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Dynamics of plateau bursting in dependence on the
location of its equilibrium
H. M. Osinga and K. T. Tsaneva-Atanasova
Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics,
University of Bristol, Queen’s Building, Bristol BS8 1TR, UK

Abstract: We present a mathematical analysis, based on numerical explorations, of the
bursting patterns that arise in plateau-bursting models of endocrine cells as the position of
the equilibrium varies. We consider both square-wave and pseudo-plateau bursting. Within
the framework of systems with multiple time scales, it is well known how the underlying fast
subsystem organises the behaviour of the model, but such results are valid only in a small
enough neighbourhood of the singular limit that defines the fast subsystem. Hence, the slow
variable (intracellular calcium concentration) must be very slow, while the physiologically
realistic range is moderately slow. Furthermore, the theoretical predictions are also only
valid for parameter values such that the equilibrium is close to a homoclinic bifurcation
that occurs in the fast subsystem. In this paper, we discuss what happens outside this
theoretically known neighbourhood of parameter space. Our results complement our earlier
work, in collaboration with Rieß and Sherman (Journal of Theoretical Biology 2010, in
press), which focussed on how the bursting patterns vary with the rate of change ε of the
slow variable: we fix ε and move the equilibrium over the full range of the bursting regime.

Key words: plateau bursting, square wave, pseudo-plateau, subcritical and supercritical
Hopf bifurcation, homoclinic bifurcation

In endocrine cells plateau bursting results in an increase in the intracellular calcium
concentration ([Ca2+]i) and is essential for hormonal secretion [1, 2, 3]. The balance of
inward (depolarising) and outward (repolarising) ionic currents governs repetitive rises (os-
cillations) in the intracellular calcium concentration (the slow variable) that are accompanied
by plateau-bursting electrical activity in the membrane potential (the fast variable). There
are two types of plateau bursting patterns that could be found in experimental as well as
modelling studies. The classical square-wave [4, 5] (or fold-homoclinic [6]) bursting is typical
for pancreatic β-cells and is characterised by well defined spikes in the active phase that are
related to a family of stable periodic solutions in the fast subsystem. The other type of
plateau bursting is typical for pituitary cells [7, 8, 9, 10, 11, 12] and has been classified in
some studies as fold-subHopf [6] or pseudo-plateau bursting [11]. It is characterised by small
irregular spikes in the active phase. There have been numerous modelling studies of plateau-
bursting in a variety of endocrine cell types, including pancreatic β-cells [13, 14, 15] and
pituitary cells [7, 8, 9, 10, 11, 12]. These models faithfully reproduce the distinct bursting
patterns observed experimentally [7, 8, 10], but due to higher dimensions as well as inherent
nonlinearities, it is rather difficult to analyze systematically the dynamics that underlies the
plateau bursting regimes in these models.

Bursting activity manifests itself by periodic switches between an active (depolarised)
phase and a silent (repolarised) phase. The main benefit of such prolonged electrical activity
is its efficiency to increase intracellular Ca2+ in contrast to a single spike. Ultimately, this
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results in an increase of [Ca2+]i that participates in the stimulation of hormonal release from
secretory vesicles [1, 2, 3]. Given the ubiquity of bursting firing it is of central importance to
understand the way in which it is organised and how it emerges and dies. Moreover, different
types of bursts are distinguished by their numbers of spikes, i.e., the duration of the active
phase. The time of burst onset represents the temporal location of a certain stimulus feature,
and the intra-burst spike count discriminates between different types of features. Therefore,
it is crucial to dissect the mechanisms that govern the duration of the active phase, which
is directly related to the number of spikes within a burst and, consequently, controls the
timing and the amount of calcium entering the cell. We have recently shown in [16] that the
dynamics of plateau bursters depends on the location of the full-system equilibrium point.
The position of this equilibrium in bursting models is determined by the intersection between
the slow-variable nullcline and the critical manifold of the full system. In general, parameter
variations that affect the slow-variable nullcline or the critical manifold result in changes
of the full-system equilibrium location. Among the most plausible physiologically relevant
possibilities are variations in parameters describing the ionic currents that mediate bursting
electrical activity such as ion channels conductances and gating properties. Another relevant
physiological possibility is a perturbation in the slow-variable (calcium) dynamics that could
be due to variations in calcium buffering capacity of the cells or calcium extrusion kinetics.

In order to investigate how plateau-bursting trajectories in the full system unfold as
a function of a parameter that determines the location of its equilibrium we use here the
polynomial plateau-bursting model introduced in [16] that can generate both types of plateau
bursting. Our analysis of the bifurcations leading to plateau bursting in the full system of
the polynomial plateau-bursting model extends and complements previous studies that have
applied a standard fast-slow analysis [4, 5, 17, 18]. We find that both fold-subHopf and
fold-homoclinic bursting can be readily interpreted as arising from bifurcations in the full
system. In particular, we identify for both square-wave and pseudo-plateau bursters key roles
for singular Hopf bifurcations that give rise to bursting via canard explosions as the position
of the full-system equilibrium point changes. Furthermore, we study how the duration of the
active phase is affected by the location of this equilibrium. In the case of square-wave bursting
we clarify the mechanisms by which the bursting regime is born from canard trajectories in
the full system as well as their role in spike adding. We also explain how the bursting regime
disappears in tonic spiking as the equilibrium point traces the critical manifold. Finally, we
show that the results obtained for pseudo-plateau bursting are extremely similar to those for
square-wave bursting, despite the fact that the local theory close to the singular limit in a
small neighbourhood of the homoclinic bifurcation predicts rather different behaviours. We
end with a discussiong of the significance and potential implications of our results.

Results

Our analysis uses the polynomial plateau-bursting model introduced in [16]. It is a modi-
fied Hindmarsh-Rose model [19] that is given by the three-dimensional system of ordinary
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differential equations




ẋ = f(x, y, z) := s a x3 − s x2 − y − b z,
ẏ = φ g(x, y) := φ(x2 − y),
ż = ε h(x, z) := ε(s a1 x + b1 − k z).

(1)

System (1) is a phenomenological model that, with the appropriate choice of parameters, can
exhibit all common dynamical features found in a number of biophysical modelling studies
of plateau bursting [20, 21, 7, 14, 22, 23, 15, 9, 10, 11]. In the context of plateau bursting,
one should think of x as the membrane potential, y is the gating dynamics of the potassium
(K+) channels and z represents the dynamics of cytosolic Ca2+. As in [16], we use φ = 1
and consider ε a small positive parameter, so that z varies on a much slower time scale than
x and y. This means that we can perform the classical analysis [4] where z is considered
constant and treated as a parameter for the so-called fast subsystem in the (x, y)-plane. The
parameters must be chosen such that the fast subsystem has a Z-shaped z-dependent family
of equilibria and there exists a range of z-values for which there are two stable equilibria.
Plateau bursting is then characterised by a Hopf bifurcation on the upper stable branch;
the emanating family of periodic orbits is responsible for creating spikes in the active phase.
For the case of square-wave bursting this Hopf bifurcation is supercritical and the stable
limit cycles generate well-defined spikes. For pseudo-plateau bursting the Hopf bifurcation
is subcritical, with unstable periodic orbits that lead to transient oscillations, which generate
the small irregular spikes typical for this case. Without loss of generality, we obtain the above
requirements by setting a = 0.5, b = 1, a1 = −0.1 and k = 0.2; these are the same values as
used in [16]. Hence, the only free parameters are s, b1 and ε.

As mentioned before, the parameter ε controls the difference in time scales. The pa-
rameter s determines the criticality of the Hopf bifurcation; we consider s = −1.61 and
s = −2.6 as representative choices for the square-wave and pseudo-plateau bursters, respec-
tively, which are again the same choices as in [16]. The bifurcation diagrams for the fast
subsystem with s = −1.61 and s = −2.6 are shown in Fig. 1(a) and (b), respectively. Both
diagrams consist of a Z-shaped curve of equilibria in (x, y, z)-space, which form the critical
manifold of (1); the equilibria are attracting where the curve is drawn as a solid line, saddles
where the line is dashed, and repelling where it is dotted. For both cases there are four
bifurcations along this Z-shaped curve: two fold (saddle-node) bifurcations labelled SN1 and
SN2, a Hopf bifurcation labelled H, and a homoclinic bifurcation labelled HC that terminates
the family of periodic orbits emanating from the Hopf bifurcation; this family of periodic
orbits is drawn solid grey for the supercritical case (the periodic orbits are stable) and dotted
grey for the subcritical case, where they are unstable.

The full system (1) has an equilibrium FP, which is a point on the curve in (z, x, y)-space
that is defined by the family of equilibria for ε = 0. The location of FP is controlled by
the parameter b1 and FP persists as an equilibrium in this location for all ε. We can derive
explicit expressions for when b1 is such that FP is located at the bifurcation points SN1, SN2

and H; see the Appendix. The location at HC must be approximated numerically and the
respective values of all four special locations for s = −1.61 and s = −2.6 are given to four
decimal places in Table 1.

The study in [16] focused on the creation and bifurcations of bursting solutions (periodic
orbits) for fixed s and b1 with ε varying. Here, we consider s and ε fixed and investigate how
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Figure 1: Bifurcation diagrams of the fast subsystem of (1), where z is treated as a parameter,
shown in (z, x, y)-space. The case for square-wave bursting, presented for s = −1.61 is shown
in panel (a) and the case for pseudo-plateau bursting is presented for s = −2.6 in panel (b).
Solid, dashed, and dotted lines denote attracting, saddle, and repelling equilibria, respectively;
the solid or dotted closed curves are selected from the family of periodic orbits emanating from
a Hopf bifurcation (H) and terminating at a homoclinic bifurcation (HC). The fold points are
labelled SN1 and SN2. Panels (c) and (d) show examples of the plateau-bursting attractor
and the (saddle) equilibrium FP of the full system for the representative value of b1 = −0.015
with s = −1.61 and s = −2.6, respectively; the equilibrium branch from the corresponding
panel (a) or (b) is included for reference.

the bursting solution arises and subsequently changes as b1 varies so that FP moves from the
lower stable branch in (x, y, z)-space up along the middle (saddle) branch to the upper stable
branch. We choose ε = 0.01 as a representative value for a realistic plateau-bursting model.
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s = −1.61 s = −2.6
b1 x y z b1 x y z

SN1 0 0 0 0 0 0 0 0
HC −0.0279 0.1945 0.0378 0.0172 −0.0652 0.3672 0.1348 0.1514
SN2 −0.0710 0.5052 0.2552 0.0519 −0.1415 0.8205 0.6732 0.3591
H −0.1449 0.8409 0.7072 −0.0473 −0.2450 1.1003 1.2107 0.2053

Table 1: Values of b1 and the corresponding locations of FP at the bifurcation points SN1,
HC, SN2 and H for the two cases s = −1.61 and s = −2.6. The fold point SN1 always lies
at the origin with b1 = 0; compare also Fig. 1. Explicit formulae for SN1, SN2 and H can be
found in the Appendix.

We are particularly interested in how the dynamics changes as b1 passes through the regime
where FP is close to the fold points SN1 and SN2, the Hopf point H and, most importantly,
the homoclinic bifurcation point, which acts as an organising center for the possible types
of bursting solutions [24].

Bifurcations of the full-system equilibrium FP

The stability of FP changes as b1 is varied. The real and imaginary parts of the three
eigenvalues of FP as a function of b1 are shown in Fig. 2 in rows (1) and (2), respectively;
column 1 is for s = −1.61 and column 2 for s = −2.6. The changes in stability that occur
as FP moves from the upper branch to the lower branch (which is for b1 increasing, that is,
from left to right in the figure) are the same for the supercritical case with s = −1.61 and
the subcritical case with s = −2.6. For both values of s there is a bounded b1-interval for
which FP is a saddle and FP is stable otherwise. Due to the difference in time scales for
system (1), we expect that one of the eigenvalues of FP is of order O(ε). Figure 2 shows
that this is indeed the case for both values of s and for almost all values of b1; we indicate
this eigenvalue by λε.

Before we discuss the (plateau-)bursting solutions that exists particularly in the regime
where FP is a saddle, we explain the two stability changes in some more detail. The changes
in stability seem to happen when FP lies on H, which is at b1 ≈ −0.1449 for s = −1.61
and b1 ≈ −0.2450 for s = −2.6, and on SN1 at b1 = 0. Let us first consider the transition
through the Hopf point H. For b1 ¿ 0, the equilibrium FP has three stable eigenvalues, a pair
λ1 = λ̄2 of complex conjugate eigenvalues with negative real parts and one real eigenvalue
λ3 < 0 that plays the role of λε. As can be seen in Fig. 2, the pair λ1 = λ̄2 moves through the
imaginary axis and becomes unstable. The transition happens at b1 ≈ −0.1457 for s = −1.61
and b1 ≈ −0.2453 for s = −2.6, that is, within an O(10−3) distance from the b1-value that
corresponds to the Hopf bifurcation H of the fast subsystem. Hence, FP loses stability in
a Hopf bifurcation HFP at a distance O(ε) from H, which similarly gives rise to a family of
periodic orbits of the full system (1) that correspond to tonic spiking.

The equilibrium FP regains stability during the transition through the fold point SN1.
Figure 2 shows that the saddle FP with three real eigenvalues λ3 < 0 < λ2 < λ1 before
reaching SN1 becomes a sink with three real eigenvalues λ3 < λ1 < λ2 < 0 via a transition
during which λ1 = λ̄2 are again complex conjugate. Hence, FP gains stability as the pair
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Figure 2: Eigenvalues of the equilibrium FP of system (1) as b1 varies; the case s = −1.61
is shown in panels (a1) and (a2) and s = −2.6 in panels (b1) and (b2). Real and imaginary
parts of the three eigenvalues are shown in rows 1 and 2, respectively. The vertical dashed
lines indicate the b1-values for which FP lies on the fold points SN1 and SN2 and the Hopf
point H.

λ1 = λ̄2 pass through the imaginary axis, that is, again a Hopf bifurcation occurs. This
transition is typical for systems with a fold point like SN1 in the associated fast subsystem
and it was described previously in [17, 18]. Note that λ2 now plays the role of λε and the
transition is characterised by the fact that λ1 becomes of the same order as λ2. It seems
that FP changes stability exactly at the fold point, but in fact, FP becomes stable already
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at b1 = −0.26 × 10−4 for s = −1.61 and b1 ≈ −1.62 × 10−4 for s = −2.6. We say that
FP undergoes a singular Hopf bifurcation, denoted SHFP, which is expected to occur O(ε)
away from the fold point of the fast subsystem [17, 25]. During this transition, when FP is
O(ε)-close to SN1, the slow-fast nature of the system changes from having one slow variable
to having two slow variables. It is not hard to show that for our choice of parameters, SHFP

always takes place at a value b1 < 0; see the Appendix.
As mentioned above, as FP crosses H the role of λε is played by λ3, while during the

crossing of SN1 it is played by λ1. The exchange of roles occurs as FP crosses SN2. Essentially,
what is happening is the following. The fold point SN2 in the fast subsystem is characterised
by the fact that one of the eigenvalues of the corresponding equilibrium of the fast system is
zero. In the full system (1), however, there is no bifurcation. Instead, two eigenvalues of the
full system come very close to zero and their corresponding (real parts) of the eigenvectors
almost align. Similarly to the singular Hopf bifurcation, this means that the slow-fast nature
of the system changes from having one slow variable to having two slow variables. For the
case s = −2.6 we can see this clearly in Fig. 2(b1), because all three eigenvalues are real
before b1 increases past the value at SN2 and the two near zero come very close together.
The process for s = −1.61 shown in Fig. 2(a1)-(a2) is more complicated: the two unstable
eigenvalues are complex conjugate and the real parts of all three eigenvalues remain close
to zero as FP crosses SN2, after which there is a clear divergence from zero for all three
eigenvalues. Perhaps for this case the system loses its slow-fast nature altogether during the
transition through SN2.

The two Hopf bifurcations of FP as b1 varies and s and ε are fixed, give rise to a regime
of (plateau-)bursting solutions. The analysis in [16] showed that the ε-dependence of the
bursting solutions is not affected by the criticality of H, that is, system (1) exhibits the same
sequence of bifurcations to different types of bursting solutions for s = −1.61 as well as
s = −2.6. However, the location of FP relative to the homoclinic bifurcation HC matters.
Indeed, Terman [26] and Belykh et al. [24] studied how HC organises the bursting solutions
for small ε and discussed the transitions from tonic spiking to square-wave bursting in a
small neighbourhood around HC. However, pseudo-plateau bursting has not been treated in
the same detail. In [16] we reported that the case of pseudo-plateau bursting is reminiscent
of Scenario 1 described in [24], which corresponds to relaxation oscillations. This means that
there is no tonic spiking in a neighbourhood of HC, provided ε is small enough. Instead,
pseudo-plateau bursting solutions are observed throughout the transition through HC, but
the oscillations in the active phase have exponentially small amplitudes. Here, we fix ε = 0.01
to a moderately small value and show how the bursting solutions are organised as b1 varies
over a large range so that FP moves well outside a neighbourhood of HC. We first treat
the cases s = −1.61 and s = −2.6 separately and end with a discussion of our findings. In
particular, the choice for s, that is, the criticality of the Hopf bifurcation H, again does not
influence the bifurcation diagram. Therefore, this paper complements the discussion in [16],
where ε was the main bifurcation parameter and b1 remained fixed.

Transitions to bursting solutions for s = −1.61

Let us begin with the case of square-wave bursting, where s = −1.61. This case is char-
acterised by the fact that the Hopf bifurcation H of the fast subsystem is supercritical; see
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Figure 3: Bifurcation diagram of system (1) with s = −1.61, ε = 0.01 and b1 varying. Row 1
shows x versus b1, with periodic orbits indicated by their maximal x-values; row 2 shows
the AUTO L2-norm versus b1. Column (b) shows enlargements of the bursting region. The
one- and two-spike solutions are connected to the family of tonic spiking via period-doubling
bifurcations; we also found three isolas with the three-, four- and five-spike solutions.

Fig. 1(a). According to [24, 26, 16], the expected type of bursting solution depends on the
location of FP relative to the homoclinic bifurcation HC of the fast subsystem, which occurs
at b1 = bHC ≈ −0.0279. For b1 > bHC we expect to see square-wave bursting as soon as ε
is small enough, and for b1 < bHC we expect to see tonic spiking, again provided ε is small
enough. In fact, Terman [26] gives a very detailed description of the transitions that occur
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in a small interval [bHC − δ, bHC + δ], with 0 < δ ¿ 1, for small enough fixed ε; see Fig. 9
in [26], where k acts as −b1 in our context. Since our choice ε = 0.01 is not very small, we
expect a transition regime that is much simpler, but consistent with Fig. 9 in [26].

Figure 3(a1) and (b1) show two different projections of the bifurcation diagram of sys-
tem (1) for s = −1.61 with associated enlargements of the bursting region in column (2).
Row (a) shows the projection in the (b1, x)-plane, where periodic orbits are represented by
their maximum x-value. Row (b) shows the L2-norm || · || that is standard in AUTO [27];
it is the standard Euclidean norm || (x, y, z) ||E=

√
x2 + y2 + z2 for points (x, y, z) ∈ R3 and

defined as

||u ||= 1

T

∫ 1

0

||u(s T ) ||E ds,

for a periodic orbit u = {u(t) ∈ R3 | 0 ≤ t ≤ T} with period T > 0. As before, the curve
that corresponds to the equilibrium FP is dashed in between the two Hopf bifurcations HFP

and SHFP, where FP is a saddle. The thin vertical black dashed line lies at b1 = bHC. The
Hopf bifurcations give rise to two families of periodic orbits that are, in fact, connected.
This connected family contains the tonic spiking solutions as well as plateau (square-wave)
bursting with one and two spikes. The enlargements in Figs. 3(a2) and (b2) show that there
are three further disjoint families of three- four- and five-spike solutions, respectively. The
transitions between these different bursting solutions are detailed below.

The tonic (continuous) spiking solutions for b1 < bHC arise from the Hopf bifurcation HFP

of FP, which for s = −1.61 occurs at b1 ≈ −0.1457. A selection of the periodic orbits along
this branch is shown in Fig. 4. Panel (a) shows the time series for x; here the periods T of the
orbits are rescaled to 1 such that each orbit covers the [0, 1] interval. A three-dimensional
view of the family in (z, x, y)-space is shown in Fig. 4(b). The Hopf bifurcation HFP is
supercritical and, initially, the periodic orbits are small-amplitude sinusoidal oscillations; in
fact, they are almost planar with z almost constant. In physiological models such planar
oscillations of the membrane potential are related to negligible variations of the intracellular
calcium concentration, which has virtually no effect on secretion [2, 28]. As b1 increases, the
amplitude of the oscillations grows to a size that is similar to that of the homoclinic orbit
of the fast subsystem at HC, but the periodic orbits are still close to planar. In the singular
limit, as ε → 0, each periodic orbit in this family converges to one of the periodic orbits in the
family that exists in the fast subsystem with z constant; for example, see [18]. For our value
of ε = 0.01, a supercritical period-doubling bifurcation (PD) occurs at b1 ≈ −0.0547, after
which the family is unstable; the periodic orbit corresponding to this bifurcation is labelled
PD1 and drawn with a thicker curve in Fig. 4. The unstable family ends in a homoclinic
bifurcation at b1 ≈ −0.0210, which is O(ε)-close to bHC ≈ −0.0279; the equilibrium FP for
b1 at this homoclinic bifurcation is also shown in Fig. 4(b). The unstable periodic orbits
have b1-values very close to bHC and their profiles exhibit well-defined (single) spikes, rather
than sinusoidal oscillations; see Fig. 4(a).

The family of period-doubled attracting periodic orbits that emanates from PD1 consist
of two-spike solutions. These do not correspond to two-spike plateau bursting, because there
is no clear silent phase in these oscillations and there are no significant variations of the slow
variable. The period-doubled family becomes unstable in a second supercritical PD, labelled
PD21, that occurs at b1 ≈ −0.0531, and regains stability in another PD at b1 ≈ −0.0242
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Figure 4: Selected periodic orbits of system (1) with (s, ε) = (−1.61, 0.01) and b1 ∈
[−0.1454,−0.0210] from the regime of tonic spiking in Fig. 3. Stable orbits are black, un-
stable ones grey, and the orbit at the period-doubling bifurcation for b1 ≈ −0.0547 is shown
using a thicker curve. Panel (a) shows time series of the x-coordinate, where the periods are
scaled to 1. Panel (b) shows the corresponding orbits in (z, x, y)-space with FP plotted for
b1 = −0.0210 approximately at which the primary family ends in a homoclinic bifurcation.

(PD22), which is now subcritical. Note that this second stable segment of the family of
period-doubled periodic orbits lies on the other side of bHC, that is, FP has crossed HC. The
orbits along this second stable segment are two-spike bursting solutions. Figure 5 illustrates
the transition from doubled tonic spiking to two-spike bursting via the segment of unstable
periodic orbits (coloured grey). Such two-spike bursting solutions are accompanied by larger
variations in the slow variable that in physiological models could be more significant in terms
of hormonal secretion. As before, the (scaled) time series for x are shown in panel (a) and
the corresponding phase portraits in panel (b). The orbits at the moment of the PDs are
drawn with thicker curves. Figure 5(b) shows the gradual development of a silent-phase
segment for the family of unstable periodic orbits.

The two supercritical PDs labelled PD1 and PD21 appear to be the start of a period-
doubling cascade to a chaotic attractor. As predicted in [26], we expect to see chaotic
spiking solutions before FP passes through HC, and indeed, none of the attractors in the
period-doubling cascade persist until b1 = bHC. As mentioned above, the primary family that
emanates from HFP ends at a homoclinic bifurcation, but the branches emanating from the
subsequent PDs seem to pass through this b1-value and regain stability in subcritical PDs
that are quickly followed by folds of periodic orbits (SNP). For example, the family emanating
from PD22 undergoes an SNP at b1 ≈ −0.0235 that is almost immediately followed by a PD,
before connecting to the corresponding branch from the period-doubling cascade. Hence,
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Figure 5: Selected stable (black) and unstable (grey) periodic orbits of system (1) with
(s, ε) = (−1.61, 0.01) along the period-doubled branch emanating from PD1 (b1 ≈ −0.0547) in
Fig. 4, illustrating the transition from doubled tonic spiking to two-spike bursting solutions.
Panel (a) shows time series of the x-coordinate with the periods scaled to 1. Panel (b) shows
the periodic orbits corresponding to the unstable segment in between the two period-doubling
bifurcations PD21 (b1 ≈ −0.0531) and PD22 (b1 ≈ −0.0242) in (z, x, y)-space.

there appears to exist a period-doubling cascade “back” comprising subcritical PDs and
SNPs.

The two-spike bursting solutions are part of the family that emanates from the singular
Hopf bifurcation SHFP that we detected at b1 ≈ −2.63×10−4. This singular Hopf bifurcation
is subcritical, so at first, this family is unstable. The periodic orbits in this family are initially
nearly circular and almost planar small-amplitude oscillations. The periodic orbits become
stable after an SNP at b1 ≈ −1.31×10−4. The amplitudes of the periodic orbits increases very
rapidly and the family grows into a large-amplitude single-spike bursting attractor within an
O(10−7) parameter interval; this rapid transition is called a canard explosion and is typical
after a singular Hopf bifurcation [25]. Figure 6(a) is an enlargement of the canard explosion
from the bifurcation diagram in Fig. 3(a). Panel (b) shows a selection of the periodic orbits
from this canard explosion, where the unstable periodic orbits are coloured grey and the
thicker black curve is the periodic orbit at the moment of the SNP. Note that the attracting
(black) periodic orbits are no longer planar.

The canard explosion is organised by attracting and saddle slow manifolds associated
with the critical manifold formed by the attracting and saddle branches of the Z-shaped
curve of equilibria of the fast subsystem of (1). Each branch of the critical manifold, away
from the fold points SN1 and SN2, gives rise to a slow manifold with the same stability type.
These slow manifolds are orbit segments that remain O(ε)-close to the critical manifold
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Figure 6: Enlargement of the bifurcation diagram in the (b1, x)-plane near the canard ex-
plosion from the singular Hopf bifurcation SHFP. Selected stable (black) and unstable (grey)
periodic orbits are shown in panel (b) together with the Z-shaped equilibrium branch from the
fast subsystem of (1).

for O(1) time. Consider the attracting and saddle slow manifolds associated with the two
branches that meet at SN1. As an approximation, we plotted the Z-shaped equilibrium curve
in Fig. 6(b) to illustrate how the periodic orbits are formed by segments that closely follow
the attracting slow manifold as well as the saddle slow manifold, and close with a near-
linear segment along a fast direction. Initially, the periodic orbits always close via a short
fast segment back to the attracting slow manifold. Their amplitude increases such that the
periodic orbits contain increasingly longer segments that follow the saddle slow manifold.
However, the family of periodic orbits does not end when the point near SN2 at the other
end of the saddle slow manifold is reached. Instead, the periodic orbits stabilise and develop
a large-amplitude spike that results from the fact that the jump happens in the opposite
fast direction. The SNP separates the “jump-back” from “jump-away” periodic orbits. The
periodic orbit that corresponds to the SNP point is called a maximal canard that is formed
by the intersection (coincidence) of the attracting and saddle slow manifolds when extended
past SN1; see [25] for more details.

The single-spike bursting attractor acquires an additional spike in a rather similar process
involving two SNPs at almost the same b1-value O(10−7) close to b1 = −7.458× 10−3. This
process was described in [21] and revisited in [29], where the slow manifolds have been
computed for a FitzHugh–Nagumo model and the transitions are nicely illustrated. The
resulting two-spike bursting attractor connects to the branch of stable periodic orbits from
the period-doubling bifurcation at b1 ≈ −0.0242. Terman [21] called such a succession of two
SNPs a spike-adding bifurcation and studied them in the context of decreasing ε. In theory,
as ε decreases a series of spike-adding bifurcations turns the two-spike plateau burster into an
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Figure 7: Isola of three-spike periodic orbits (a) for system (1) with (s, ε) = (−1.61, 0.01).
Panel (b) shows the stable (black) and unstable (grey) periodic orbits (b) for b1 = bHC ≈
−0.0279, that is, such that FP lies at HC.

n-spike plateau burster, where n →∞ as ε → 0. However, for our fixed choice of ε = 0.01, we
only have this one spike-adding bifurcation. Instead, as FP changes its position, additional
spikes are created via isolas and we were able to find three. Figure 7 shows the isola for
three-spike solutions, which is representative for the four- and five-spike isolas. Panel (a)
shows the bifurcation diagram in the (b1, x)-plane. The range in b1 of the isola is marked by
two SNP bifurcations. The bottom branch consists of saddle three-spike solutions and the
top branch on either end is initially stable. In particular, most of the top segment of the
isola is stable. The three-spike bursting solutions at both ends of the branch lose stability
in PDs at PD31 and PD32. Figure 7(b) shows the stable and unstable pair of periodic orbits
on the isola for b1 = bHC. Both periodic orbits have three spikes; the second and third spike
of the unstable (grey) orbit are almost the same. Indeed, this solution lies very close to one
of the unstable period-doubled solutions discussed in Fig. 5. Note that these period-doubled
solutions are non-orientable, while the saddle three-spike solutions on this lower branch are
orientable.

Transitions to bursting solutions for s = −2.6

Let us now consider the case of pseudo-plateau bursting, where s = −2.6. In contrast to the
case for s = −1.61, the Hopf bifurcation H of the fast subsystem of (1) is now subcritical; see
Fig. 1(b). As discussed in [16], this case is very much like Scenario 1 in [24], where the Z-
shaped equilibrium curve of the fast subsystem does not contain a Hopf bifurcation point H.
For 0 < ε ¿ 1, Scenario 1 gives rise to large-amplitude relaxation oscillations, irrespective of
location of FP relative to HC. For our case, the presence of H leads to an additional delayed
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Panel (a) shows x versus b1, with periodic orbits indicated by their maximal x-values;
panel (b) shows the AUTO L2-norm versus b1. The bursting region persists for lower values
of b1 and was halted due to numerical difficulties. This branch of pseudo-plateau bursting
orbits loses its silent phase as b1 decreases further, and eventually connects to the family that
emanates from the Hopf bifurcation HFP at b1 ≈ −0.2453.

passage through a Hopf bifurcation in the active phase: the oscillation exhibits high-frequency
bursts with amplitudes that are exponentially small, except for the first and last spikes at the
beginning and end of the active phase. If ε is only moderately small, the bursting frequency
decreases and the decay in their amplitudes is no longer exponential; this case is described as
the passage through a tourbillion in the discussion on the dynamic Hopf bifurcation in [25].
Our choice for ε = 0.01 in (1) still leads to pseudo-plateau bursting of relaxation-oscillation
type; pseudo-plateau bursting as a tourbillion can be found, for example, in [12, 11].

Figure 8 shows the bifurcation diagram of system (1) for s = −2.6 and should be com-
pared with Fig. 3. As before, the vertical axis in row (a) is x and in row (b) it is the AUTO
L2-norm || · ||; the second column shows enlargements of the bursting region. The equilibrium
branch FP is the black curve with a dashed segment in between the two Hopf bifurcations HFP

and SHFP, where FP is a saddle; we detected these at b1 ≈ −0.2453 and b1 ≈ 1.620× 10−4,
respectively. As for the case with s = −1.61, we find that HFP is supercritical and SHFP is
subcritical. We believe that the emanating families of periodic orbits are again connected,
but unfortunately, our numerical continuation methods are unable to resolve this connection;
we discuss the missing transitions with the help of numerical simulations.

Just as for s = −1.61, the family of periodic orbits that emanates from HFP corresponds
to tonic spiking. However, it loses stability at b1 ≈ −0.2446 in a torus bifurcation (TR)
rather than a PD. In fact, the unstable family past the torus bifurcation undergoes a PD
at b1 ≈ −0.1583 before ending in a homoclinic bifurcation at b1 ≈ −0.0651; note that this
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Figure 9: Transitions from n-spike periodic orbits to pseudo-plateau bursting with n oscil-
lations in system (1) with (s, ε) = (−2.6, 0.01) and b1 ≈ −0.299 × 10−4. Shown are the
transitions for n = 2 (a) and n = 3 (b).

homoclinic bifurcation is again O(ε)-close to bHC. It seems that the torus bifurcation is
subcritical, but nearby attracting solutions exist, even for b1 < −0.2446 that are seemingly
nonperiodic. In terms of tonic-spiking behaviour, these attractors are very similar to the
coexisting attracting periodic orbit; the only essential difference is the (in)commensurability
between the periods of the x- (or y-) and z-oscillations.

The singular Hopf bifurcation SHFP at b1 ≈ 1.620 × 10−4 again gives rise to a canard
explosion in an O(10−7) interval near b1 ≈ −0.299× 10−4. As before, the family is unstable
at first, because SHFP is again subcritical; an SNP at b1 ≈ −0.2992×10−4 renders the family
stable after which the periodic orbits are one-spike solutions. In contrast to the situation
for s = −1.61, many spike-adding bifurcations occur within this same O(10−7) parameter
interval. Each time a spike is added, the periodic orbit transforms from a pseudo-plateau
bursting orbit with n oscillations into one with n+1 oscillations; this transition is shown for
n = 2 and 3 in Fig. 9; note that we had real difficulties resolving the stability of these orbits
numerically, and the different colours are used merely to distinguish between the pairs of
periodic orbits in each panel. The family remains virtually vertical until the periodic orbits
contain many oscillations, almost all of them with extremely small amplitudes.

The many spike-adding bifurcations and the large number of small-amplitude bursting
oscillations make it a challenge to continue the family in AUTO. In particular, the duration
of the active phase lengthens relative to the duration of the silent phase as b1 decreases. The
continuation breaks down at b1 ≈ −0.1025 and we had to resort to simulations for smaller
b1-values. The relative duration of the silent phase shrinks to zero and for b1 ≈ −0.2445
the periodic orbit becomes a tonic spiking solutions without a silent phase. Figure 10 shows
time series of x for b1 = −0.21, b1 = −0.24 and b1 = −0.2446 in panels (a), (b) and (c),
respectively; the orbit in Fig. 10(c) intersects the plane {y = 1.2} in two seemingly disjoint
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Figure 10: Time series for the x-coordinate of attractors in system (1) with (s, ε) =
(−2.6, 0.01) for b1 = −0.21, −0.24, and −0.2446 in panels (a), (b), and (c), respectively; the
orbit in panel (c) appears to lie on a torus.

closed curves, which indicates that it lies on a quasi-periodic invariant torus. Since these
orbits were obtained via simulations, it is not clear whether they are part of the branch
shown in Fig. 8.

In order to investigate whether the pseudo-plateau bursting solutions are indeed con-
nected to the family of tonic spiking solutions, we calculated the bifurcation diagram for
ε = 0.01. For this larger value of ε, the family emanating from the singular Hopf bifurcation
ends in a homoclinic bifurcation and additional isolas exist with larger numbers of bursting
oscillations; this is very similar to the bifurcation diagram for s = −1.61 shown in Fig. 3.
We remark that for s = −1.61 in Fig. 3, the branch emanating from PD1, which connects
the tonic spiking solutions with the square-wave bursting solutions via the two PDs PD21

and PD22, splits into two separate families that both end in homoclinic bifurcations when
we choose s = −1.6 instead of s = −1.61 (not shown). Before the branch for s = −2.6 with
ε = 0.01 ends in a homoclinic bifurcation, there is also a PD. Hence, we believe that there
is a family of periodic orbits that connects the pseudo-plateau bursting solutions with tonic
spiking via PDs that sit much higher in the period-doubling cascade and involves periodic
orbits that are all unstable. The coexisting attracting periodic orbits are likely organised in
isolas, much like the bifurcation diagram for s = −1.61.

Discussion

Due to the importance of bursting electrical activity in neuroendocrine cells there has been
an immense interest in analysing plateau-bursting models. Previous studies of the effects of
changing the location of the full-system equilibrium have been performed only for square-
wave bursters and applied a standard fast-slow analysis [30, 20, 26, 31]. These studies
primarily focussed on the effects of changing the rate of decay of calcium (through varying
calcium pump rates) inspired by the ability of this parameter to convert bursting to small-
amplitude tonic spiking in the first biophysical model of square-wave bursting [13]. Experi-
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mentally, however, conversion from bursting to spiking and vice versa has been observed by
blocking Ca2+-sensitive potassium channels. In particular, a blockade of small-conductance
Ca2+-sensitive K+-channels (SK) in pituitary gonadotrophs [32] or in pancreatic β-cells [33]
results in transitions to small-amplitude continuous spiking riding on a depolarised plateau.
In contrast, a blockade of large-conductance Ca2+-sensitive K+-channels (BK) in pituitary
somatotrophs has been shown [8] to convert pseudo-plateau bursting to large-amplitude con-
tinuous spiking that could be regarded as a burst with one spike [16]. Theoretical studies
that performed fast-slow analysis of the effects of blocking the SK current in pancreatic β-
cells [30, 34] and BK current in the case of pituitary somatotrophs and lactotrophs [10, 9, 12]
clearly demonstrate that these effects are accompanied by changes in the location of the
full-system equilibrium point. These studies also show that the position of the full-system
equilibrium changes when voltage-gated Ca2+-channel kinetics in a model of pituitary corti-
cotrophs [7] or the conductance of A-type K+-current in a model of pituitary lactotrophs [35]
are varied. All of the above-mentioned theoretical studies not only demonstrated that such
voltage dynamics perturbations affect the number of spikes and consequently the duration
of the active phase, but also that these effects cannot be completely understood in terms of
a classical fast-slow decomposition of the bursting model.

In this paper we addressed the question how the dynamics of plateau bursting depends
on the location of the equilibrium point of the system. Since we focussed on fundamental,
common features of plateau bursting we studied this dependence in a generic plateau-bursting
model [16]. Typically, in endocrine cell models the location of the equilibrium depends on
a number of parameters that define the properties of the ionic currents involved in bursting
as well as the dynamics of the intracellular calcium concentration that regulates hormonal
secretion. We showed how the bursting behaviour depends on the location of the full-system
equilibrium point for both types of plateau bursting. Our analysis revealed that, indeed,
the number of spikes within a burst depends on the position of this equilibrium, which
may offer an explanation for the experimental observations mentioned above. Our results
also clearly demonstrated the difference between depolarised continuous spiking and large-
amplitude continuous spiking: the former is characterised by a planar sinusoidal nature
and, thus, results in very small changes in the slow variable. In contrast, the latter has a
relaxation oscillation character that is accompanied by significantly larger variations in the
slow variable. This observation is important from a physiological point of view, because both
dynamical regimes would presumably produce very different effects on secretion. Namely,
small-amplitude continuous spiking would be more likely to provoke desensitisation and
saturation effects, whereas large-amplitude spiking, that could be thought of as a burst with
one spike, could allow for recovery processes to take place.

There are two main conclusions to draw from our results that contribute to the theory
developed in [26, 24]. Firstly, the theory for the case with s = −1.61, where H is supercritical,
is discussed in [26, 24] for a small neighbourhood in parameter space around the values for
which FP is at HC and ε is small enough. Tonic spiking exists on one side of HC and bursting
on the other side. A homoclinic bifurcation occurs at the transition from tonic spiking to
bursting [24]. We studied this scenario by varying the parameter b1, which moves the location
of FP, and concentrated on the full range for b1 where FP is unstable and lies well outside a
neighbourhood of HC. This parameter range covers the regimes for tonic spiking and bursting
that both originate in Hopf bifurcations at HFP and SHFP, respectively. The Hopf bifurcation
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SHFP is singular and followed by a canard explosion that generates the bursting solutions.
As we already reported in [16], the points HFP and SHFP are connected via a curve of Hopf
bifurcations in (ε, b1)-space. We showed here that the two families of periodic orbits that
emanate from HFP and SHFP are also connected via b1-dependent curves, but always via
segments where the orbits are unstable as FP passes through HC; the connection may not
happen via the primary tonic-spiking branch, but then it occurs at a period-doubled branch
from a hierarchy of period-doubling bifurcations. As soon as such a connection exist, the
branches at higher levels in the hierarchy also appear to connect, while the levels below this
first connection consist of branches that end in homoclinic bifurcations. These homoclinic
bifurcations are not all at the same point, but all lie in an O(ε)-neighbourhood of the b1-value
for which FP is at HC.

For b1 < 0 close enough to 0, the bursting solutions are organised in n-spike families that
are connected via pairs of SNPs, which increase the number of spikes. As b1 decreases, the
families of n-spike solutions form isolas that may overlap. The transition from connected
families to isolas appears to be related to the position of FP relative to HC, which is consistent
with earlier results presented in [16], where we used the speed ε of the slow variable as the
primary bifurcation parameter.

Our second main result contributes to the case with s = −2.6, where H is subcritical. The
organisation of the bursting patterns for this case has previously only been studied in [16].
Based on [16, 24], there exists no tonic spiking for b1-values such that FP lies near HC,
provided ε is small enough. Indeed, we found tonic spiking only for parameter regimes such
that FP lies well outside a neighbourhood of HC. However, tonic spiking does exists, also for
the subcritical case. In fact, the organisation of the transitions from tonic spiking to bursting
are very similar to those for s = −1.61; the main differences are that the canard explosion at
SHFP incorporates several spike-adding bifurcation such that the emering attracting bursting
solution is a pseudo-plateau bursting orbit with several small-amplitude oscillations. Fur-
thermore, the regime where tonic spiking is stable is much smaller. We remark that tonic
spiking ends in a torus bifurcation for s = −2.6, but such torus bifurcations can also occur
when s is such that H is supercritical. Indeed, the quasi-periodicity of the orbit has virtu-
ally no influence on the tonic spiking behaviour. Therefore, we conclude that, despite the
vast difference between square-wave and pseudo-plateau bursting, the organisation of their
bursting patterns is qualitatively the same.
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Appendix

The analysis of the fast subsystem of (1) can largely be done explicitly. Recall that the fast
subsystem of (1) is given by

{
ẋ = f(x, y, z) := s a x3 − s x2 − y − b z,
ẏ = g(x, y) := x2 − y,

(2)

where z is considered a parameter. Note that we ignore the time-scale separation in x and
y and assume φ = 1 in (1). The z-family of equilibria of (2) are given as a function of
x ∈ R. Indeed, by setting the right-hand sides of (2) to zero, we find that for each x ∈ R an
equilibrium exists with this x-coordinate and y-coordinate

y = x2, (3)

at the parameter value

z =
s a x3 − s x2 − y

b
=

s a x3 − (s + 1) x2

b
. (4)

Due to the cubic nature of the equation for z, we indeed get the required Z-shaped curve of
equilibria as a function of z, provided s a 6= 0 and s 6= −1. The local maxima and minima
of z are the fold points along the Z-shaped curve of equilibria, but we derive these in the
standard way as follows.

21



For each x ∈ R, the Jacobian at the corresponding equilibrium point is given by

Jac(x) :=

[
3 s a x2 − 2 s x −1

2 x −1

]
.

Fold points are characterised by a zero eigenvalue of Jac(x). We find

det(Jac(x)) = 0 ⇔ −3 s a x2 + 2 s x + 2 x = 0

⇔ 2 (s + 1) x− 3 s a x2 = 0

⇔ x = 0 or x =
2 (1 + s)

3 s a
. (5)

Using the equilibrium conditions (3) and (4) for the corresponding y- and z-coordinates, we
find that the fold points in (x, y, z)-space are given by

SN1 := (0, 0, 0),

SN2 :=

(
2 (1 + s)

3 s a
,

4 (1 + s)2

9 s2 a2
,
−4 (1 + s)3

27 s2 a2 b

)
.

The equilibrium FP of the full system (1) lies exactly at a fold point if b1 is such that the
right-hand side of the z-equation of system (1) gives zero for such a triple of (x, y, z)-values.
That is, b1 is found as

ε(s a1 x + b1 − k z) = 0 ⇔ s a1 x + b1 − k z = 0 ⇔ b1 = k z − s a1 x. (6)

The Hopf bifurcation point is found in a similar way. A Hopf bifurcation is characterised
by a pair of purely imaginary eigenvalues. Hence, we must have det(Jac(x)) > 0 and

trace(Jac(x)) = 0 ⇔ 3 s a x2 − 2 s x− 1 = 0

⇔ x =
s±√s2 + 3 s a

3 s a
. (7)

Using the fact that trace(Jac(x)) = 0, the inequality det(Jac(x)) > 0 simply reduces to
x > 1

2
. For our choice of the parameters a = 0.5 > 0 and s = −1.61 or s = −2.6, that is,

s < 0, we require

det(Jac(x)) > 0 ⇔ s±
√

s2 + 3 s a <
3 s a

2

⇔ ±
√

s2 + 3 s a <
(3 a− 2) s

2
.

Since 3 a − 2 = −0.5 < 0 for a = 0.5, the right-hand side of this inequality is positive and
the solution with the − sign in (7) is always a Hopf bifurcation, as long as the square-root
term is real, that is, s < −3 a. A second Hopf bifurcation exists only if

s ≥ 4 a

3 a2 − 2 a− 1
,

which is s = −1.6 in our setting and corresponds to a Bogdanov-Takens point; since we want
to have only one Hopf bifurcation on the upper branch of the Z-shaped curve of equilibria of

22



system (1), we need s < −1.6. In this case, using (3) and (4), the unique Hopf bifurcation
is given by

H :=

(
s−

√
D

3 s a
,

2 s + 3 a− 2
√

D

9 s a2
,
−2 s2 − 6 s− 9 a + (2 s− 3 a + 6)

√
D

27 s a2 b

)
,

where D =
√

s2 + 3 s a. We find the corresponding b1-value by using the x- and z-coordinates
of H for x and z in (6).

The stability of FP is determined by the eigenvalues of the Jacobian of the full system (1).
The characteristic polynomial of FP is of the form

charFP(ξ) = ξ3 + c2 ξ2 + c1 ξ + c0,

with

c2 = ε k + 1− 3 s a x2
FP + 2 s xFP,

c1 = (ε k + 1) (1− 3 s a x2
FP + 2 s xFP)− 1 + 2 xFP + ε s a1b,

c0 = ε k (2 x− 3 s a x2
FP + 2 s xFP) + ε s a1b.

Here, xFP is the x-coordinate of FP, which is determined by the choice for b1. The Routh-
Hurwitz criterion [36] states that FP is stable if and only if the coefficients are all positive
and c1 c2 − c0 > 0. In particular, the characteristic polynomial of FP for b1 = 0, that is,
when FP lies on SN1, is given by

charSN1(ξ) = ξ3 + (1 + ε k) ξ2 + ε (k + a1b s) ξ + ε a1b s.

Notice that all coefficients are positive for our choices of k = 0.2, a1 = −0.1 and b = 1, since
we assume s < −1.6. Moreover,

c1 c2 − c0 = ε (k + a1b s) (1 + ε k)− ε a1b s = ε k (1 + ε k + ε a1b s) > 0.

Hence, FP is always stable for b1 ≥ 0, irrespective of the choices for s < −1.6 and ε > 0,
and SHFP can only occur for b1 < 0.
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