term behaviour of our model can be improved with a
more versatile selection of additional slow outward currents. We showed that the slightly slower
deactivation of ICaT

makes it a major current mediating ADP. In our model INaP
also plays an

important role in shaping the ADP, but, due to its instantaneous gating, it is very small during
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ADP. Recent studies in (Destexhe and Bal, 2009) show that INaP
may be a slightly slower current

with an activation-time constant similar to τmCaT
. Such a change would slow deactivation of this

current and hence increase its influence on modulation of the amplitude and duration of ADP.
We defined ADP as a local maximum of the membrane potential. We analysed this phe-

nomenon by using the derivative dV/dt; we performed the same analysis also for the experi-
mental measurements. This method of analysis is particularly useful in the study of onset of
ADP, which corresponds to a subthreshold cubic tangency of the membrane potential to the V -
nullcline. The bursting behaviour of hippocampal neurons is not only an interesting feature of
the cell’s physiology, it is also an essential part of the neural information processing that takes
place during spatial navigation (Harvey et al., 2009). Recent experimental in-vivo studies show
that bursting behaviour plays an important role in hippocampal place cells (Harvey et al., 2009).
Our modelling results show that dV/dt and its nullcline play an important role in establishing of
the bursting-threshold. If the difference between the inward and outward currents is sufficiently
high for the membrane potential to reach −60 mV then the fast Na+-currents are engaged and,
thus, additional spikes will be generated on top of ADP.

Our sensitivity analysis of the Na+-currents showed that a decrease of this current can re-
sult in an increase of excitability. Such increases of excitability accompanied by decreases of
Na+-currents was also observed in Alzheimer-disease animal models (our unpublished data).
Moreover, recent results in (Kile et al., 2008; Misra et al., 2008) show that Na+-currents are in-
deed decreased in some cases of inherited epilepsies (such as benign familial neonatal-infantile
seazures, BFNIS). Hyperexcitable CA1/3 behaviour has been demonstrated (Kile et al., 2008) in
an animal model of such epilepsies that is associated with sodium channel mutation (SCN2A).
Interestingly, patch-clamp analysis of human tsA201 cells transfected with SCN2A mutation
showed that cells expressing BFNIS mutants exhibited lower levels of sodium current (see Fig.
2A in (Misra et al., 2008)). Our sensitivity analysis suggests that high-voltage-activated Ca2+-
channels can cause similar hyperexcitability effects.
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